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Multiplicity
Spaces

of a Foliation on
a/ong att integral

Projective
Curve.

JULIO GARCÍA *

ABSTRACT. Wc compute te global multiplicity of a 1-dimensional foliation
along an integral curve iii projective spaces. Wc give a bound in the way of Poin-
caré problem for complete intersection curves. In te projective plane, this bound
give us a bound of te degree of non irreductible integral Curves in function of te
degree of the foliation.

O. INTRODUCTION

Let jr be a foliation by lines in
us take bomogeneous coardinates X0,
vector fteld

D=Z4(X0 X~) a
i=0 ax,

te complex projective space P,. Let
- ., X,. There exists an homogeneous

deg(A ~)= a, g.c.d. {A~} = 1

sucb that Y is given by any element of dic set of vector fields
a

?i0={D+ffRj where R=XX—5---- and H=H(X0, .., >4) is an ho-
¡—o

mogeneous polynomial with deg(H) = d —1, [1], [6]. This number d is said
4

to be tite degree of .7, deg(Y) - The solutions of the equatíons —

xo
A

- - - form the set of singularities of 5 and we assume that this set
xn

Sing(.7) C P~ is finite.
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Let SCF~ be a subvariety of P~ and IGC[X0, . . -, XJ be the homo-
geneous ideal defining 5. Wc say that 5 is a soluhon of 7 u D(1) Cf.
In particular, 5 is an integral curve if dim(S) = 1.

xt
Let x, ,., x~= — be a system of affine coordinates. me poly-xo xo

nomial vector fzeld

- a
E=~, [AJl,xl,..., x~) — x~A0 (1, x1,..., x5)] dr

1=1

represents the foliation .7 in te affzne chan (X0* O), but it is indepen-
dent of H. Let p be the degree of the vector ficíd E, i.e., the maximum of
the degrees of tbe coefficients. It is easy to see that p = d if te hyperplane
at infinity is a solution of jr and p = d-f- 1 in the other cases.

In [10], Poincaré study the problem of finding a bound of the degree
of an algebraic integral curve in function of the degree of the algebraic
differential equation. In general, this problem has no solution. Por in-
stance, let us take the equation of degree 1 given by dic vector fleld

a aE=x —-4-my and the integral curve y—x
m=O.ax

The problem of Poincaré has been recently treated by D.Cerveau and
A. Lins [3]. Thcy suggest to use the total multiplicity of a foliation .7
along a projective integral curve C, (see(1 .1))

mGY, C) X m~(Y, C)
Pcc

and they give some bounds with restrictive conditions on the curve. The
main tool used by them to globalize thc local multiplicity is the following
forniula

m(Y, C)=2 — 2g + m(d—l)

where m and g are the degree and the genus of the irreducible curve C.
This idea is the origin of these notes. In [4], we analyse some properties
of m(iF, C). M.Carnicer [2] use this formula for proving that m~d+2
when dic singularities of te foliation are non dicritical. Namely, let us

a atake a local representation E=a—+ b of .7 at a singularity with
dx ~‘
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muítiplicity y? 1. Let a~, b~ be the components of degree y of a, b re-
spectively. The singularity is said to be non dicritical if xb~—yaAO.
Equivalently, the exceptional divisor obtained after blowing-up the singu-
larity is a leal of tbe stríct transform foliation.

me purpose of this paper is to extend these ideas. In fact, we proof
that the aboye formula is true in the general case, i.e., for non irreducible
cunes in P~ (Theorem (1.3)). This allow us to give a result in the way of
the Poincaré problem when the curve C is a complete intersection of n — 1
hypersurfaces (Tbeorem (1.6)). The second pan is devoted to complete
sorne bounds in dimension two (Theorem (2.3) and Proposition (2.6)). In
the proofs, it is essential to use formulas to compute the aritbmetic genus
of the non irreducible plane curves or curves in It -

1.1. Let X be a n-dimensional complex manifold and ¿7 be an ana-
lytic foliation by lines on X. At every point PEX, dic foliation is gen-
erated by a (gen of) vector ficid EEDer(O~ 4. Let C be an analytic
brandi at 1’ which is integral curve of 9~, i.e, if ¡ C O> . is the ideal of
the branch then E(¡) Cf. Let Oc.. be the integral closure of tbe local ring
Oc,,. of tbe branch C in its funetion fleld. Tben, die derivation E defines a
derivation E of O<.,. - Let T be a generator of the Q 9-module Der(O~ ,.).
Then É =JT, with fE Q ,.. If we wniíe y,, for tbe valuation of the nng

we shall cail m,,(Y, C>=v~ÁJ) the muJtipIiciIy of c7 a)ong C. It is
easy to see that m~(Y, C) does not depend of the choice of E and T. Let
us observe that m,. (5, C) = O iff Y is regular at P. Indeed, let
xu,..., x,, be a local system of coordinates at 1’ and E =

n a
Xa/x , x~)—. íf r is a local parameter of C at P and x1=x1(t),dx,
= 1 n are the parametrie equations, then a1(x1 (t) xjt)) = f(t) 4(t)

and m,.(Y, C)=ord~ ( (~ú.. ~ ‘Y Since ,y is regular if some
4(t)

of the a,(x,,.., xj is an unit, then dic observation is obvious.

1.2. Let X=P, and lix a foliation by lines ¿7 of degree d. Let C be
an irreducible integral curve of degree m and genus g, and n:C—* C be the
normalization of C. Since Sing(JF) is a finite set, then m(Jr, C) =

~ P%(JY, C) is a well defined integer number, positive or nulí. We
QEC

shall state tbe next theorem for curves C with several components -
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itt C1, i = 1,..., r be tbe irreducible components of C with degrees m1

and genus g~ respectively. Wc sball write m= for the degree of tbe
‘=1

curve C, 2—2g= ~ (2—2g~) to define the genus g of C and

m(Y, C)Xm(Y, C1).

1.3. Theorem. Lef Y be a foliarion by Unes of degree d on It and

C be cm (irreducible or flor) integral curve of genus g and degree ni - Titen

in(Y, C)=2 — 2g + m(d — 1).

Proof. It is enough to suppose that C is irreducible because for sev-
eral irreducible components the equality is the sum of the respectives equal-
ities.

Let us lix the homogeneus coordinates X0, - - -, >4 sucb that the hyper-
plane (L3<~= O) has no singular points of .7 and the intersection with the
curve C consist of ni different points. Let x,=X,/X0, i= 1 ti be the af-
fine coordinates and let

aa- a,EC[x1,..., xj, gcd(a1)=í

be the expression of a generator of .7 in the afline open 1X0*O). To
compute the degree of E we need a lemma.

1.4. Lemma. Let p?2 be tite degree of a polynomial vector flelda
E= Xai~ - If tite ityperplane at inflnity (>4 = O) is a solution of tite fo-

liation titen E itas a pole of order p— 2 ar (X0= O). In tite otiter cases, E
itas a pole oforderp—1.

Proof of the lemnia. It is enough to compute the expression of E for
another affine chan, for instance (>4*0).

xlitt y0=—, y1=— ~ n-t be tbe system of afline coordi-
x x x

nates in this new chan. We have
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E=—y~a, ___ n—t a—yo~(a,—yp.= —

u a n—í al
— — ~ [vobo~,, +X(b,—

where b1=y~a~ ,i).
Yo Yo

a
If (y0= O) is a solution, dien y0 is a factor of the coefficient of

and it can not be factor of the other coefficients. Hence E must have a
pole of order p — 1. Otherwise, Ya is a factor of a]] the coefficients and the
order of the pole isp—2.

Now we proof dic theorem. itt us recalí that the degree of E is d
(resp. d+ 1) if the hyperplane at the infinite is (resp. is not) a solution of
Y. From the lenima, it follows that every afline generator of .7 has a
pele or order d— 1 at the infmite, independently of the system of coordi-
nates. The restriction of E to C give us a vector fleld É which is a den-
vation of dic function field K(C) of the curve. If T is a generator of the
K(C)-vectorial space of dic derivations, one has E=f.T with fEK(C). itt
us write v~ for the valuation of K(C) at the point QEC. men, the integer
e~(E) = v~(f) depends of E but not of f. By definition, Uds number co-
incides with m~(Y, C) for Q6(X0* O). Nevertheless, if QECfl(X0=0)
we bave m2YY, C)=O since Q is regular for~Y, but e~(E) —(d—I) by
the aboye discussion. This implies that

£eeE=mct C) — m(d—1).
QEC

To finish the proof, it is enough to see that XeQ(n = 2—2g. Let O be
t2EC

the differential fonn of C dual of dic derivation E. II’ t is a local parameter
d 1of C at QEC and É=f—, fEK(C), one has O=—-dt. It follows thatf

the divisor div(6)= ~4e2(O)-Q such that e0(O)=v~(1/f) and the divisor
QEC

div(E) Xe~(E)-Q defined over C are opposite. But d¡v(6) is a canonical
QCC

divisor and it 18 well known that the degree is 2g—2 ([7], ch4, (1.3.3)).
Q.E.D.
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1.5. Reniark. The statement of the theorem (1.4) is of a global
character. In the proof there is an interesting local argument. Actually
we proof a relation between (Weil) divisors of C. Let
M(Y, C)=’SJ, mQ(.Y, C)-Q. Lel us fix homogenecus coordinates

QEC

>4 like in tbe proof ami let H== ~ IQ(C, (X0=O))-Q, i.e., the
QE(X0 0)

intersection of C and the hyperplane (X0 = O) - From the proof of the the-
orem it follows that

M(JF, C»=div(E) + (d—1)H.

We say that a curve is a nodal curve if its singularities are simple

nodes, j.c., they are of normal crossing type.

1.6. Theorem. Let Y be a foliarion by unes in It of degree d atid
C be an irreducible curve complete intersection of n — 1 itypersurfaces of
degrees a a~1. Let ¿es suppose that C sastisfy one of tite following
conditions:

a) C is a non singular curve.
b) C is a nodal curve.
Titen, one itas

5— 1

Xa1~d+n
1=

Furtiterniore, in tite case a) one has tite equalñy ~ff.7 itas no singuiar-
ities over G.

Proof. The main tool for proving this theorem is the use of the fol-
Iowing formula to compute die arithmetic genus arH~(O~,C) of C ([11],
n78)

1 5

3r—ma+ 1, a=— 1 —n-~-
2

where ni=a1-... -a5.., is the degree of C. It is well known that g~r—6
where
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eQ(eQI

)

PESing<C) Q~P 2

Q=Pmeans that Q is an infinitely near point of 1’ and eQ is tbe multi-
plicity of dic strict transform of C at Q. From (1.3) we have

m(Y, C) — 26=m(d—l—a).

Now, let C be a non singular curve. This implies that 5=0. Since
ni(9, C)?0, we must have d—1—a?’0 and it follows that Xa¿~d+n.

i=J

In dic case b), if C is a nodal curve, dien ¿5 is the number of nodes of
C and Y has a singularity in every one because C is an integral curve.
For eacb branch QEC of dic node one has mQ(2/, C)>0. This irn-
pIjes diat dic contribution of m(.7, C) in every node is two at least. Then,

5— 1
wc have m(Y, C)—26s0 and it follows Éhat Xa,$d+n. Q.E.D.

2.1. Let us consider from now on, dic case n=2. It is possible to
extend the theorem (1.5) to the non irreducible curves. The main argument
is to check tbat dic genus formula

(m—l) (m—2) —26
2

is available in this case. itt C~, ¡= 1 r be dic irreducible components
of C and ni

1, g> <5~ be dic respective multiplicities, genus ami a-values.
itt us remark that a is not equal to in general. In fact, one has

2.2. Lemma. If C is a non irreducible plane curve titen

2—2gm(3--m) + 26.

Yroof. Since C~ is irreducible, the genus formula give us
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2—2g1=m~(3—m1) + 2¿~.

Since ~(2—2g¡)= 2—2g by definition, it follows that
1=1

2—2g=m(3—m) + 22 (a~ +
¡=1

ym.m.t

‘=1

Then, it is enough to see that

a (a. + 2 m¡nt).

Por every point PESing(C) and Q=P,one has eQ=~eQ(C¡) ami so
‘=1

eQ(C) (e0(C)—1)=~ eQ(C~) (eQ(CJ—l) ±21 (x
‘=1

itt I/C,, C~) be dic intersection rnultiplicity of C1
Noether Formula says that

eQ(CDeQ(C)).

aud 9, at P. The

I,(C1, C3»z 2 eQ(C)eQ(C3)
Q~P

and Bezout Theorcm along C~flC~ implies that

m¡ -mp 2 2eQ(C)eQ(CJ).
rcc,nc~ Q~P

To fxnisb, let us sum ah this products forj-Ci. Q.Efl.

2.3. Theorem. Let Y be a foliation by lines of degree d on It and
C be a not irreducible integral curve of degree m. Let us suppose titat C
satisfy one of tite following conditions

a) C is a non singular curve.
b) C is a nodal curve.

Then m~d+ 2. Furtitermore, in tite case a) one has the equality uf it
itas no singularities over C.
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Proof. Since die genus formula is available in this hypothcsis (Lem-
ma(2.2)), the proof is analogous to (1.5). Q.E.D.

a a
2.4. Remark. Let E=a, ±a2 be a local gencrator of Y.dr1 dr2

Recalí diat the Milnor number of Yat P is defmed as

= dim~(O~ ,,/(a1, a2)) -

Let us assurne diat the integral curve C is regular at P and /4(Y) = E
Tbis implies diat a, and 02 are regular and transversal. Since p,,G3r) is a
local invariant, tbcn we can take an analytic system of coordinates (x,, x2)
such that (x, =0) ¡5 a local equation of tbc curve C, a1 = x1-u~ for an unit
u, ami ord5ja2)=1. Hence, m,,(9, C)=1.

Now, let C be a nodal curve like in b) of (2.3). íf p,,(Y) = 1 for alí
nodes of C thcn m = d + 1 iff thc singularities of Y over C are exactly dic
nodes of C.

2.5. If C is an intducible non singular curve, the bound m~d+2 of
(2.3) (or(l 5)) can be improved by using the “AF+BG” Noether’s the-
orem. To proceed, we shail use dic dual characterization of ihe foliation

3
Y by tbe homogcncous differential 1-form flz~XB4X¡ sucb that

8
deg(B,)=d+1 and (1= DAR where R=XX1—-- ([1] (4.2), [8] (1.1)).

¡=1

itt F(X1, X2, X3)=0 be tbe hornogeneous equation of the curve C. Since
C is an integral curve of 7, we have ti AdF = 0. A foliation such that its
solutions are the level curves of a rational function F/G

tm with deg(G) = 1
an exact dífferential of C -

2.6. Proposition. Let C be a non singular integral curve of a fo-
liation Y wi:h deg(C)=m anddeg(Y)=d. Then m~d+l andni=d+1
~ffY is an exact dífferential of C.

Proof. Let F~=8F/8X~, i= 1,2. Since C is an integral curve of Y it
follows that B

2F1—R1F, is in the ideal generated by F in every local ring
Os,,, and v,.(BJ?v,,(F2). Then, Noether’s conditions are satisfied and this
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implies that there exists bornogeneous polynornials L, M sucb tbat
B2LF+MF2 witb deg(L)=d+1—m=’0and deg(M)=d+2—m. More-
over, if m=d+ 1 then M is a line and £71=MdF—mFdM, i.e., -~ is an
exact differential of C. Q.E]J.

2.7. Corollary. Let C be an integral curve of Y. Titen C contains
at least one singularity of-Y. ([9]).

Indeed, if P is a singular point of C, then it is singular for Y too. But if
C is not singular, from (2.3) and (2.6) it follows dic corollary.

The results (2.3) and (2.6) were already proved in [3] by using differ-
ent arguments.

2.8. Remark. The formula (L3) allow us to bound thc number of
integral unes of a plane foliation in very general cases. By (~5], (2.6)), a
foliation with an infinity of integral lines is a radial foliation. Let us sup-
pose diat Y is a non radial foliation of degree d and let R1 R0bethe
integral lines of Y witli the condition that at least one of them, for in-
stance R1, intersects dic odier ones in a — 1 different points-tbis is tbe case
whenR ,,.~, R0 are lii general position. itt us take C=R1 in dxc theorem
(1.3). Since g0, tn=1, thcn zn(.Y, R,)=d+1. But, br tbe points
PER1flR~, i=2 ,., a, one has m,,(Y, R5)? 1 and, consequently
a~d±2.

In the hypothesis of MCarnicer[2], Le., alí the points of
Sing (Y) flC are non dicritical singularities of Y, thcn the number a of
integral lines is bounded by d+ 2 too. To see this it suffices to take C
equal to tIte product of tIte a integral unes.
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