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Codimension Reduction for Real Submanifolds
of a Complex Hyperbolic Space

SHIN-ICHI KAWAMOTO

ABSTRACT. We study real submanifolds of a complex hyperbolic space
and prove a codimension reduction theorem.

0. INTRODUCTION.

Recently Okumura ([3]) defined holomorphic first normal space for
real submanifolds of a Kaehler manifold and proved a codimension re-
duction theorem for real submanifolds of a complex projective space.
Namely, he showed following:

Theorem. Let M be a connected n-dimensional real submanifold
of a real (n + p)-dimensional complex projective space CP(n+P)/2 gnd
let No(x) be the orthogonal complement of first normal space in T(M).
We put Ho(z) = JNo(2)NNo(z) and let H(z) be a J-invariant subspace
of Ho(z) where J is complex structure of CP{"+PY/2 [f the orthogonal
complement Hy(z) of H(z) in TX(M) is invariant under parallel irans-
lation with respect to the normal connection and if ¢ is the constant
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dimension of Ha(z), then there exists a real (n + q)-dimensional totally
geodesic complez projective subspace CP("+9)/2 jn CP+P)/2 sych that
M Cc Cprta/?,

The purpose of this paper is to prove that the similar result to the
above theorem is still hold in a submanifold of complex hyperbolic space.

The auther would like to express his thanks to Professors M. Oku-
mura and M. Kimura for their valuable suggestions.

1. CODIMENSION REDUCTION FOR SUBMANIFOLDS
OF ANTI-DE SITTER SPACE.

Let R7*! be a real vector space of (n+ 1) dimension with a pseudo-
Riemannian metric g of signature (n — 1,2) given by

n
9(z,y) = —zowo — 111 + Z-’b‘iyi (1.1)
i=2

where z =" (xﬂsxla---yxﬂ)a y =" (yﬂgyls"‘ayn) € R™1. Let H]n =
{z € R}*! | g(z,z) = —1}. Then the hypersurface HJ is a Lorentzian
manifold with the induced Lorentzian metric § of constant sectional
curvature —1. We call it n-dimensional anti-De Sitter space.

Let Hi*® be an (n + p)-dimensional anti-De Sitter space and let
i: M — H]*? be an isometric immersion of a connected n-dimensional
Lorentzian mamfold with the Lorentzian metric g into H;'t?, Then the
tangent bundle T(M) is identified with a subbundle of T(H"“’) and
the normal bundle T1(M) is a subbundle of T{H]**) consisting of all
element in T(H}™?) which are orthogonal to T(M) with respect to g
We denote by 57 and ¥ the Levi-Civita connection of M and HI'*?
respectively and D the induced normal connection from 57 to T1(M).
Then they are related by the following Gauss and Weingarten formulae:

Vixi¥ = ivxY +h(X,Y) (1.2)

Vix€ = —iA¢X + Dx¢ (1.3)



Codimension Reduction for Real Submanifolds of a Complex Hyperbolic Space 121

where £ € TL(M), h(X,Y) is the second fundamental form and A; is
a symmetric linear transformation of T(M) which is called the shape
operator with respect to £. They satisfy

g(h(XaY)’E) = g(AgX,Y). (1'4)

Next let No(z) = {£ € T (M) | A¢ = 0}. The first normal space
Ni(z) is defined to be the orthogonal complement of Ny(z) in T.(M).

Theorem 1.1. Leti: M — H*? be as above. Let Ny(z) be
a subspace of T-H(M) such that Ni(z) C Ni(z). If Ni(z) is invariant
under parallel translation with respect to the normal connection and if ¢

is the constant dimension of Ny(z), then there exists a tolally geodesic
anti-De Sitter subspace H}'*® of H}'P such that i(M) C H™*9,

Proof. We consider H]'*? as a hypersurface of R}*?*!. Let z € M

and let £ = i(z) be the position vector. Then £(z) is normal to H]'*?
and g(£(z),£(z)) = -1 where § is the metric of RjTP*!. Let ¢ be
the Levi-Civita connection on R;‘""P“ with respect to § and ¢ be an
immersion from H*? to R3t7*!. Then

Vex§ = pX (1.5)
6:9X(PY = <PVXY—§(XaY)€ (1‘6)

where X,Y € T.(H}*?). For z € M let P(z) = T.(M)+ Ny(z).
For any 2 € M there exist orthonormal normal vector fields £,,...,§,
defined in a neighborhood U of = such that:

(a') For any y € Ua El (y): .. :Eq(y) span NZ(:U)» and
£o+1(¥), ..., &p(y) span N(y) where N(z) is the orthogonal complement
of Ny(z) in TH(M).

(b) Vix€a = 0in U for a > g+ 1 and X tangent to M.
(c) {P(y) | y € U} is_invariant under parallel translation with

respect to the connection V7 along any curve in U (see [1]). Then
Veix)p€a = Vix€a for X tangent to M. Let D' be the nor-

mal connection in the normal bundle T1(M) of M in R}***!. Then
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N2(z)+ span{&(z)} is invariant under paralle] translation with respect
to D'. Further,

W(z) = To(M)+ No(z) + span{{(z)} (1.7)

is invariant under paralle] translation with respect to 7. Next we shall

show that there exists a totally geodesic submanifold H't? of AP such

that i{(M) C H19. Define functions fo on U by fo = g(i(z),p€q) for
a>q+ 1.

W(1X) fo = g(@:p(i)() i(:r)a(P‘Ecx) + g(i(x)vﬁofa)a'{?w(ix)‘/’ga) =90
Thus fy41,..., fp are constant. Put

fo = Caf= constant) (o > ¢+ 1). (1.8)

And put i(z) = (Zo,...sTnsp) and @€, = (£2,...,E2%P). Then (1.6)
can be written

n+p i
‘Eg+1$0 - E;-i—lml + El £a1%i = Con,
1=
(1.9)

0 _ el g . — C
EPIU Epml + Ez Ep:r"c - P
=

Since £g41,...,&p are linearly independent, U lies in"the intersection of
p—q hyperplanes and the dimension of the hyperplane is n+¢+1. As the
normal vectors of the intersection W' are £,41,...,£,, they span N(z).
Since W' is affine space, W’ is the orthogonal complement of N(z) in
T-(R3T7*!). On the other hand, the orthogonal complement of N{z) in
TRy ) is T (M) + No(x) + span{€(z)} (= W(z)). Therefore W' =
W. We may assume that the point (1,0,...,0)isin U. W(z) contains £,
and if ¢ = (1,0,...,0), then W(z) passes through the origin of Ry *#*!,
Thus W(z) = R™9*! Moreover since M is Lorentzian submanifold
and £ is the position vector, the signature of the induced metric of
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R+ js (n 4 ¢ — 1,2). Then W' = RJV9*'. Thus HPPP n RyTIH!
is totally geodesic H't?, that is,

W(U)c HYY? = HMPARIITL (1.10)

Hence Theorem 1.1. is true locally. In entirely the same way as in [1],
we can get the global result. This completes the proof.

2. REAL SUBMANIFOLDS OF A KAEHLER MANIFOLD
AND HOLOMORPHIC FIRST NORMAL SPACE.

Let M be a real (n+ p)-dimensional Kaehler manifold with Kaehler
structure (J, <, >), that is, J is the endomorphism of the tangent bundle
T(M) satisfying J? = -identity and <,> the Riemannian metric of M
satisfying the Hermitian condition < JX,JY > = < X,Y > for any
X,V € T(M).

Let M be a connected n-dimensional submanifold and let ¢ be the
isometric immersion. For any X € T(M) the transform JiX is written
as a sum of its tangential parts {FX and the normal parts u(.X) in the
following way:

JiX = iFX +u(X) (2.1)

Then F is an endmorphism on the tangent bundle T(M) and u is a
normal valued 1-form on the tangent bundle. In the same way, for any
¢ € TH(M), the transform J¢ is written as

J§ = —il + PE, (22)

where P defines an endomorphism on the normal bundle TH(M). It is
easily verified that

9(X,Ug) = <u(X),§>, (2.3)

where ¢ is the Riemannian metric which is induced from the Riemannian
metric <, >.

We define the holomorphic first normal space. We put Hp(z) =
JNo(z) N Ng(z). Then Hp(z) is the maximal J-invariant subspace of
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No(z). Since J is isomorphism, we see that J Ho(z) = Hp(z). Making
use of (2.2), we can easily prove the following

Proposition 2.1. ([3]) For any £ € Ho(z), we have Ay = 0 and
Ue = 0.

Definition ([3]) The holomorphic first normal space Hy(z) is the
orthogonal complement of Hy(z) in TH(M).

Proposition 2.2. ([3]) If M is a complez submanifold of a Kaehler
manifold, then Hi(z) = Ny(z).

Proposition 2.3. ([3]) Let H(z) be a J-invariant subspace of
Ho(z) and let Hy(x) be the orthogonal complement of H(z) in TL(M).
Then T.{M) + Hy(z) is a J-invariant subspace of T,(M).

3. CODIMENSION REDUCTION FOR SUBMANIFOLDS
OF COMPLEX HYPERBOLIC SPACE.

In this section, we consider the case that the ambient manifold
M is a complex hyperbolic space CH("+?)/2 with the Bergmann met-
ric of constant holomorphic sectional curvature —4. Given a real n-
dimensional submanifold M of CH("*?)/2 one can construct a Lorent-
zian submanifold M’ with time like totally geodesic fibres and projection
m': M' — M such that the diagram ([2])

i
M — Hln+p+1
‘J'I"l l:,vr
M — CH®+2/?
t

is commutative (¢ being the isometric immersion). Let V' be the unit
vector field tangent to the fibre of M'. Then iV’ is the unit vector
field tangent to the fibre of H*?*'. We denote by ¢’ and 7’ the
Lorentzian metric and the Levi-Civita connection of M' respectively.
Also we denote by F and X* the fundamental tensor of the submersion



Codimension Reduction for Real Submanifolds of a Complex Hyperbolic Space 125

7/ and the horizontal lift for X € T(M) respectively. In the same way,
£* is the horizontal lift of the normal field £ € T+(M). The fundamental
equations for the submersion #' are given as following ([4]):

VY = (UxYY +d((FX), Y )V, (3.1)
Vyx *V' = vv.X* = (FX)*, (3.2)

where 7 is the Levi-Civita connection of M. The similar equations are
valid for the submersion 7 : H{***' - CH("+P)/2 when we replace F
and V' with J and 1V respectively. Let g, 7, A’ and D' be respectively
the Lorentzian metric of H"*?*', the Levi-Civita connection for g, the
shape operator and the normal connection of M’, and let 4 and D be
the shape operator and the normal connection of M respectively. Then

([3]) we have

Ay X* = (Agx X) - g(Ue, X)V', (3.3)
Dix & = (Dx&), (3.4)
E*V' = Uz, (3.5)
v = (PE)" (36)

In fact, from the commutativity of the diagram, (2.3) and (3.1) imply

(Vix€)" +9((JiX)", € nv' (3.7)
—(1AeX)" + (Dx &)+ < JiX, € >" V'

— (A X))+ < u(X),E >* V' + (Dx&)*
—H{(AeX)" ~ g(Ue, X)*V'} + (Dx&)*

Veix) * €

On the other hand, by the Weingarten formula, we get
Giix) *€° = —iAgx X*+ Dy x£". (3.8)

Comparing (3.7) and (3.8), we have (3.3) and (3.4).
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Lemma 3.1. ([3]) For a point ' such that n(z') = =z, we have
No(z') = {€"| A¢ = 0, Ue = 0O}

Theorem 3.2. Let i: M — CH™+P)/2 pe an isometric immer-
sion of a connected n-dimensional real submanifold into a real (n + p)-
dimensional complez hyperbolic space CH("+?)/2 and let H(x) be a J-
invariant subspace of Ho(z). If the orthogonal complement H,(z) of
H(z) in T2 (M) is invariant under parallel translation with respect to
the normal connection and if the dimension q of H(z) is constant, then
there exists a real (n+ q)-dimensional totally geodesic complez hyperbolic
subspace CH("+9/2 in CHUP/2 sych that i(M) Cc CH(vta)/2,

Proof. We construct the principal circle bundle M’ over M with
time like totally geodesic fibre §1. We shall show that Hy(z)* is invari-
ant under parallel translation with respect to the normal connection.
Assume £ € H(z). Then £ € Ho(z) and by Proposition 2.1., we have

A¢ = 0and U = 0. (3.9)
From Lemma 3.1., this yields

e = 0. (3.10)

This shows that, for a point z’' such that n(z') = =z, H(z)* =
{€*| € € H(z)} is a subspace of Nj(z’). Hence, the orthogonal com-
plement Hy(z)* = {£*| £ € Hy(z)} of H(z)* in T;H(M') is a subspace
of TA(M') such that N{(z') C Hz(z)*. Since H,(z) is invariant under
parallel translation with repect to the normal connection, so is H(z),
that is, for £ € H(z), Dx{ € H(z), hence, from (3.4) and (3.5), we
have DY x ¢&* = (Dx£)* € H(z)* and D}.&* = (P&)* € H(z)".
Since H(z)* is invariant under translation with respect to the normal
connection of M', so is Hy(z)*. Here from Theorem 1.1., there exists a
totally geodesic submanifold H7¥9%! such that i(M’) C HIPIHL et
U{z') be a neighborhood of z' Wthh satisfies 1r(:z:') = z. For y' € U{z")
with y = 7'(y'), we get
T (H1L+q+1) Ty'(MI)‘i' Hz(‘y)*
(T,(M) + Ha())" + span{V"}  (3.11)
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The integral curve S of 1V is time like totally geodesic fibre in H] ntatl
Since HI 9! is totally geodesic in HI'*?*! the integral curve S! is
a geodesm of H'*"*'. We denote by CH(m M2 ¢he quotient space
Hitarl g1 Then the Hopf fibration A1 _ CH("+9/2 by the
geodesic S! is compatible with the Hopf fibration = : H]PH o
CH9)/2 and since HP'Y9! is totally geodesic in HJPPH CH("J”*)/""
is totally geodesic in CH("H"")/2 Hence the diagram

Hln+q+1 Hin+p+1

! |
CHn+0/2 __, cgnte)/2

is commutative. Since the tangent space of the CH/2 at 2 s
T.(M) + Hy(z), by Proposition 2.3., CH("+9}/2 is J.invariant subspace
of CH("*+PY/2, This completes the proof.

For a complex submanifold M, from Proposition 2.2. and Theorem
3.2., we have

Corollary. Let M be an n/2-dimensional complez submanifold of
CH"+P)/2 Syppose a J-invariant subspace of the first normal space
Ni(z) has constant dimension ¢ and Nq(z) is parallel with respect to
the normal connection. Then there ezists a totally geodesic (n + q)-

dimensional complezr hyperbolic subspace CH(" /2 such that M C
CH(1|+Q)/2_
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