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The Space of Countably Simple Bounded
Functions with Values in a DF-Space

5. DfAZ, A. FERNANDEZ, M. FLORENCIO and P.J. PAUL

ABSTRACT. We study the posibility of lifting some properties, as being
a (barrelled, quasi-barrelled, bornological or ultrabornological) DF, gDF or
guasi-normable space, from a locally convex space E to thé space Sy, (1, E),
of countably-valued and bounded {classes of p-a.e. equal) functions from a
measure space (2, £, ) into E.

Let (2, X, 1) be a measure space and E # {0} be a Hausdorff locally
convex space. Denote by Sy, (L, E) the space of all functions
w: ! — E that can be written as

9()= Y Xxsa()zn, (*)
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where (z,) is a bounded sequence from E and (Sy) is a sequence of
non-empty and pairwise disjoint subsets of X covering §}. A function of
this form is called a countably simple bounded function. If we endow
Sxo(Z, E) with the uniform convergence topology and identify functions
that are equal p-a.e., we obtain the quotient space Sy,(u, E). This
paper is devoted to the possibility of lifting some properties from E to
Swo(#t, £), mainly in the case when E is a DF-space. For the space
CB(X, E) of continuous bounded functions, similar results to our The-
orems 1-4 here were obtained by Bierstedt, Bonet and Schmets in [2], and
for the space L°°(u, E'} of essentially bounded measurable functions by
Ferndndez and Florencio in {6). We refer the reader to the monographs
of Jarchow [8] and Pérez Carreras and Bonet [10] for the terminology
used in this paper.

To fix some notation, denote by Q(E} the family of all continuous
seminorms defining the topology of E, by U(£) the family of all ab-
solutely convex and closed zero-neighbourhoods of E and by B(E) the
family of all absolutely convex and closed bounded subsets of £. Then, a
fundamental system of seminorms for the topology defined on Sy, (%, F)
is given by the mappings

@(gm ) = sup{g(za) 7 > 1},

where g runs through the set Q(£)}.

When p is the cardinal measure, both spaces Sy (XZ,F) and
Sko {4, E) coincide. In particular, if i is the cardinal measure on the set
N of all positive integers, we have that Sy, (g, E) = €*°(E), the space
of all bounded sequences from E. Thus, the case studied here can be
considered a generalization of this space of vector-valued sequences. We
shall see, however, that when u is atomless the behaviour can be very
different (see Theorem 5 below).

We start by proving that Sy,(u, E) is a Hausdorff quotient of
Sy (Z, E).

Proposition 1. Let N, be the subspace of all functions in
Sx.(Z, E) that are equal p-a.e. to the zero function. Then N, is closed.
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Proof. Let ¢ be a countably simple bounded function such that
@ & M,. Then, we can write ¢ as in (#), requiring in addition that
#(S1) > 0 and z; # 0. Thus, there is a continuous seminorm ¢ € Q(E)
such that g(z,) > 0. Consider the following open neighbourhood of ¢,

Vi={ € 54,(%, E) : §(¥ - ¢) < a(z1)/2}.

We only have to show that V NN, is empty. Take ¢ € V. According to
(), ¥ can be written as ¥ = }_o_, XT,.¥m. Consider the element of &
defined by

T:=|)Tn, wherel:={meN: y,#0}
mel

Since ¢ # 0, T is non-empty. Let us see that u(S8; \ T) = 0. Indeed,
if we suppose that u(S; \ T) > 0, then §y \ T is non-empty. In this
set, ¥ — o takes the value —=z;. Therefore ¢(z1)/2 > §(¥ — ¢) = ¢(z1)
and this is a contradiction. Since u(S;) > 0, there must be an index
mg € I such that u(S1 N Thy) > 0, thus u(Tm,) > 0. Since ym, # 0, we
conclude p g N,. N

To avoid trivial cases, we assume the following condition (C):

{C) There is a sequence (Ay) of pairwise disjoint sets in I with
w(Ay) > 0, for all »n € N.

We follow a common habit and do not distinguish by notation
between a map and its p-equivalence class. In particular, using (*)
above and condition (C), for a non-zero element ¢ € Sy,(u, E) we
can always choose a representative of the form Y2, xs,zn, where
(x,) is a bounded sequence from F and (S,) is a pairwise disjoint se-
guence of subsets of ¥ with positive measure convering 2. The set
R(p) := {zn : n € N} is clearly well-defined, we call it the essential
range of the function ¢. The quotient topology of Sy,(p, E) can be
defined by the family of seminorms ¢, given by

Gool(tp) : = Inf{G(h) : ¥ = ¢ (p— 2e.)}
=sup{g(z) = € R(p)} (g€ QE)).
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We give now some technical results that describe the behaviour of
those subsets of Sx,(¢, E) that are lifted from sets in £ in a natural
way. '

If A is a subset of E, we say that a function ¢ € Sy, (g, E) takes
its values essentially in A if R(p) C A. We denote by L(A) the subset
of all functions in Sy, (u, E) that take their values essentially in A. The
set L{A) inherits certain properties from A. We list some of them that
will be useful and can be easily checked:

(1) For all subsets A, B of E we have that L(4) C L(B) if and only
if AC B.

(2) L(NAR) = NL{A,), for every sequence (A,) of subsets of E.

(3) L(aA) = aL(4) for all A C E and scalars a.
(4) If either A or B is bounded, then L(A)+ L(B) = L(A + B).

(5) L{A).is absolutely convex if so is A.

(6) U C E is a zero-neighbourhood in F if and only if L(U) is a
zero-neighbourhood in Sy,(x, E). The system {L(U): U e U(E)} is a
basis of zero-neighbourhoods for the topology of Sy, (4, E).

(7) A is a bounded subset of E if and only if L(A) is a bounded
subset of Sx,(p, £). Moreover, for every bounded subset C of Sx,(u, £),
there exists A € B(F) such that C' C L(A); just take A to be the closed
absolutely convex huil:

A:zﬁ( U R((p)).

p€eC

From the list above, it is clear that many properties —like the
existence of a fundamental sequence of bounded subsets, the metrizabil-
ity of the bounded subsets or the countable boundedness property —are
equivalent for the spaces E and Sy,(u, E).

Theorem 1. Sx,{y, £) is a DF-space (resp. a gDF-space) if and
only if E is a DF-space (resp. a gDF-space).
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Proof. (<) Assume that F is a DF-space and let (B,) be an in-
creasing fundamental sequence of absolutely convex bounded subsets in
E. As we pointed out above, (L{ B},)) is a fundamental sequence of abso-
tutely convex bounded subsets in Sy,(¢, E). Now, we have to prove that
Sxo(pt, E) is countably-quasi-barrelled. Let (W, ) be a sequence of abso-
lutely convex zero-neighbourhoods in Sy, (¢, F) such that W = n, W, is
bornivorous. We have to see that W is also a zero-neighbourhood. For
every n € N, take r,, > 0 with r, L{B,) C 2= ("+1W. Then we have

g](rlL(Bl) + 7 L(By)+ -+ 1o L(Bn)) C %W

Since (W,,) are zero-neighbourhoods in Sy, (i, £), there exists a sequence

(Vn) in U(E) such that L(V,) C §W,, for all n € N. Consider, for
n =1,2,..., the absolutely convex zero-neighbourhoods in £ given by

Un = TlBl + 1"232 + -+ Tan + Vn.

It is clear that U = N, U, is bornivorous in the D F-space E. Therefore
U is a zero-neighbourhood in E. Finally, we will show that L{(U) C W.

L) = L( ﬁ Un) - ﬁ LU,) = ﬁ L(irkmwﬂ)
n=1 n= k=1

n=1 1
-N (fjrkL(BmL(vn)) <N (%W-r %W)
n=1 =1 n=1
o
C ﬂ W, = W.
n=1

(=) Now, assume that Sy,(u, F) is a DF-space. If (Cy) is a funda-
mental sequence of absolutely convex bounded subsets of Sy,(u, E), we
can find a sequence of absolutely convex bounded subsets (B,) in E
such that C, C L{B,) for all » € N. It is easy to see that (B,) is
an fundamental sequence of bounded sets in £. To show that E is
countably-quasi-barrelled, let (I/,,) be a sequence of absolutely convex
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zero-neighbourhoods in F such that U = N,U, is bornivorous. Then
(L{U,)) is -a sequence of zero-neighbourhoods in Sx,(u, F) such that
L(U) = nNuL(Uy,) is bornivorous. Since Sx,(p, F) is a DF-space, it
follows that L(U) is a zero-neighbourhood in Sy,(x, E), hence U is a
zero-neéighbourhood in £. This finishes the proof.

To i)rove that Sy, (1, E) is a gD F-space if and only if £ is a gD F-
space use the fact that for all sequences (B,,) in B(E) and (U,,) in U(E)
we have that

L( (B, + Uﬂ,)) = [V(L(Bn) + L(UR)),

n>1 n>1

tog‘;ethelrlwit‘h condition [8, 12.3.1]. We leave the details to the reader.
[

Theorem 2. Sy, (u, E) is quasi-normable if and only if E is quasi-
normable. -

* Proof. () Given any zero-neighbourhood W in Sx,(#, E), there
is an absolutely convex zero-neighbourhood U in F with L(U) C W. By
hypothesis, we can find V € U(E) such that for every ¢ > 0 there exists
B € B(E) with V C B + ¢U/. Then

L(V) C L(B + eU) = L(B)+ ¢ L(U) C L(B) + W,

50 Sy, (i, E) is quasi-normable.

(=) On the other hand, given U € U(E), since L(U) is a zero-neigh-
bourhood in Sy, (g, E), by hypothesis there exists V' € U(E) such that
for every ¢ > 0 there is B € B(E) with L{V) C L{B) + ¢L(U) =
L(B + <U7). 1t follows that V C B + U, and the proof is finished. m

We now study when the space Sno{#, £} is quasi-barrelled or borno-
logical for £ a D F-space. In the characterization of the quasi-barrelled
and bornological spaces £%°(E) given by Bierstedt and Bonet in [1, Thm.
5 and Cor. 8] the dual densily condition and the strong dual density

condition, introduceed and studied by them in the same paper, play an
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essential role. We shall see that these conditions are also essential in our
more general case.

These conditiops read technically as follows (see [1, Prop. 1.4(b)]):
A DF-space E with a fundamental sequence (B,) of bounded subsets,
verifies the dual density condition (resp. strong dual density condition)
if and only if for every decreasing sequence (A,)n>; of positive real
numbers, there exists I/ € U(E) such that for every n > 1, we can find
m > n and £, > 0 with

B, Ne U C m( 6 AkBk) (resp. B,Ne U C asx( G AkBk)).

k=1 k=1

We also know that a [ F-space satisfies the dual density condition if and
only if its bounded subsets are metrizable [1, Thm. 1.5].

Theorem 3. Let (Q,X, 1) be a measure space and E be a DF-
space. Then, the following assertions are equivalent:

(1) E satisfies the dual density condition or, equivalently, each
bounded subset of E is metrizable.

(2) Sn,(u, E) ts quasi-barrelled.

Proof. (1) = (2) By Theorem 1, Sx,(x, E) is a DF-space whose
bounded subsets are metrizable by properties (6) and (7) above. The im-
plication follows from a well-known result on D F-spaces [9, §29 3.(12)).

(2) = (1) Consider an increasing fundamental sequence (B, ) of closed
absolutely convex bounded subsets of E, and suppose that (1) does not
hold. By reading the dual density condition in the technical form given
above, we can see that there exists a decreasing sequence (A,,) of strictly
positive numbers such that for every U € U(E), we can find n > 1 with
the property that for every m > n and every £ > 0, in particular ¢ = 1,
we have

BonU ¢ Cp i=aTX(A By U A By U U A, Bp).

This gives us an increasing sequence (U, ) of closed absolutely convex
bounded subsets of the D F-space E such that:
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(i} (A\;}Cy) is a fundamental sequence of bounded sets in E.

(ii) For each U € U(E), there is k > 1 with By NU ¢ C,, for all
m > 1.

We now adapt a technique due to S. Dierolf (see [5, Prop. 4.5]) to
get a contradiction. Since every bounded set in Sy, (u, E') is absorbed
by some L({C,), the set

W= L(Cy)
n>l

is bornivorous in Sy, (4, £). Then, the closure W of W in Suo (14, E)
is a bornivorous barrel in Sg,(u, £), and by hypothesis, it is a zero-
neighbourhood in Sy, (g, E). Then, there exists U € U(E) such that

1.
LU)c ;7.

Now, by (ii) there is a bounded sequence (z,) in U such that z, & C,.
Since (C,) are closed subsets of E, there is a sequence (V,,) C U{E) such
that

Za @ Ca+ Vo, n €N, (+4)

By (i), and since the sequence (C,,) is increasing, the set

V=N Go+v)
k>1

is'bornivorous in the D F-space E. Hence, V is a zero-neighbourhood in
E and L(V') is a zero-neighbourhood in Sy, (¢, E). We have that

L) C %W C %W +L(V)=J %L(c,,) + L(V)

n>l
1 1
= anjl 5L(Ca) + (;]1 (2(Ca) + L(Va)
c JW(Cr)+ L)) = | L(Cn + Va). (% % %)

n>l nzl
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Clearly, the function ¢ : @ — E defined by ¢ = 3, 5, ZnXa,,
where (A,) is the sequence given by condition (C), is in Sy,(g, E).
Moreover, ¢ € L{U) because the bounded sequence (z,) is contained
in U. By (% %), there is n € N such that ¢ € L(C, + V,). Since
w(An) > 0, we have that z, € C, + V;,, which is in contradiction with
(). =

Theorem 4. Let (2, %, 1) be a measure space and E a D F-space.
Then, the following assertions are equivalent:

(1) E satisfies the strong dual density condition.
(2) Sx,(p, E) is bornological.

Proof. Let (B,) be an increasing fundamental sequence of abso-
lutely convex closed bounded subsets of £. To prove that (2) = (1),
suppose that (1} does not hold. Reading the strong dual density con-
dition in the technical form given above, we have that there exists a
decreasing sequence (A,) of strictly positive numbers such that for each
U € U(E), we can find n > 1 with the property that for every m > n
and ¢ > 0, in particular £ = 1, we have

Bﬂ nuy ¢ Cm = acx()\lBl U /\232 u---u /\mBm)-

This gives us an increasing sequence (Cr, ) of absolutely convex bounded
subsets of E. Take W = U, L(C},). This set W is absolutely convex and
bornivorous in Sy, (g, E'). Since Sy,(4, E) is bornological, then W is a
zero-neighbourhood, and we can find U € U(F) such that L(U) C W.

Since B,NU ¢ C,,, we can take z,, € (BoNU\C,, forallm > 1. If
weset 9 = Y o' TmXa., Where (A} is the sequence from condition
(C), then ¢ € Sy,(u,E). Moreover, ¢ € L(U) C W = U, L(C,).
Therefore, there exists ng € N such that ¢ € L(Cp,). Since u(An,) > 0,
then z,, € C,, and this is a contradiction with the selection of the z,'s.

(1) = (2) Since (L(B,)) is an increasing fundamental sequence of ab-
solutely convex closed bounded subsets in Sy (g, F) and this is a DF-
space, we only have to show that if W is an absolutely convex bor-
nivorous subset of Sk, (p, F), then W N L(B,,) is a zero neighbourhood



228 S. Diaz, A. Ferndndez, M. Flotencio and P.J. Padl
in L(B,) for every n € N, when L(B,) is endowed with the topology
inherited from Sy, (g, E).

Since W is bornivorous, there exists a decreasing sequence of posi-
tive real numbers (A,,) such that A\, L(B,) C W for every n € N.

Bearing in mind the definition of the strong dual density condition,
there exists U € U(E) such that from all n € N, we can find m > » and
£n > 0 with

A A Am
B.Ne U C a.cx(?]Bl U —2—ng U---u %Bm).

Therefore,
L(BYNen  L(UY= L(B, Ne, U) C L(acx( U %Bk))
k=1

C L( —"Bk) =Y EEL(B;C) CW.
k=1

k=1

Finally, L{By)Ne, L(U) € WN L(B,,) for every n € N, so the proof
is finished. =

To study when Sy, (g, E) is barrelled or ultrabornological, we shall
use the abstract results given in [3] (barrelledness) and in [4] (ultra-
bornology) for a locally convex space endowed with a suitable Boolean
algebra of projections. A family Py = {Ps: § € £} of continuous linear
projections in E is called an (R, £, ¢)- Boolean algebra of projections if
the following conditions are satisfied:

(i) Pq is the identity on E.

(i1) Ps = 0 whenever § € ¥ and u(S) =0.
(iii) Psnr = Ps- Pr for all 5,7 € %.

(iv) Psur = Pg + Pr for all disjoint §,T € L.
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The results mentioned above can be stated as follows. (Similar
results as in [3] and [4] for some spaces of (scalar or vector-valued) con-
tinuous functions defined on an interval [a,b] C R, have been cobtained
independently and about the same time by Gilioli [7).)

Theorem A. ([3, Cor. 1and 2] and [4, Cor. 1 and 2].) Let(Q,Z,u)
be a o-finite measure space. Let E be a Hausdorff locally convez space
and Py be an (), L, u)-Boolean algebra of projections. Assume that Py
is equicontinuous and that the following conditions holds:

(o) If () is a decreasing sequence in L with p(N,0,) = 0, (z,)
is a bounded sequence in E such that every z, is supported in Q, (i.e.
Pa, (2,) = z,), and (o) is a sequence in €, then the series >, an%y
converges in E.

Then we have:

(1) If E is quasi-barrelled and Pg(E) s barrelled for each atom
5 € L, then E is barrelled.

(2) If E is quasi-barrelled and p is atomless, then E is barrelled.

(3) If E is bornological and Ps( E) is ultrabornological for each atom
S € %, then E is ultrabornological.

(4) If E is bornological and p is atomless, then E is ultrabornolo-
gical.

To use Theorem A in our case, we state the following lemma.

Lemma. For every subset § € X, denote

Ps: ¢ € Sxo(p, E) = Ps(p) = x5 ¢ € S, E).
Then we have:

(1} The set {Ps: S € L} is an equicontinuous Boolean algebra of
projections on Sy, (i, E).

(2) If § is an atom, then Ps{Sy, (1, E)) is isomorphic to E.
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(3). Sx,(#, E) satisfies the condition () in Theorem A, i.e. if (1,)
is a decreasing sequence of subsets of T such that u(N, Q) = 0 and ()
is a bounded sequence in Sy, (p, E) such that @, is supported in Q,,, for
each n € N and if (ay) is a sequence from €1, then the series 3, anpy
converges in Sy, (i, E).

.PAroof. (1) The algebraic part is easy. To prove the equicontinuity,
simply note that Ps(L(U)} C L(U), for every U € U(E) and 5 € X.

(2) It is enough to prove that any function of Sy, (u, E) is constant on S.
In this case, the isomorphism is the natural. Suppose that © € Sy, (4, £)
is not constant on §. Then, there exist z;,z, € E with z; # z3, such
that the subsets

S1={wes: pwy=2} and S ={wes: pw)=1zs}

are disjoint and they have positive measure. Since 5 is an atom, we have
that p(S) = p(S2) = p{S) and we get a contradiction.

(3) Since (2y,) is decreasing and each ¢, is supported in {2, it follows
that the series ) an¢p, converges pointwise p-a.e. to a function ¢
because outside every {2, there is only a finite number of non-zero terms
and p(N,8,.) = 0. Finally, note that ¢ is countably simple and bounded

because
R(y) C U {Zak%, zix € R(pk), k € N}

n=1 \ k=1
is bounded and countable, and that ¢ is also the limit in Sx,(g, £) of
Yo, ngs. 0

From this lemma and Theorem A, we have the following.

Theorem 5. Let (2,X,u) be a o-finite measure space and E a
DF-space.

{a) If the measure p has atoms, then

(1) Sx,(p, E) is barrelled if and only if E is barrelled and each
bounded subset of E is metrizable.
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(2) S, (u, E) is uitrabornological if and only if E is ultrabornological
and E satisfies the strong dual density condition.

(b) If the measure p is atomless, then

(1) Sx,(i, E) is barrelled if and only if each bounded subset of E is
metrizable.

(2) Sno(, E) is ultrabornological if and only if E satisfies the strong
dual density condition.

Acknowledgements. We want to thank the referee for his remarks and
for calling our attention to references [2] and [7].

References

[1] Bierstedt. K.D. and Bomet, J.: Dual density conditions in (DF)
spaces I. Resultate Math., 14 (1988), 242-274.

[2] Bierstedt, K.D., Bonet, J. and Schmets, J.: (DF)-spaces of type
CB(X,FE) and CV(X, F). Note Mat., 10 (suppl. n.1) (1990), 127-148.

[3] Diaz, S., Fernéndez, A., Florencio, M. and Pail, P.J.: An abstract
Banach-Steinhaus theorern and applications to function spaces. Resul-
tate Math., 23 (1993), 242-250.

[4] Diaz, S., Fernandez, A., Florencio, M. and Pail, P.J.: A wide class of
ultrabornological spaces of measureble functions. J. Math. Anal. Appl.
(to appear).

[5] Dierolf, S.: On spaces of continuous linear mappings between locally
convez spaces. Note Mat., 5 (1985), 147-225.

(6] Fernandez, A. and Florencio, M.: The space of essentially bounded
measurable functions with values in ¢ DF-space. Proc. Roy. Irish Acad.,
93A (n.1) (1993), 87-95.

[7] Gilioli, A.: Natural ultrabornological, non-complete, normed function
spaces. Arch. Math. (Basel), 61 (1993}, 465-477.



232 S. Diaz, A. Ferndndez, M. Flerencio and P.J. Paal

(8] Jarchow, H.: Locally Conver Spaces. B.G. Teubner, Stuttgart, 1981.

(9] Kéthe, G.: Topological Vector Spaces. 1. Springer-Verlag, Berlin,
Heidelberg, New York, 1969.

[10] Pérez Carreras, P. and Bonet, J.: Barrelled locally Conver Spaces.
Elsevier North-Holland Publ. Co., Amsterdam, New York, Oxford,
1987.

E.S. Ingenieros Industriales, Recibido: 7 de enero de 1993
Avda. Reina Mercedes s/n, Revisado: 1 de junio de 1993
41012-Sevilla

SPAIN




