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Local Connectivity, Open Hornogeneity
and Hyperspaces

J. .1. CHARATONIK

ABSTRACT. lii the first pan of ¡be paper behaviour of conditions related ¡o local
connectivity at a point is discussed if ¡he space is transformed under a mapping
¡bat is interior or open at ¡be considered point of ¡be domain. me second pan of
¡be paper deals with metric locally connected continua. They are characterized as
continua br which ¡he hyperspace of ¡beir nonempty closed subsets is horno-
geneous wi¡b respect to open mappings. A similar characterization for the hyper-
space of subcontinua remains art open question.

Topological spaces considered in ¡bis paper are assumed to be Haus-
dorff, and mappings are assumed to be continuous. A con¡inuum menas a
compact connected space.

1. LOCAL CONNECTIVITY AND MAPPINGS

A space X is said to be connec¡ed irn kleinen o¡ a poisi¡ p if for eacb
open subset A of X such that p E A there exists art open subset B of X
such ¡bat pEB and fi is contained in a component of A ([11], p. 89). In
other words, a space X is connected im Ucinen at p EX proVided ¡hat for
each open set A containing p ¡here is an open set fi containing p and lying
in A such ¡bat for each point qE fi tbere is a connected subset of A con-
taining both p and q ([4], p. 113); equivalently, if for each open neigh-
bourbood A of p ¡he point p is an interior poin¡ of a component of A.
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A space X is said to be local/y connecred at p EX provided ¡bat br
each open subset A of X such that pEA ¡here is a connected open subset
fi of X such tha¡ pEB CA; equivalently, if X has a local basis at p com-
posed of connec¡ed open sets ([1 1], p. 89; [4], p. 105). Note that Kura-
towski uses ¡he term «locally connected a¡ a point» in ¡he sense of connec¡-
ivity im kleinen at ¡bis point, see the definition in [7], §49, 1, p. 227.

Obviously, by the definitions

(1) ¡f a space is locally connected a¡ a poin¡ p, tIten it is connected im
kleinen arp,

but not inversely. Well-known examples of plane continua which are con-
nected im kleinen but not Iocally connected at a point are presented e.g. in
[4], Fig. 3-9, p. 113 and [5], Example 1, p. 137.

A space is said to be connected irn kleinen (locally connected) provided
it is connected im kleinen (locally connected) at each of its points. It is
known (see e:g. [11], meorem 10, p. 90) tha¡

(2) ¡f a space is connected ¡ni Ideinen at every poin! of sorne open set
¡bat contaisis a poin¡ p, ¡hen it is locally connected at p

In particular, it follows from (2) (see e.g. [4], Theorem 3-11, p. 114)
¡bat

(3) <f a space is connected im kleinen (at each of i¿’s points), tIten it is
locally connected.

A mapping f:X—* Y is said to be interior a¡ a poin¡ p EX provided for
every open neighbourbood U of p in X ¡he point f(p) is in the interior of
f(U). A mapping is said to be open if it maps open subsets of ¡be domain
¡o open subsets of ¡he range. Obviously

(4) a mapping is open ¡y’ and only f it is interior at each poin¡ of its do-
main.
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5. Proposition. Le¡ a space X be connected im kleinen a¡ a point p.
a mapping f defined on X is interior at p, ¡ben f(X) is connecá’ed im

kleinen at f(p).

Proof. Le¡ y be an open set in f(X) widi f(p) EV. Since y’ is con-
tinuous, ft’ (V) is an open subse¡ of X containing p. By connectedness ini
kleinen of X at p diere is an open subset U of X sucb ¡bat pE U and U is
contained in a componen¡ C of f’(V). Since f is interior at p, we have
f(p) E mt f(U) Gf(U) Cf(C) ci’. mus mt f(U) 15 an open subset of f(X)
¡bat is contained in a connected subset f(C) of V. me proof is complete.

Staternent (1) and Proposition 5 imply ¡be following.

6. Corollary. Let a space X be locally connected at a point p. If a
mapping y’ defined on X is interior at p, tIten f(X) is connected im kleinen
at f(p).

Conclusion of Corollary 6 cannot be streng¡bened by saying ¡bat f(X) is
locally connected at ftp). me author is obliged ¡o K. Orniljanowski and
J. R. Prajs for calling to bis atten¡ion ¡he following example showing the
statement. We recall sorne defini¡ions first. A space is said to be ra¿’ional
if it has an open basis with countable boundaries. A dendroid means an
arcwise connected and beredi¡ari¡y unicoheren¡ (rnetric) continuum. The
cone over ¡be closure of ¡he harmonic sequence {0} U {I/n:nEN } is
called the harmonic fan. Note ¡hat ¡be harmonie fan is a dendroid. An
arc ab contained lii a space S is said to be free provided ab\{a, b} is an
open subset of S. A mapping with connected point-inverses is defined to be
monotone.

7. Example. There exist rational plane dendroids X ami Y, a point p
of X atid a surjective mapping f:X—* Y such ¡ha¡ f is monotone asid in-
tenor at p, ¡he dendroid X is locally connected at p, while Y is no¡
locally connected a¡ f(p).

Proof. Put, in ¡he Cartesian coordina¡es in ¡be plane, p = (0, 0), and,

for eacb positive integer si, let

= (
2fl ‘, 0), a~ m= (2—~—~ ~ 1),

b~=(32~
3, 0), bnm=(32~~~3, 3 2”’”fl
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Therefore b~ is ¡he middle poin¡ of ~ and a~. Denoting by ab ¡he
s¡raigh¡ une segment joining poin¡s a wi¡h b in ¡be plane, put

X=pa1U U{U{anbnm:mer~J}:neN}

and

Y=pa1UU{U{a0a~~, m:rnEN}:nEP~sJ}

Hence X and Y are rational plane dendroids simply by tbeir construc-
tions. The dendroid Y is homeomorphic to ¡he aboye mentioned example
pictured in [4], Fig. 3-9, p. 113. Observe ¡bat X is locally connected at p,
wbile Y is connected im kleinen, but no¡ locally connected at p.

Note that for eacb n E ~J¡he unions

a~b~UU{a~b~,,,:mER4 and anan+iUU{a,an+ím:mErN}

which are contained in X and Y respec¡ively, are homeomorphic to a har-
monic fan, and tha¡ the segments a~~1b~ are free ares in X, while in the
dendroid Y ¡bere is no free arc contained in the segment pa1.

In the dendroid X shrink every free arc lying in ¡he segment pa1 to a
point, and le¡ q:X—*q(X) stand for ¡he quotient mapping. Note that q is
monotone and interior at p and ¡hat q(X) is homeomorphic to Y. Let
h:q(X)—*Y be a homeomorphism. Then it is enough ¡o define f=hq. The
proof is complete.

Applying a general notion of localization of a mapping (see [8],
Chapter 4, C, p. 18) to the class of open mappings we get ¡he following
definition. A mapping f:X—* Y between spaces X and Y is said to be lo-
cally open at a point pEX provided ¡hat ¡bere exis¡s a closed neighbour-
hood U of p such ¡bat f(U) is a closed neighbourhood of f(p) and ¡he par-
¡ial mapping fi U: U—*f(U) is open. me following implication is known
(see [1], Statemen¡ 13, p. 360).

(8) If a mapping is locally open mt a point of frs domain, tIten it is in-
terior a¡ this poinit.

The converse implication does not hold. Really, ¡he mapping y’ defined
in Example 7 is interior a¡ thc point pEX, while it is easy ¡o note that
there is no open neighbourhood U of p in X with an open partial mapping
fU: U—*f(U). Ano¡her example is described in [1], p. 360.
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Similarly to (4) we have ¡be following assertion.

(9) A rnapping is open ¡y’ and only ¡y’ it is locally open at eacIt point of its
domain.

As it was said aboye, ¡be concep¡ of ¡ocal cunnectivity at a point is no¡
preserved under mappings which are interior at the considered point. But if
¡be mapping is assumed to satisfy a stronger condition, namely ¡o be lo-
cally open at ¡he point, then the invariance takes place. Indeed, we have
¡be following proposition.

10. Proposition. Let a space X be locally connected at a point p. If
a rnapping f defined on X is locally open a¡ p, tIten f(X) is locally con-
nected a¡f(p).

As an inimediate consequence of (9) and Proposition 10 we ge¡ a co-
rollary.

11. Corollary. La a space X be local/y connected at a po/ma p. lf a
rnapping y’ defined on X is open, tIten f(X) is locally connected a¡f(p).

2. OPEN HOMOGENEITY

A space X is said ¡o be openly Itomogeneous (hornogeneous) provided
for eacb i¡s points p and ¿y there is an open mapping (a homeomorphism)
of X onto itself that maps p onto ¿y. As an easy consequence of ¡his defi-
nition and of Corollary 11 we luye the next corollary.

12. Corollary. If a space is openly homogeneous asid locally con-
nec¡ed a¡ sorne poin¡, tIten it is locally connected.

Given a (Hausdorff) continuum X, we denote by 2< and C(X) the hy-
perspaces of aH nonempty closed subse¡s and of aH nonempty subcontinua
of X, with the Vietoris ¡opology, respectively.

13. Lenima. If, for a Hausdorff con¡inuum X, ei¡her 2< or C(X) is
openly hornogeneous, tIten X is locally connected.
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Proof. It is known that 2” and C(X) are bo¡b continua ([10], p. 1209)
wbich are locally connected at X ([12], (1.136), p. 154). Thus, if one of
the hyperspaces is openly homogeneous, it is locally connected by
Corollary 12. mis is known to be equivalen¡ to local connectedness of X
([12], (1.92), p. 134 and (1.208), p. 199).

14. Remark. For the metric case and under a stronger assump¡ion of
bomogenei¡y of cidier 2” or C(X) tbe aboye lemma was shown in [3],
p. 1032.

15. Remark. It was observed in [3], p. 1032 ¡bat C(P) is not ho-
mogeneous for a pseudo-arc P. It follows from Lernma 13 that neither of
¡be two byperspaces of a pseudo-arc is openly bornogeneous. However, a
stronger result bolds true.

16. Theorem. The following staternents are equivalesi¡ for a nonde-
generate rnetric continuurn X:

(1) 2” is hornogeneous;
(u) 2” is openly hornogeneous;

(iii) X is local/y connected;
(iv) 2” is horneornorphic to the Hilbert cube.

Proof. Trivially (i) implies (u). By Lemma 13, (u) implies (iii). Now
(iii) is known to be equivalent ¡o (iv) ([2], Theorem 1, p. 927), wbicb im-
pues (i) by [6].

17. Remark. Equivalence of conditions (i), (iii) and (iv) is shown in
[12], (17.3), p. 565.

18. Remark. Tbe example of an extended long line shows that
metrizability is an essenfial assumpúon in meorern 16 (see [12], (17.4),
p. 565).

The concept of a free arc recalled bere in tbe previous pan of te pa-
per has been used by 5. B. Nadíer, Jr., in [12], (17.2), p. 564 to charac-
terize me¡ric continua X with bomogeneous byperspace C(X).
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19. Theorem (Nadier). Tite following statements are equivalent for a
non-degenerate rne¡ric continuurn X:

(1) C(X) is Itornogeneous;
(it) X is local/y connecred atid contains no free are;

(iii) C(X) is Itomeornorphic ¡o tIte Hilber¡ cube.

20. Remark. Unlikely for tbe hyperspace 2” in Theorem 16, ¡be con-
dition saying ¡hat C (X) is openly homogeneous canno¡ be joined to ones of
¡he aboye dieorem. Indeed, if X is a me¡ric arc, ¡ben C(X) is bomeomor-
phic ¡o a disc, which is locally connected plane continuum, and bence not
homogeneous (because a simply closed curve is ¡he only sucb con¡inuum,
[9],p. 137), while known to be openly bomogeneous by a recent resulí of
J. R. Prajs ([13], Corollary 5).

21. Problem. Characterize metric continua X for which the hyper-
space C(X) is openly bomogeneous.
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