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A Generalized Mixed Topology on
Orlicz Spaces

MARIAN NOWAK

ABSTRACT. Let L¥ be an Orlicz space defined by an arbitrary Orlicz
function ¢ over a positive measure space (2, X, 1) and provided with its
usual F-norm || - |{,. In L¥ a natural convergence can be defined as follows:
a sequence (Z,) in L¥ is said to be 7, -convergent to * € LY whenever
Ty, — z (g — Q) and sup||z,ll, < o0o. In this paper we examine some
kind of generalized inductive-limit topology (in the sense of Turpin) J [!p in
L¥ that generates our g -convergence in LY. The main aim of the paper is to
obtain a description of the topology j}p in terms of some family of #-norms
defined by other Orlicz functions. As an application we obtain a topological
characterization of the 7, -convergence in L¥.

1. INTRODUCTION AND PRELIMINARIES

Every Orlicz space LY defined by an Orlicz function ¢ (not necess-
arily convex) over a measure space (£2,%, ) can be equipped with two
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F-norms: ||-||,- the usual #-norm on L¥ and ||-[|,- the F-norm of con-
vergence in measure ( on 2 ) restricted to L¥. Thus a natural sequential
convergence in L% can be defined as follows: a sequence (z,) in L¥ is
said to be y,-convergent to z € L¥, in symbols z,, L4 z, whenever

zn — 2{p— Q) (ie., ||zn—2|jz = 0) and supllz.]l, < .

When we replace in the above definition the condition: sup ||z,]|, <
oo with the boundedness of the set {z, : n > 0} for the topology
Jil-||,» then this new convergence comes under the definition of the so-
called two-norm convergence or v-convergence in the sense of Alexiewicz
([1,1954]). The general theory of two-norm convergence has been exten-
sively developed by A.Alexiewicz {1], W. Orlicz [19], A. Alexiewicz and
Z. Semadeni [2], A. Wiweger [23}, [24], [25].

It is well known that the theory of two-norm convergence is closely
related to the Wiweger’s theory of mixed topologies {23}, [24]. Indeed,
in case when }| -{| is a homogenuous norm and || ||* is an F-norm on a
linear space X and ||z, — z||* — O implies lim inf ||[zx|| > [|z||, then
the sequential vy-convergence in X is generated by the so-called mixed
topology Y[Tjj.11» Jj1-11+]-

The notion of the mixed topology was a starting point for the theory
of generalized inductive-limit topologies. There are many kinds of such
topologies introduced for different reasons by A. Persson [21], D.J.H.
Garling (7], J.B. Cooper [3], P. Turpin [22] and others.

The question arises whether our y,-convergence in L¥ is topologized
by some linear topology. It turns out that there is a positive answer
to this question when we take into account an appropriate generalized
inductive-limit topology in the sense of Turpin. This topology will be
called here a generalized mixed topology and denoted by J;°. This term
is justified by the fact that 7 coincides with the usual mixed topology
YT 1o » Tutye ] (in the sense of Wiweger) when the space (L%, Jy1, ) is
locally bounded.

In this paper we investigate the generalized mixed topology J; .
Our main aim is to obtain a description of 7 in terms of some family
of F-norms defined by other Orlicz functions. As application we obtain
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a topological characterization of our 7,-convergence in L¥. Moreover,
for  being a convex Orlicz function we establish the general form of
JY -continuous linear functionals on L?.

In some special cases the topology 7/ was examined by P. Turpin
[22] and the author [14], [15], [16].

Given a linear topological space (X, §) by Bd(X,£) we will denote
the collection of all £-bounded subsets of X. As usual A/ stands for the
set of all natural numbers. We assume that 0-o0c = 0.

Now we recall some notation and terminology concerning Orlicz
spaces (see [9], [11}, [12], [22] for more details).

By an Orlicz function we mean a function ¢ : [0,00) — [0, 00}
which is non-decreasing, left continuous, continuous at 0 with ¢(0) = 0,
and not identically equal to 0.

An Orlicz function ¢ is called convex whenever (au + fv) <
ap(u) + Be(v) for a,f > 0, a+ 8 =1 and u,v > 0. A convex Or-
licz function is usually called a Young function.

For a Young function ¢ we denote by * the function complement-
ary to ¢ in the sense of Young, i.e.,

©"(v) = sup{uv — @(u): u> 0} for v > 0.

For a set ¥ of Young functions we will write: ¥* = {¢p*: ¢ € ¥}.

Let ¢ and % be a pair of Orlicz functions vanishing only at zero
(resp. taking only finite values). We say that ¢ increases essentially

more rapidly than ¢ for small u (resp. for large %) in symbols % <« P
t

(resp. ¥ << ¢) whenever for any ¢ > 0, ¥(cu)/o(u) — 0 as v — 0 (resp.

% — 00).

t
We will write 4 <« @ when « @ and ¥ < ¢ hold.

For ¢ and % being Young functions the condition X @ (resp.
i !
1 4 ) implies " < 1™ (resp. ¢* << ¥*) (see [9, Lemma 13.1]).

Let (£, %, ) be a positive measure space, and let L% denote the
set of equivalence classes of all real valued measurable functions defined
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and finite a.e. on §3. For a subset A of 2 and =z € L° we will write
24 =2 Xa, where y 4 stands for the characteristic function of A.

An Orlicz function ¢ determines a functional m,, : 'L — [0, 00} by
mol@) = [ olla(t))d

The Orlicz space generated by ¢ is the ideal of L° defined by
L? ={z € L®: my,(Az) < oo for some A > 0}.
The functional m, restricted to L¥ is an orthogonally additive semi-

modular.

L¥ can be equipped with the complete metrizable topology 7, of
the F-norm

llz]|le = tnf{A > 0: my(z/A) < A}

Moreover, if ¢ is a Young function, then the topology J, can be
generated by the Luxemburg norm

lizllle = nf{d > 0: my(z/X) < 1}
Forr > 0 let

By(r) ={z € L¥: |le[l, < 7}

and let
Biy)(r) = {z € L?: ||lzlll, < 7}
whenever ¢ is a Young function.
We shall need the following lemma.
Lemma 1.1. Let ¢,z be Orlicz functions, and let p(u) = ¢1(u)V

wa(u) for u > 0. Then ¢ is an Orlicz function and the following state-
ments hold:
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(2') LY = ¥ N vz,
(@) llzlly, Vilzllp, < llzlle < llzlly, + llzllp, for z € L?.
(111) To = Tpilie ¥ Talio

a.nd Bd(Lw,j(p) = Bd(Ltp7ij1iLw ) n Bd(L’p’jV’QlL"’ )'

Proof. (i) See [8, Theorem 1].
(ii) It follows from the definition of || - ||.
(iii) It follows from (ii}).

Let
E?®={z € L%: my(Az) < oo for all A > 0}.
It is known that L¥ = E¥ whenever ¢ satisfies the A;- condition, i.e.,
lim sup @(2u)/e(u) < 00 as w — 0 and v — 0.

Let 0 f 0<u<l
o(wy={) o O=ush

1 for u > 1,

It is known that L¥o is the largest Orlicz space and consists of all those
z € L that are bounded outside of some set of finite measure, and

[lzllg, = inf{A > 0: p({t € Q: |z(t)] > A}) < A}.
It is seen that ||z, — z||,, = O in L¥o iff 2, — « in measure on Q (in

symbols z,, — z (u—$2)). Therefore we will write ||-||, instead of ||-}[, ,
and by J, we will denote the topology of the F-norm || - ||, .

Tore > 0 let

Bu(e)={z e L% : |lz]l. < e}

We shall need the following lemma.

Lemma 1.2. Let ¢ be an Orlicz function such that p(u) — oo as
u — 0o. Then forr >0, By(r) € Bd(L¥,J,,.)-
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Proof. Let z, € By(r) (n =1,2,...) and let A,, — 0. Fore > 0
let Q,(e) = {t € @ : |Auz,(t)] > €}. Then

p(g"(g))w(flinl) : /n..(s)w(lxnf(t)l) i
< mw(“’?") <.

Since p(u) — 00 as u — oo we get u{Q,(¢)) — 0, and this means that
”’\nu’:u”u -0

2. A GENERALIZED MIXED TOPOLOGY ON L? -
GENERAL PROPERTIES

In this section we consider some kind of generalized inductive limit
topology on L¥.

Let v be an arbitrary Orlicz function, and let
Fn = By(2"%) and Jn = Ty, forn > 0.
Then the family B, = {F, : n > 0} forms a base of metric bounded

sets in (L%, ]| |]p)-

Moreover, the sequence (F,,J.) (n > 0) of balanced topological
spaces satisfies the following conditions:
(i) L¥ = |J Fn-
n2>0

(ii) Fi + F, C F,.41, and the function
Fn X Fn ] (ﬂ?,y)—*x“*'ye Fn+1

is continuous.
(iii} The function [~1,1] X Fy, 3 (A, z) = A -z € F, is continuous.
(IV) jn.l.]an = J-,—,, forn 2 0.
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Thus the space L¥ with the system {(F,,J.): n > o} comes under
the conditions of the strict inductive limit of balanced topological spaces
in the sense of P. Turpin [22, Ch. I].

Definition 2.1. The family of all sets of the form

o N
U (O (Bo(2") N Bu(ea))) (2.1)
N=0

n=0

where (€, : n 2 0) is a sequence of positive numbers, forms a base
of neighbourhoods of zero for a linear topology on L¥ (in the sense of
Turpin) which will be denoted by J[ .

According to [22, Theorem 1.1.6] 7/ in the finest of all linear topolo-
gies £ on LY which satisfy the conditions:

€lF, C Ty, forn>0. (2.2)

Moreover, in view of [22, Theorem 1.1.8] we have

j;TF.. = Julp, forn>0. (2.3)

Since Jy,, C J, we have J° C Jp; hence J,,,, C I C Tp.
Henceforth in this section we assume that ¢(u) — 00 as u — co.

The basic properties of the topology J/ are included in the follow-
ing theorems.

Theorem 2.1. The space (L¥,7[) is complete.

Proof. It is known that the balls B,(2") are closed subsets of
(L#0,T,) (see [22, 0.3.6]), so the spaces (Byo(2"), Tuip, @my) (0 2 0)
are complete. Hence, by [22, Theorem 1.1.10] the space (L¥,J)") is
cotnplete.

Theorem 2.2. For a subset Z C L¥ the following statements are
equivalent:
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(i) supdlall, : @ € 2} < oo.

(ii) Z is bounded for J7.

Proof. By Lemma 1.2 the balls B,(2") are bounded subsets of
(L¥,Ju|,s )- Moreover, the balls B,(2") are also closed in (L¥,7,,,)
(see [22, 0.3.6]). In view of (2.2) and (2.3) J7 is the finest of all linear

topologies £ on LY such that ¢|p, = 7, . Hence by (22, Corollary
1.1.12] the equivalence (¢) < (iz) holds.

Theorem 2.3. For a subset Z C LY the following statements are
equivalent: )
(1) Z is relatively compact for T .

(i) Z is relatively compact for J,,, and

sup {|lz|l,: T € Z} <00 .

Proof. It follows from Theorem 2.2 and (2.3).

Let us recall that a sequence (z,) in L¥ is said to be 7,-convergent

. ¥
to z € L?, in symbols z, - z, whenever

Thp—z (p—Q) and sup ||zall, < oo.
n

Theorem 2.4. For a sequence (z,,) in LY the following statements
are equivalent:

(i) xn — 0 for J7.
(i1) Tn 25 0.

Moreover, J[° is the finest of all linear topologies £ on L¥ which
sutisfy the condition:

z, 30 implies z, — 0 for &. (+)
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Proof. The equivalence (i) ¢ (ii) follows from Theorem 2.2 and
(2.3).

Now let £ be a linear topology on L¥ for which the condition (+)
holds. Then £[p ¢y C Tl for r > 0, because 7, is a metrizable

linear topology. Hence by (2.2} we get that £ C J;.

Definition 2.2, Let (X,7n) be a linear topological space. A linear
mapping A: L¥ — X is said to be y,-linear, if

Zn 250 implies A(zy) — 0 for 0.

The next theorem gives a characterization of v,-linear functionals
on L¥,

Theorem 2.5. For a linear topological space (X,n) and a linear
mapping A: L¥ — X the following statements are equivalent:
(1) A is (T, n)-continuous.
(ii) A is y,-linear.
(iii) For every r > 0, the restriction A|g,(r) 15
(T w8, (r)» N)-continuous.
Proof. (i} = (it) It follows from Theorem 2.4.
(#t) = (443) it is obvious.
(#13) = (1) Let W be a neighbourhood of zero in X for . Then
there exists a sequence (W, : n > 0) of neighbourhoods of zero for
N
n such that > W, C W for every N > 0. Thus by our assumption
n=0

there exists a sequence (g, : n > 0) of positive numbers such that
A(By(2")N Bu(gn)) C W, Thus for N >0

N N
A( Y (B2 N Bu(en))) cy w.cw,
n=0

n=0
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50

oo N
(U (T @nBue)) o
N=0

n=>0

o0 N
c Y A(Z(BW(T")H B,,(en))) CwW.

N=0 n=0
This means that A is (J,n)-continuous.

Now we are going to compare the topology 7, with the mixed topol-
ogy Y[ Jp» Tyuire] in the sense of Wiweger (see [24]). For this purpose we
- shall need the following

Theorem 2.6. Assume that (2,5, u) is an atomnless measure space
or that p is the counting measure on N. If (L¥,J,) is a locally bounded
space then for a subset Z of L¥ the following statements are equivalent:

(i) Z is bounded for JF.
(i) sup {||z|l,: z € Z} < 0.
(iii) Z is bounded for J,.

Proof. (i) < (it) See Theorem 2.2.

(42) = (4it) In view of [22, 0.3.10.2] sup{}jz]|, : x€ Z} < oo if and
only if Z is additively bounded (see [22, 0.3.10.1]), so arguing as in the
proof of {15, Lemma 2.5] we obtain that Z is bounded for 7.

(#42) = (1) Obvious.
Theorem 2.7. Assume that (Q, %, 1) is an atomless measure space

or that p is the counting measure on N. If (L¥,7,) is e locally bounded
space, then the generalized mized topology J coincides with the mized

topology (T oy TyiLe]-

Proof. In view of Theorem 2.6 it follows from [24, 2.2.1 and 2.2.2].
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3. SOME PROJECTIVE TOPOLOGY ON ORLICZ SPACES
In [5], [6] H.W. Davis, F.J.Muray and J. Weber studied the spaces

LP(Sy= (1" (§ C[1,00))

pES

endowed with the appropriate projective topology.

There are some results concerning a representation of an Orlicz
space LY as the intersection of some family of other Orlicz spaces (see
(10}, [17], [18]). In this section we examine the appropriate projective
topology on L¥. In section 4 we shall show that this projective topology
coincides with the.generalized mixed topology J;.

We start with some equalities among Orlicz spaces, proved in [17]
and [18], which are of key importance in this section. At the very be-
ginning we distinguish some classes of Orlicz functions.

An Orlicz function ¢ continuous for all > 0, taking only finite
values, vanishing only at zero, and not bounded is usually called a -
function. By & we will denote the collection of all @-functions.

A Young function ¢ vanishing only at zero and taking only finite
values is called an N-function whenever ¢(u)/u — 0 as v — 0 and
p(u)fu — oo as u — oo. By ¢, we will denote the collection of all
N-functions.

Let ®; be the set of all Orlicz functions ¢ vanishing only at zero
and such that ¢(u) - o as u — co. Denote by

b1 ={p € ®1: p(u) < oo for u >0},

$1; = {p € P;: » jumps to ™}

Then ®; = ®;; U $12. In view of [17, Theorem 3.1, 3.2, 3.7 and 3.8] we
get

Theorem 3.1. Let ¢ € ®1; (i = 1,2). Then the following equalities

hold:
LY =([{L¥: v e ¥} ={HEY: ve ¥,
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where
a 5
Vo ={ped: vy}, ¥, ={ved: ¥pl
Moreover, if p is an atomless measure or the counting measure on N,

then the strict inclusion L¥G EV holds for each v € ¥Y;.

Next let ®$ be the set of all Young functions ¢ vanishing only at
zero and such that ¢(u)/u — oo as 4 — oo

Denote by

o5, = {p e ®§: plu) < oo for u>0and p(u)/u— 0as u— 0},

®$, = {p € B : ¢ jumps to oo and (u)/u — 0 as u — 0},

9¢, = {p e ®S: plu) < oo foru>0and p(u)/u —aasu — 0, a > 0},
b, = {p € ®§: ¢ jumps to oo and p(u)/u— a as u— 0, a > 0}.

4
Then ®§ = |J ®5;, where the sets ®§; are pairwise disjoint. It is
i=1
seen that ®§; = ®n. According to [18, Theorems 2.1-2.4] we get

Theorem 3.2. Let ¢ € ®f; (1 = 1,2,3,4). Then the following
equalities hold:

L9 = {L*: v € ¥S(N)} = [{EY: ¥ € ¥5(N)}
where

VE(N)={pedn: p Ko}, ¥H(N)={peby: ¥ K¢},

UE(N) = (e by § < g}, VE(N)=dy.

Next, let @5 be the set of all Young functions ¢ taking only finite values
and such that ¢(u}/u — 0 as u — 0.

" Denote by

51 = {p€®5: ¢p(u)>0for w >0 and p(u)/u — oo asu — oo} ,
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&5, = {p € ®5: p(u) > 0foru > 0and p{u)/u - aasu — oo, a > 0},
@53 = {p € ®5: (u) = 0 near zero and @{u)/u — 0o as u = o0},

o5y = {p € ®5: p(u) = 0 near zero and ¢(u}/u — aasu — oo, a > 0}.

4
Then ¢§ = 'U1 ®3;, where the sets @5, are pairwise disjoint. It is
1=

seen that @5, = ®n. According to [18, Theorems 1.1-1.4] we have

Theorem 3.3. Let ¢ € 95, (i = 1,2,3,4). Then the following
equalities hold

E°=| {EY: ¢ e ¥E(N)} = J{LY: v € T5L(N)}
where

VH(N)={pedn: o Ru), VLN ={pe¥n: pKv},
l
VH(N)={pen: ¢ w9}, U5(N) = oy,
At last, in view of [18, Lemma 3.1 and Theorem 3.3] we get
Theorem 3.4 Let ¢, and @, be a pair of complementary Young
functions. Then @1 € @, if and only if ¢, € ®5, (1 = 1,2,3,4), and

moreover, the sets W{,(N) and V3 (N) are mutually related in such a
way that

(¥FH(N))" = WER(V) and (V52(N))" = WE2 (),

We shall need the following

Corollary 3.5. Let ¢ € &5, (i = 1,2,3,4). Then

E = | (LY : ¢ e U5 (N)}.
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Proof. Since ¢ € ®5; and (¥§,(N))* = ¥¥. (N) (see Theorem 3.4)
by Theorem 3.3 we get

(¥ e i)} = | J{LY: ¢ e (BH(N)}
= | J{L¥: peug(N)} = E¥.

We are now ready to define our projective topology on L¥.

Definition 3.1. Let ¢ € &y; (i = 1,2). By JZ we will denote the
projective topology on LY with respect to the family {(E"’,Jﬂ Ev): YPE
Ui}, de, JF is defined to be the coarsest of all linear topologies £ on
L¥ for which Jyp» C & holds for every ¥ € Y. Thus

JE = sup {Tye : ¥ € ¥}

For ¢ being a ¢-function the topology J£ has been examined in
[14], [15], [16]. It is easy to verify that all properties of 7§ which are
obtained in [14], [15], [16] for ¢ being a @-function remain valid for
@ € ®;. In this section we extend results from [14], [15}, [16] to the
case of ¢ belonging to ®;.

From the definition of 7 we have
Theorem 3.6. Let p € ®y. Then J 1o C IS C Ty

Theorem 3.7. Let ¢ € &1 and let p be an infinite atomless
measure. Then there exists a sequence (x,) in L? such that x, — 0 for
JE and my(zn) = 1 for n € N. Hence the strict inclusion JpG Jp
holds.

Proof. For ¢ € &y, this fact is proved in [13, Theorem 2.5]. Now
let ¢ € @42, i-e., p(u) < oo for u < a and ¢(u) = oo for u > a. Let (u,)
be a sequence of positive numbers such that u, | 0 and 3 < a. Let (£2,,)
be a sequence of measurable subsets of ( such that u(Q,) = 1/p(u.).
Define
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_Jun for te Q. ,
“""(t)*{o for  tg Q.

We shall show that z, — 0 for 7£ , i.e., ||2,]l4 — O for each ¢ €

vY,. Indeed, let ¢ <« w and let ¢ > 0 be given. Then there exists ug > 0
such that ¥(u/e) < ep(u) for u < ug. Let ng € A be such that u, < ug
for n > ng. Then for n > ng we have my(z,/e) = ¥(un/e)/p(u,) < €
i.e., [|Zn]ly € €. On the other hand, m (2.} = p(un)/@(u,) = 1.

Arguing as in the proof of [13, Theorem 1.2] we get

Theorem 3.8. Let € ®); (i = 1,2). Then the topology TS has a
base of neighbourhoods of zero consisting of all sets of the form:

B¢(T) n L(‘p

where P € U, and r > 0.

Repeating the arguments of the proof of {13, Theorem 5.1] and using
the equalities from Theorem 3.1 we get

Theorem 3.9. Let ¢ € ®,. Then the space (L¥,J7) is complete.

Since the space (L¥,J,) is complete, from Theorems 3.6 and 3.7,
in view of the Open Mapping Theorem it follows

Theorem 3.10. Let ¢ € ®, and let u be an infinite atomless
measure. Then te space (L¥,J{) is not metrizable.

To the end of this section we will assume that ¢ € ®f. We start
with the following lemma.

Lemma 3.11. Let ¢ € ®5; (i = 1,2,3,4) and let ¥ be a @-function
suchthat  « pifi=1 (resp. p K oifi=2 ¢ Reoifi=3 ¢ K¢
if i = 4). Then there exists an N-function vy such that ¥(u) < o(2u)

a 3 {
foru>0and g < @ ifi=1 (resp. Yo Ko if i =2, Yo « ¢ if
i=3).
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Proof. Let 4; be an arbitrary N-function such that 3 X w if

5 { 5
i=1(resp. ¥y R pifi=2, P Keifi=3, ¥y |« pifi=4). Let
o = ¥ V 1. Next, let us put p(0} = 0 and p(s) = sup (¥(t)}/t) for
0<t<s

s >0, Let .
Po(u) = ] p(8) ds for w > 0.
: 0

It is seen that ¥ is an N-function. Arguing as in he proof of (13, Lemma
1.4] we can verify that 1py satisfies the desired properties.

Theorem 3.12. Let p € ¢, (i = 1,2,3,4). Then the topology J§
is generated by the family of B-norms {||| - ||ly|Le : ¥ € YT(N)}.

Proof. For example, let ¢ € ®§;. Then ¢ € ®;;. Givenr ¥ € ¥}
and 7 > 0, in view of Lemma 3.11 there exists iy € ¥{,(/N) and such
that ¢(u) < o(2u) for u > 0. Hence

|[#]|y < ||22]|yo for all z € L¥°. (1)

On the other hand, since the F-norms {|-{]y, and ||| |||, are equivalent
on L¥o, there exists r; > 0 such that

Bwo_)(?‘l) C By(r)- (2)

We shall show that By,)(r1/2) N LY C By(r). Indeed, let
z € Byo)(r1/2) N LY. Then [{|2zfljy, < 71, hence by (2} we get
[|2]}yo < r and next, by (1) we see that ||z||y, < r.

For i=1,2,4 the proof is similar.

Now we are ready to establish the general form of 7Z-continuous
linear functionals on L¥.

Theorem 3.13. Let ¢ € ®f and let u be a o-finite measure. Then

for a linear functional f on L¥ the following statements are equivalent:

(i) f is continuous for J7.
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i1} There ezists a unique y € E¥ such that
(i1) que y

f@)= 1@ = [ alu) du  for ze L%

Proof. (i) = (i¢). Let ¢ € 5, (1 = 1,2,3,4). In view of Theorem
3.12 there exist ¢ € ¥¥,(N) and » > 0 such that f is bounded on
B(y)(r}n L¥. This means that f is continuous on the linear subspace
(L®,JTyjLe) of the normed space (EY¥,J, pe). Hence, by the Hahn-
Banach theorem there exists a Jyge-continuous linear functional f on
E¥ such that f(z) = f(z) for z € L¥. According to [11, p. 56] there
exists y € LY~ C E¥ such that

f(z) = /r;z(t)y(t) du for z € E¥,

Hence

@)= )= [ ety du  forse L@ (1)

Now assume that there exists another y* € E¥" such that
f(2) = fulz) = f 2(8)y' () dps for = € LP. @)
Q

Then, for example, there exists a measurable set A C {t € Q: ¥'(t) >
y(t)} such that 0 < u(A) < co. Hence by (1) and (2) we get

Jxa) @) - vw) au= [ @)=y du=o

This contradiction establishes that there exists a unique y € E¥ such
that (1) holds.

(i1) = (i) Let ¢ € ®§; (1 = 1,2,3,4). According to Corollary 3.5
there exists ¥ € ¥¥;(N) such that y € L¥ . Then LY C E¥ C LY
and using the Holder’s inequality we get that | f,(z)] < ||y|[%- |||z, for
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z € L® (here || -]|%. denotes the Orlicz norm on L¥"). This means that
fy 18 Ty|Le-continuous, so f, is J5-continuous, because Jyyre C JF.

4. THE IDENTITY OF THE TOPOLOGIES 7 AND JZ ON
Le

In this section we shall prove that the topologies J; and J¢ co-
incide on L¥. We start with the following lemma.

Lemma 4.1. Let ¢ € ®13 and ¢ be a p-function. Then the follow-
ing statements hold:

(i) For every r > 0 and € > 0 there exists § > 0 such that

sup {||zallv: 2 € By(r)} <¢ for Ae X, u(A) <é.

(i) If ¥ &« ¢, then for every r > 0

TuiBoiry = TuiBo(r)-

Proof. (i} Assume that ¢{u) < co for 0 € u < a and (u) = oo for
u > a, where a > 0. Given z € By(r) we have [ o(l(t)]/r) du < 7, s0
|z(t)]/r < a a.e. on Q. Given ¢ > 0let § = ¢/¢(ar/e). Then for A€ &
with p(A) < 6

[ #atolfe) i < plar/eyu4) < ¢

i, llz.4lly < é.

(ii) Since the inclusion J,1e C JyjLe holds it is enough to show
that Jy|p,(r) C JuiB,(r) holds for every r > 0. To this end we shall
show that for any = € B,(r) and £ > 0 there exists 7o > 0 such that

Bu(z,m) N By(r) C By(z,8)
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where for > 0

Bulz,m)={ye L% : [ly—=(l, < n}
={ye L% p({t€Q: |y(t) —z(t)l > n}) < n}

and

B'J’(I)n) = {y € LY : ||y i HET "‘_71.}_

Indeed, let z € B,(r) and £ > 0 be given. For 7 > 0 and y € B,(r)
let put

E(ny)={te: |y(t) —=z(t)| > n}, G(n,9) = @\ E(n, ).

It is seen that
me((y —z)/2r) < 2. (1)

8
Since 1 <« ¢, there exists ug > 0 such that

P(=) < %(p(%) for 0 < u < up. (2)

Moreover, in view of (i) there exists § > 0 such that
1
|y — 2)ally < 5{ for A € ¥ with u(A) < 6. (3)

Now let no = min(up,6) and let y € B,(z,m) N B,(r).
Then p(E(no,y)) < 1o < 8, and hence from (3) we get

i
Iy = 2)etromll < 56- (4)

On the other hand, since g < ug, from (2) and (1) we get



46 Marian Nowak

my (20~ 2otomw) = [ o w(w) dp
€ w(m(t);(tn) ot

9]

IA
N

Hence
(¥ = 2)no,mlle < 2- (5)

Thus from (1), (4) and (5} we get

B [

Iy = zllv < 1I(y — @) E(o,nlle + HY = 2)amewlle <€

and this means that y € By(z,£).

As an application of Lemma 4.1 we get

Corollary 4.2. Let ¢ € ®,. Then for everyr > 0

TP1By(r) = TulBy()-

Proof. This equality is proved in [14, Theorem 1.4] for ¢ being a
w-function, but the proof can be applied for ¢ € ®4,. For ¢ € &, our
equality follows Lemma 4.1, because

TE 8. = uP{TyiB,(r) ¢ ¥ €N} = Tup,(n)-

In view of Corollary 4.2 and (2.2) we have: 7% C J;. Repeating
the arguments of the proof of (14, Theorem 2.2] we get

Theorem 4.3. Let ¢ € ®,. If a sequence (z,) in L¥ is modular
convergent to x € LY (i.e., my(A(zn — x)) — 0 for some A > 0) then
z, — 0 for Jf
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It is well known that the set of all simple integrable functions & is
dense in L% in the sense of modular convergene. Therefore, in view of
the previous theorem and the inclusion j;f - jfwe get:

Theorem 4.4. Let ¢ € &,. The set of all simple integrable func-
tions ¥ is dense in LY with respect lo J f.f’ and 7 f .

Now we are in position to prove our main theorem.

Theorem 4.5. Let ¢ € ®y. Then the equality
Jl=Jp

holds, i.e., for @ € ®1; (i = 1,2) the generalized mized topology 7 is
generated by the family {|| - HyiLe : ¥ € ¥}

Proof. For ¢ € ®,; this equality is proved in [14, Theorem 2.4].

Next let ¢ € ®y5. It is enough to show that the inclusion JI“’ C
J¥ holds. Since the spaces (L®,7¢) and (L¥,J)) are complete (see
Theorems 2.1 and 3.9), in view of Theorem 4.4 and [4, Corollary of
Lemma 4, p. 34] if suffices to show that

Tfe C Tpjg-

To his end, in view of Definition 2.1, given a sequence of positive

numbers (£, : n > 0) we shall find ¢ € U7, (i.e., ¢ « @)and ro > 0
such that

[e) N
Bt 15 U (L (820 Bule))). 1)

N=0 *nu=0

Without loss of generality we can assume that ¢, | 0, &0 < 1 and
eop(1} < 1. Moreover, for the reasons of convenience we can assume
that ¢(u) < oo for u < 1 and @(u) = oo for u > 1.

Let us choose subsequence (e, ) of (¢,,) in such a way that:
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(a.) ko = 0.

(b) k4 is the smallest natural number such that

1
99(5k1 ) < E_

k1
(¢) Given k,, (n > 1) we take k, 41 > kn such that

(,D(Ek" )/2 > (P(Ek..-q-l) and Eky < 51&-{-1/2-

Let
N(t)=sup{n € N : g, >t} fort € g,.

We shall now define a ¢-function p such that « o and

1 u
You) > W(’D(N_(u—)) for 0 < u < ey, , (2)
o(n) > L forn>1. - {3)

Let us denote by:

AL ={t>0: g,y <t<eg },n=12,...,
A={t>0: &, <t< 1},
Al={t>0: n<t<n+1},n=12,...,

and

B, ={s>0: ¢(er,,,) <8< p(ex, )}, n=12,...,

B={s>0: plex,) < s < p(1)/2},
Bl ={s>0: (1) n/2<s<p(l)(n+1)/2}, n=12,....
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Let us put
¢ 0 for
Hi_l for
pt) = ¢
2 for
L 7 for
and
(0 for
o for
g(s) = ¢
1 for
2
| sesy for

Next, define for u > 0 and v > 0

£(u) = /ﬂ “p(t) dt and

Let us put

p(u)

Polu) = {tp(l)u

At [ast let

49

t=10,
tedl, ,n=>2,
te ALUAUAY,

tEA”

n !

n>?,

s=0,
seB,,n>3
se BlUBjUB,

seB! n>1.

n

w)= [ aGs) .

7 <1
o> 1

for
for

wol&(u))
dofa) = (€@ = [ a9 ds foruz0.

Now let us put

Similarly as in the proof of [14, Theorem 2.4} we can show that ¥y « @
and that the conditions (2) and (3) hold.
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|
To = mm(a,do €0 ¢(€0))
Where

;.T:sup{%g%: 5k2<u§1}.

We shall now show that the inclusion (1) holds.
Indeed, let

T = Z/\iXH; € By, (7o)
tel
where [ is a finite subset of A/, and u(H;) < oo. Denote by

K={icl:e,<|N<1},

L={iel: |N|<eh J={iel: [M]>1}.
Let

ick i€l ieJ

Since z € By,(rg) and rp < 1 we have

myo(2) = Y to(| M )u(Hi) = ¢ < ro.

ief

Write
¢i = Yol|AiDu(H:) .

Arguing as in the proof of {14, Theorem 2.4] we get
z1 € By(1) N Bu(eo)

and moreover, using (2) we can find Ny € A such that

z2 €Y (Bw(% 2"} B#(% sn)).

T1= Y AiXH , o1 = > dixa, ,*333 =Y XixH -

(4)

(5)
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Now we shall find N; € A such that
zan( ") N Bu(z s"))
n=1

Let
ni=sup{rn e N: n<|N]|}forie J.

51

(7)

Then n; 2 1 and n; < |Ai|l < ni + 1. Let j51,...,Jm, be the different

numbers in the set {n; : i € J} and let us assume that j; < ...

Write
Jy={ieJ: ni=j} for 1 <I<mg.
Then o
T3 = Zf\iXH.- = Z(Z)HXH;)-
i€d =1 ied;
and let

= Z Aixn, for 1 <1 < myp.
i€d)

Then j; < [Ail < ji+ 1 for 7 € J; and using (4) we get

mo (/G + 1)) = 3 e(Xal/ G+ 1) p(H:)

tEJ;

<dg Y wo(|Ail/ (G ) (H) < d'ro <Gt + 1.

teS;
Thus .
we B{n+1}C Bw(i Qi+1y
Let
E,(e)={teQ: |u(t)} > ¢} for any £ > 0.
Then

E : EJI+1 U H;.

€Sy

< j’mo-

(8)
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Hence, using (3} we get

w(Ey 5::+1 <3 wE) LY efvo((Al)

feJ; ieJ)

<Y edltbolin) < (D i) /4oldn) < E.n+1
1€y 1€J;
and this means that {
wE B.u(§ Ejr1)- (9)

Thus from (8) and (9) we have
we€B (2 27ty n B (2 Eqt1)-

Hence for N2 = jm, + 1 we obtain

g N2
1 1
Z3 € Z B ( 23'-“) nB ( 5:u+1)) - Z (B¢(_2.2") n Bu(i‘gﬂ))'
=1 n=1

At last, using (5), (6) and (7), for Ng = maz(Ny, Ny) we get

o= a1+ 22 + 73 € By(1)N Buleo) + 3 (Bo(2) N Bulen)

n=1

C U (Z B,,,(2")OB,1(£,1))).

n=0

Thus the proof is completed.
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5. A TOPOLOGICAL CHARACTERIZATION OF THE +,-
CONVERGENCE IN L¥

In this section by applying of Theorem 4.5 we obtain a topeological
characterization of the y,-convergence in L¥.

Theorem 5.1. Let ¢ € $1; (¢ = 1,2). Then for a sequence (z,,) in
L¥ and x € L¥ the following statements are equivalent:
(i) xn — z for J7.
(it} ||z, — zllyp — O for every ¢ € ¥7..
(1ii) z,, — 2 (u — ) and sup ||z,]], < oo .
n

Moreover, for ¢ € ®f; (i = 1,2,3,4) the above statements are equiv-
alent to

(iv) Nz, — z|lly = 0 for every ¢ € ¥f,(N).

Proof. (i) ¢ (i) ¢ (). It follows from Theorem 2.4. and
Theorem 4.5.
(i) < (iv). It follows from Theorem 4.5 and Theorem 3.12.

Now we apply the above theorem to some classes of Orlicz spaces.
Let

0 for 0<u<l,

xp(u) = uP for v > 0 and xoo(u) = {oo for u>1

Let || - }|; and || - ||]co denote the usual norms in LP (p > 1) and L*
respectively.

Examples

A.Forp>1let

(u):{u? for 0<u<l,
L4 oo for u>1.
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Hence @(u} = xp(2)V xoo{u) for u > 0,50 L¥ = LPN L™ by Lemma 1.1.
We see that ¢ € ®{, for p = 1 and ¢ € ®§, for p > 1. Hence by applying
of Theorem 5.1 and Lemma 1.1 we get the following two theorems:

Theorem 5.2. For a sequence (z,) in L' N L>® andz € L' N L*®
the following statements are equivalent:

(i) 2n — 2 (4 — Q) and sup||zalls < oo, sup||zalle < oo.
mn 1
(ii) |||zn, — 2|l — O for every N — function .

Theorem 5.3. Let p > 1. For a sequence (z,) in L? N L™ and
z € LP N L% the following statements are equivalent:

(1) 2o — z (1 — Q) and sup||za||p < 00, sup||zns|le < oo,
T k11

(i) |[|zn — z|l|¢ — O for every N-function + such that Pp(u}/u” — 0
as u — 0.

B.Forp>1let

gp(u):{u for 0<u<l,
uw? for u > 1.

Then (u) = x1(u) V xp(w) for w > 0,50 L¥ = L N LP. Then ¢ € ®§,
and using Theorem 5.1 and Lemma 1.1 we get:

Theorem 5.4. Let p > 1. For a sequence (z,) in L' N L? and
x € L' N LP the following statements are equivalent:
(1) Tn = @ (p— Q) and sup |[zs||y < o0, sup|lzall, < oo.
n n

(i) |||z — ||y — O for every N-function v such that ¥{u)/u? — 0
as 4 — 00.
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