REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 7, número 1: 1994 http://dx.doi.org/10.5209/rev_REMA.1994.v7.n1.17784

Codimension Reduction for Real Submanifolds of a Complex Hyperbolic Space

SHIN-ICHI KAWAMOTO

ABSTRACT. We study real submanifolds of a complex hyperbolic space and prove a codimension reduction theorem.

0. INTRODUCTION.

Recently Okumura ([3]) defined holomorphic first normal space for real submanifolds of a Kaehler manifold and proved a codimension reduction theorem for real submanifolds of a complex projective space. Namely, he showed following:

Theorem. Let M be a connected n-dimensional real submanifold of a real (n+p)-dimensional complex projective space $\mathbb{C}P^{(n+p)/2}$ and let $N_0(x)$ be the orthogonal complement of first normal space in $T_x^{\perp}(M)$. We put $H_0(x) = JN_0(x) \cap N_0(x)$ and let H(x) be a J-invariant subspace of $H_0(x)$ where J is complex structure of $\mathbb{C}P^{(n+p)/2}$. If the orthogonal complement $H_2(x)$ of H(x) in $T_x^{\perp}(M)$ is invariant under parallel translation with respect to the normal connection and if q is the constant

1991 Mathematics Subject Classification: 53B25, 53B30.

Editorial Complutense. Madrid, 1994.

dimension of $H_2(x)$, then there exists a real (n+q)-dimensional totally geodesic complex projective subspace $\mathbb{C}P^{(n+q)/2}$ in $\mathbb{C}P^{(n+p)/2}$ such that $M \subset \mathbb{C}P^{(n+q)/2}$.

The purpose of this paper is to prove that the similar result to the above theorem is still hold in a submanifold of complex hyperbolic space.

The auther would like to express his thanks to Professors M. Okumura and M. Kimura for their valuable suggestions.

1. CODIMENSION REDUCTION FOR SUBMANIFOLDS OF ANTI-DE SITTER SPACE.

Let \mathbb{R}_2^{n+1} be a real vector space of (n+1) dimension with a pseudo-Riemannian metric \bar{g} of signature (n-1,2) given by

$$\bar{g}(x,y) = -x_0 y_0 - x_1 y_1 + \sum_{i=2}^n x_i y_i$$
 (1.1)

where $x = {}^t (x_0, x_1, \ldots, x_n)$, $y = {}^t (y_0, y_1, \ldots, y_n) \in \mathbb{R}^{n+1}$. Let $H_1^n = \{x \in \mathbb{R}_2^{n+1} \mid g(x,x) = -1\}$. Then the hypersurface H_1^n is a Lorentzian manifold with the induced Lorentzian metric \tilde{g} of constant sectional curvature -1. We call it n-dimensional anti-De Sitter space.

Let H_1^{n+p} be an (n+p)-dimensional anti-De Sitter space and let $i: M \to H_1^{n+p}$ be an isometric immersion of a connected n-dimensional Lorentzian manifold with the Lorentzian metric g into H_1^{n+p} . Then the tangent bundle T(M) is identified with a subbundle of $T(H_1^{n+p})$ and the normal bundle $T^\perp(M)$ is a subbundle of $T(H_1^{n+p})$ consisting of all element in $T(H_1^{n+p})$ which are orthogonal to T(M) with respect to \tilde{g} . We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connection of M and H_1^{n+p} respectively and D the induced normal connection from $\tilde{\nabla}$ to $T^\perp(M)$. Then they are related by the following Gauss and Weingarten formulae:

$$\tilde{\nabla}_{iX}iY = i \nabla_X Y + h(X,Y) \tag{1.2}$$

$$\tilde{\nabla}_{iX}\xi = -iA_{\xi}X + D_{X}\xi \tag{1.3}$$

where $\xi \in T^{\perp}(M)$, h(X,Y) is the second fundamental form and A_{ξ} is a symmetric linear transformation of T(M) which is called the shape operator with respect to ξ . They satisfy

$$\tilde{g}(h(X,Y),\xi) = g(A_{\xi}X,Y). \tag{1.4}$$

Next let $N_0(x) = \{ \xi \in T_x^{\perp}(M) \mid A_{\xi} = 0 \}$. The first normal space $N_1(x)$ is defined to be the orthogonal complement of $N_0(x)$ in $T_x^{\perp}(M)$.

Theorem 1.1. Let $i: M \to H_1^{n+p}$ be as above. Let $N_2(x)$ be a subspace of $T_x^\perp(M)$ such that $N_1(x) \subset N_2(x)$. If $N_2(x)$ is invariant under parallel translation with respect to the normal connection and if q is the constant dimension of $N_2(x)$, then there exists a totally geodesic anti-De Sitter subspace H_1^{n+q} of H_1^{n+p} such that $i(M) \subset H^{n+q}$.

Proof. We consider H_1^{n+p} as a hypersurface of \mathbf{R}_2^{n+p+1} . Let $x \in M$ and let $\xi = i(x)$ be the position vector. Then $\xi(x)$ is normal to H_1^{n+p} and $\bar{g}(\xi(x),\xi(x)) = -1$ where \bar{g} is the metric of R_2^{n+p+1} . Let $\bar{\nabla}$ be the Levi-Civita connection on \mathbf{R}_2^{n+p+1} with respect to \bar{g} and φ be an immersion from H_1^{n+p} to R_2^{n+p+1} . Then

$$\nabla_{\varphi X} \xi = \varphi X \tag{1.5}$$

$$\nabla \varphi X \xi = \varphi X \tag{1.5}$$

$$\bar{\nabla} \varphi X \varphi Y = \varphi \bar{\nabla}_X Y - \tilde{g}(X, Y) \xi \tag{1.6}$$

where $X,Y\in T_x(H_1^{n+p})$. For $x\in M$ let $P(x)=T_x(M)+N_2(x)$. For any $x\in M$ there exist orthonormal normal vector fields ξ_1,\ldots,ξ_p defined in a neighborhood U of x such that:

- (a) For any $y \in U$, $\xi_1(y), \ldots, \xi_q(y)$ span $N_2(y)$, and $\xi_{q+1}(y), \ldots, \xi_p(y)$ span N(y) where N(x) is the orthogonal complement of $N_2(x)$ in $T^{\perp}(M)$.
 - (b) $\tilde{\nabla}_{iX}\xi_{\alpha} = 0$ in U for $\alpha \geq q+1$ and X tangent to M.
- (c) $\{P(y) \mid y \in U\}$ is invariant under parallel translation with respect to the connection ∇ along any curve in U (see [1]). Then $\nabla_{\varphi(iX)}\varphi\xi_{\alpha} = \nabla_{iX}\xi_{\alpha}$ for X tangent to M. Let D' be the normal connection in the normal bundle $T^{\perp}(M)$ of M in \mathbb{R}_{2}^{n+p+1} . Then

 $N_2(x) + \operatorname{span}\{\xi(x)\}\$ is invariant under parallel translation with respect to D'. Further,

$$W(x) = T_x(M) + N_2(x) + \text{span}\{\xi(x)\}$$
 (1.7)

is invariant under parallel translation with respect to $\bar{\nabla}$. Next we shall show that there exists a totally geodesic submanifold H_1^{n+q} of H_1^{n+p} such that $i(M) \subset H_1^{n+q}$. Define functions f_{α} on U by $f_{\alpha} = \bar{g}(i(x), \varphi \xi_{\alpha})$ for $\alpha \geq q+1$.

$$\varphi(iX) \cdot f_{\alpha} = \bar{g}(\bar{\nabla}_{\varphi(iX)} i(x), \varphi \xi_{\alpha}) + \bar{g}(i(x), \varphi \xi_{\alpha}), \bar{\nabla}_{\varphi(iX)} \varphi \xi_{\alpha}) = 0$$

Thus f_{q+1}, \ldots, f_p are constant. Put

$$f_{\alpha} = C_{\alpha} (= \text{constant}) \ (\alpha \ge q + 1).$$
 (1.8)

And put $i(x) = (x_0, \ldots, x_{n+p})$ and $\varphi \xi_{\alpha} = (\xi_{\alpha}^0, \ldots, \xi_{\alpha}^{n+p})$. Then (1.6) can be written

$$\begin{cases}
-\xi_{q+1}^{0}x_{0} - \xi_{q+1}^{1}x_{1} + \sum_{i=1}^{n+p} \xi_{q+1}^{i}x_{i} = C_{q+1}, \\
\vdots \\
-\xi_{p}^{0}x_{0} - \xi_{p}^{1}x_{1} + \sum_{i=2}^{n+p} \xi_{p}^{i}x_{i} = C_{p}.
\end{cases}$$
(1.9)

Since ξ_{q+1},\ldots,ξ_p are linearly independent, U lies in the intersection of p-q hyperplanes and the dimension of the hyperplane is n+q+1. As the normal vectors of the intersection W' are ξ_{q+1},\ldots,ξ_p , they span N(x). Since W' is affine space, W' is the orthogonal complement of N(x) in $T_x(\mathbf{R}_2^{n+p+1})$. On the other hand, the orthogonal complement of N(x) in $T_x(\mathbf{R}_2^{n+p+1})$ is $T_x(M)+N_2(x)+\operatorname{span}\{\xi(x)\}\ (=W(x))$. Therefore W'=W. We may assume that the point $(1,0,\ldots,0)$ is in U. W(x) contains ξ , and if $\xi=(1,0,\ldots,0)$, then W(x) passes through the origin of \mathbf{R}_2^{n+p+1} . Thus $W(x)=\mathbf{R}^{n+q+1}$. Moreover since M is Lorentzian submanifold and ξ is the position vector, the signature of the induced metric of

 \mathbf{R}^{n+q+1} is (n+q-1,2). Then $W'=\mathbf{R}_2^{n+q+1}$. Thus $H_1^{n+p}\cap\mathbf{R}_2^{n+q+1}$ is totally geodesic H_1^{n+p} , that is,

$$i(U) \subset H_1^{n+q} = H_1^{n+p} \cap \mathbf{R}_2^{n+q+1}.$$
 (1.10)

Hence Theorem 1.1. is true locally. In entirely the same way as in [1], we can get the global result. This completes the proof.

2. REAL SUBMANIFOLDS OF A KAEHLER MANIFOLD AND HOLOMORPHIC FIRST NORMAL SPACE.

Let \bar{M} be a real (n+p)-dimensional Kaehler manifold with Kaehler structure (J,<,>), that is, J is the endomorphism of the tangent bundle $T(\bar{M})$ satisfying $J^2=$ -identity and <,> the Riemannian metric of \bar{M} satisfying the Hermitian condition $< J\bar{X}, J\bar{Y}> = <\bar{X}, \bar{Y}>$ for any $\bar{X}, \bar{Y} \in T(\bar{M})$.

Let M be a connected n-dimensional submanifold and let i be the isometric immersion. For any $X \in T(M)$ the transform JiX is written as a sum of its tangential parts iFX and the normal parts u(X) in the following way:

$$JiX = iFX + u(X) (2.1)$$

Then F is an endmorphism on the tangent bundle T(M) and u is a normal valued 1-form on the tangent bundle. In the same way, for any $\xi \in T^{\perp}(M)$, the transform $J\xi$ is written as

$$J\xi = -iU_{\xi} + P\xi, \tag{2.2}$$

where P defines an endomorphism on the normal bundle $T^{\perp}(M)$. It is easily verified that

$$g(X, U_{\xi}) = \langle u(X), \xi \rangle, \tag{2.3}$$

where g is the Riemannian metric which is induced from the Riemannian metric <,>.

We define the holomorphic first normal space. We put $H_0(x) = JN_0(x) \cap N_0(x)$. Then $H_0(x)$ is the maximal J-invariant subspace of

 $N_0(x)$. Since J is isomorphism, we see that $JH_0(x) = H_0(x)$. Making use of (2.2), we can easily prove the following

Proposition 2.1. ([3]) For any $\xi \in H_0(x)$, we have $A_{\xi} = 0$ and $U_{\xi} = 0$.

Definition ([3]) The holomorphic first normal space $H_1(x)$ is the orthogonal complement of $H_0(x)$ in $T_x^{\perp}(M)$.

Proposition 2.2. ([3]) If M is a complex submanifold of a Kaehler manifold, then $H_1(x) = N_1(x)$.

Proposition 2.3. ([3]) Let H(x) be a J-invariant subspace of $H_0(x)$ and let $H_2(x)$ be the orthogonal complement of H(x) in $T_x^{\perp}(M)$. Then $T_x(M) + H_2(x)$ is a J-invariant subspace of $T_x(\bar{M})$.

3. CODIMENSION REDUCTION FOR SUBMANIFOLDS OF COMPLEX HYPERBOLIC SPACE.

In this section, we consider the case that the ambient manifold \bar{M} is a complex hyperbolic space $CH^{(n+p)/2}$ with the Bergmann metric of constant holomorphic sectional curvature -4. Given a real n-dimensional submanifold M of $CH^{(n+p)/2}$, one can construct a Lorentzian submanifold M' with time like totally geodesic fibres and projection $\pi': M' \to M$ such that the diagram ([2])

$$\begin{array}{ccc}
M' & \stackrel{\tilde{i}}{\longrightarrow} & H_1^{n+p+1} \\
\pi' \downarrow & & \downarrow \pi \\
M & \stackrel{}{\longrightarrow} & CH^{(n+p)/2}
\end{array}$$

is commutative (\tilde{i} being the isometric immersion). Let V' be the unit vector field tangent to the fibre of M'. Then $\tilde{i}V'$ is the unit vector field tangent to the fibre of H_1^{n+p+1} . We denote by g' and ∇' the Lorentzian metric and the Levi-Civita connection of M' respectively. Also we denote by F and X^* the fundamental tensor of the submersion

 π' and the horizontal lift for $X \in T(M)$ respectively. In the same way, ξ^* is the horizontal lift of the normal field $\xi \in T^{\perp}(M)$. The fundamental equations for the submersion π' are given as following ([4]):

$$\nabla_X' * Y^* = (\nabla_X Y)^* + g'((FX)^*, Y^*)V',$$
 (3.1)

$$\nabla_X' * V' = \nabla_{V'}' X^* = (FX)^*,$$
 (3.2)

where ∇ is the Levi-Civita connection of M. The similar equations are valid for the submersion $\pi: H_1^{n+p+1} \to \mathbb{C}H^{(n+p)/2}$ when we replace F and V' with J and $\tilde{i}V'$ respectively. Let \tilde{g} , $\tilde{\nabla}$, A' and D' be respectively the Lorentzian metric of H_1^{n+p+1} , the Levi-Civita connection for \tilde{g} , the shape operator and the normal connection of M', and let A and D be the shape operator and the normal connection of M respectively. Then ([3]) we have

$$A'_{\xi} * X^* = (A_{\xi} * X)^* - g(U_{\xi}, X)^* V', \tag{3.3}$$

$$D_X' * \xi' = (D_X \xi)^*, \tag{3.4}$$

$$A_{\varepsilon}' * V' = U_{\varepsilon'}^*, \tag{3.5}$$

$$D'_{V'}\xi^* = (P\xi)^*. (3.6)$$

In fact, from the commutativity of the diagram, (2.3) and (3.1) imply

$$\tilde{\nabla}_{(iX)} * \xi^* = (\tilde{\nabla}_{iX}\xi)^* + g((JiX)^*, \xi^*)\tilde{i}V'
= -(iA_{\xi}X)^* + (D_X\xi)^* + \langle JiX, \xi \rangle^* \tilde{i}V'
= -\tilde{i}(A_{\xi}X)^* + \langle u(X), \xi \rangle^* \tilde{i}V' + (D_X\xi)^*
= -\tilde{i}\{(A_{\xi}X)^* - g(U_{\xi}, X)^*V'\} + (D_X\xi)^* .$$
(3.7)

On the other hand, by the Weingarten formula, we get

$$\tilde{\nabla}_{(iX)} * \xi^* = -\tilde{i}A_{\xi} * X^* + D_X' * \xi^*. \tag{3.8}$$

Comparing (3.7) and (3.8), we have (3.3) and (3.4).

Lemma 3.1. ([3]) For a point x' such that $\pi(x') = x$, we have $N'_0(x') = \{\xi^* | A_{\xi} = 0, U_{\xi} = 0\}.$

Theorem 3.2. Let $i: M \to CH^{(n+p)/2}$ be an isometric immersion of a connected n-dimensional real submanifold into a real (n+p)-dimensional complex hyperbolic space $CH^{(n+p)/2}$ and let H(x) be a J-invariant subspace of $H_0(x)$. If the orthogonal complement $H_2(x)$ of H(x) in $T_x^{\perp}(M)$ is invariant under parallel translation with respect to the normal connection and if the dimension q of $H_2(x)$ is constant, then there exists a real (n+q)-dimensional totally geodesic complex hyperbolic subspace $CH^{(n+q)/2}$ in $CH^{(n+p)/2}$ such that $i(M) \subset CH^{(n+q)/2}$.

Proof. We construct the principal circle bundle M' over M with time like totally geodesic fibre S^1 . We shall show that $H_2(x)^*$ is invariant under parallel translation with respect to the normal connection. Assume $\xi \in H(x)$. Then $\xi \in H_0(x)$ and by Proposition 2.1., we have

$$A_{\xi} = 0 \text{ and } U_{\xi} = 0.$$
 (3.9)

From Lemma 3.1., this yields

$$A_{\xi}'* = 0. \tag{3.10}$$

This shows that, for a point x' such that $\pi(x') = x$, $H(x)^* = \{\xi^* | \xi^* \in H(x)\}$ is a subspace of $N_0'(x')$. Hence, the orthogonal complement $H_2(x)^* = \{\xi^* | \xi \in H_2(x)\}$ of $H(x)^*$ in $T_{x'}^{\perp}(M')$ is a subspace of $T_{x'}^{\perp}(M')$ such that $N_1'(x') \subset H_2(x)^*$. Since $H_2(x)$ is invariant under parallel translation with repect to the normal connection, so is H(x), that is, for $\xi \in H(x)$, $D_X \xi \in H(x)$, hence, from (3.4) and (3.5), we have $D_X' * \xi^* = (D_X \xi)^* \in H(x)^*$ and $D_{V'}' \xi^* = (P\xi)^* \in H(x)^*$. Since $H(x)^*$ is invariant under translation with respect to the normal connection of M', so is $H_2(x)^*$. Here from Theorem 1.1., there exists a totally geodesic submanifold H_1^{n+q+1} such that $\tilde{i}(M') \subset H_1^{n+q+1}$. Let U(x') be a neighborhood of x' which satisfies $\pi(x') = x$. For $y' \in U(x')$ with $y = \pi'(y')$, we get

$$T_{y'}(H_1^{n+q+1}) = T_{y'}(M') + H_2(y)^*$$

= $(T_y(M) + H_2(y))^* + \operatorname{span}\{V'\}$ (3.11)

The integral curve S^1 of $\tilde{i}V$ is time like totally geodesic fibre in H_1^{n+q+1} . Since H_1^{n+q+1} is totally geodesic in H_1^{n+p+1} , the integral curve S^1 is a geodesic of H_1^{n+q+1} . We denote by $CH^{(n+q)/2}$ the quotient space H_1^{n+q+1}/S^1 . Then the Hopf fibration $H_1^{n+q+1}\to CH^{(n+q)/2}$ by the geodesic S^1 is compatible with the Hopf fibration $\pi:H_1^{n+p+1}\to CH^{(n+p)/2}$ and since H_1^{n+q+1} is totally geodesic in H_1^{n+p+1} , $CH^{(n+q)/2}$ is totally geodesic in $CH^{(n+p)/2}$. Hence the diagram

$$\begin{array}{ccc} H_1^{n+q+1} & \longrightarrow H_1^{n+p+1} \\ \downarrow & & \downarrow \\ \mathbf{C}H^{(n+q)/2} & \longrightarrow \mathbf{C}H^{(n+p)/2} \end{array}$$

is commutative. Since the tangent space of the $CH^{(n+q)/2}$ at x is $T_x(M) + H_2(x)$, by Proposition 2.3., $CH^{(n+q)/2}$ is J-invariant subspace of $CH^{(n+p)/2}$. This completes the proof.

For a complex submanifold M, from Proposition 2.2. and Theorem 3.2., we have

Corollary. Let M be an n/2-dimensional complex submanifold of $\mathbf{C}H^{(n+p)/2}$. Suppose a J-invariant subspace of the first normal space $N_1(x)$ has constant dimension q and $N_1(x)$ is parallel with respect to the normal connection. Then there exists a totally geodesic (n+q)dimensional complex hyperbolic subspace $CH^{(n+q)/2}$ such that $M \subset$ $\mathbf{C}H^{(n+q)/2}$.

References.

- [1] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry. 5 (1971), 333-340.
- [2] Montiel, S., Real hypersurfaces of a complex hyperboric space, J. Math. Soc. Japan. 37 (1985), 515-535.
- [3] Okumura, M., Codimension reduction problem for real submanifold of complex projective space, to appear in Colloquia Mathematica Societatis Janos Bolyai. 56 (1991).

[4] O'Neill, B. The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

Department of Mathematics, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan. Recibido: 15 de octubre de 1992