REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 6, número 1; 1993. http://dx.doi.org/10.5209/rev_REMA.1993.v6.n1.17843

Dunford-Pettis-like Properties of Continuous Vector Function Spaces

JESUS M.F. CASTILLO AND FERNANDO SANCHEZ

ABSTRACT. In this paper, the structure of some operator ideals \mathcal{A} defined on continuous function spaces is studied. Conditions are considered under which " $T \in \mathcal{A}$ " and "the representing measure of T takes values in \mathcal{A} " are equivalent for the scales of p-converging (C_p) and weakly-p-compact (W_p) operators. The scale C_p is intermediate between the ideals $C_i = \mathcal{U}$ (unconditionally summing operators), and $C_w = \mathcal{B}$ (completely continuous operators), which have been studied by several authors (Bombal, Cembranos, Rodríguez-Salinas, Saab). The dual scale W_p is intermediate between the ideals \mathcal{K} (compact operators) and $W_w = W$ (weakly compact operators), and the results presented have a close connection with those of Diestel, Núñez and Seifert.

1. PRELIMINARIES

In this paper, $B(\Sigma,X)$ denotes the space of all bounded X-valued Σ measurable functions; if $1 \le p \le \infty$, p^* denotes the conjugate number of p; if p=1, l_{p^*} plays the role of c_0 .

1.1. Definition. A sequence (x_n) in a Banach space X is said to be weakly-p-summable $(1 \le p \le \infty)$ if $(x^*x_n) \in l_p$ for all $x^* \in X^*$, or equivalently, if there is a constant C>0 such that

¹⁹⁹¹ Mathematics Subject Classification: 46E15, 46B28, 46B25. Editorial Complutense. Madrid, 1993.

$$\sup_{n} \|\sum_{k=1}^{n} \xi_{k} x_{k}\| \leq C \cdot \|(\xi_{n})\|_{l_{\mu}}$$

for any sequence $(\xi_n) \in I_{p^*}$. We shall denote by $w_p((x_n)_n)$ the infimum of those constants C.

We shall say that (x_n) is weakly-p-convergent to $x \in X$ if (x_n-x) is weakly-p-summable. Weakly- ∞ -convergent sequences are simply the weakly convergent sequences.

1.2. Definition. Let $1 \le p \le \infty$. An operator $T \in \mathscr{L}(X,Y)$ is said to be pconvergent if it transforms weakly-p-summable sequences into norm null sequences. We shall denote by C_p the class of p-convergent operators.

When $p=\infty$ this definition gives the ideal B of completely continuous operators, that is to say, those transforming weakly null sequences into norm null sequences. When p=1, it is easy to verify that $C_1=U$, the ideal of unconditionally summing operators, i.e., those transforming weakly-1summable sequences into summable ones. Obviously $C_a \subset C_p$ when p < q.

The scale of C_p ideals are intermediate between the ideals B and U. It is clear (from the definition) that C_p are injective operator ideals, and, since any separable Banach space is a quotient of l_1 , they are not surjective. On the other hand, it is easy to see that C_p is closed: let (T_n) be a sequence of p-converging operators with limit (in the operator norm) T. If (x_n) is a weakly p-summable sequence and $\varepsilon > 0$, then $||Tx_n|| \le \varepsilon ||x_n|| + ||T_k x_n|| \le \varepsilon$ and (Tx_n) is norm null.

1.3. Definition. A bounded set K in a Banach space is said to be relatively weakly-p-compact $(1 \le p \le \infty)$ if every sequence in K has a weakly-p-convergent sub-sequence. An operator $T \in \mathcal{L}(X,Y)$ is said to be weakly-p-compact, $1 \le p \le \infty$, if $T(B_X)$ is relatively weakly-p-compact. We shall denote by W_p the ideal of weakly-p-compact operators.

The W_p operators are meant to be a gradations of the class of weakly

45

compact operators. It is clear that $W_{\infty}=W$ (weakly compact operators), and it is easy to see that $id(X) \in W_1$ if and only if X is finite dimensional. Obviously $W_p \subset W_q$ when p < q.

The ideals W_p are injective and surjective but not closed. The ideal W_1 is not closed since $W_1 \neq W_1^2 = K$, the ideal of compact operator (see [14]). To see W_p is not closed for p > 1, we apply [14, Prop. 1.6] to the diagram:

for $1 . The left arrow is the identity and the right arrow is the inclusion, which belongs to <math>W_{q^*}$. If this operator ideal was closed, the middle inclusion should also be in W_{q^*} , which is not, since $C_p \circ W_p = K$ and .

1.4. Proposition. Let $1 , then id <math>(l_p) \in W_{p^*}$.

Proof. Let (x_n) be a bounded sequence in l_p . It admits a weakly convergent sub-sequence (x_k) . Let x be its weak limit, and let us call $y_k = x_k - x$. If (y_k) is norm null, we have finished. If not, and we have $||y_k|| \ge \varepsilon > 0$ for some sub-sequence, applying the Bessaga-Pelczynski selection principle, we obtain a new sub-sequence, equivalent to the canonical basis (e_n) of l_p , which is weakly p^* -summable.

An easy consequence is:

1.5. Proposition. $\mathcal{L}(l_{p^*}, X) = K(l_{p^*}, X)$ if and only if $id(X) \in C_p$.

Moreover, an operator T belongs to $C_p(X,Y)$ if and only if for each $j \in \mathcal{L}(l_p,X)$ the composition $T \circ j$ is compact. From this and the proof of (2.5) we obtain

1.6. Proposition. If $T \in W_p(X,Y)$ then $T^* \in C_r(Y^*,X^*)$ for all $r < p^*$.

1.7. Corollary. Let $1 , <math>id(l_p) \in C$, for all $r < p^*$.

Remarks.

1. The progression expressed by (1.7) suddenly breaks down when p<1, due to [17], where it is shown that a weakly-1-summable sequence (x_n) exists in each l_p , p<1, for which $||x_n||_p \rightarrow +\infty$.

2. Regarding Proposition 1.5, this result is equivalently to Pitt's lemma: $\mathcal{L}(l_p, l_q) = K(l_p, l_q)$ if and only if p > q.

For L_p spaces the situation is:

1.8. Proposition.

a) If 2≤p<∞ then id(L_p)∈ W₂.
b) If 1<p<2 then id(L_p)∈ W_{p*}.

Proof. Part a) can be obtained by using the Kadec-Pelczynski alternative: every normalized weakly null sequence in L_p has a subsequence equivalent either to the unit vector basis of l_p or the unit vector basis of l_2 .

Part b) follows from a standard duality argument. If (x_n) is a normalized weakly null sequence in L_p and (x_k) is a basic sub-sequence of (x_n) , consider a bounded sequence (y_k) of biorthogonal functionals in L_{p^*} , and (again) the Kadec-Pelczynski alternative.

1.9. Examples. (See [21] for details). We shall abbreviate $id(X) \in C_p$ (resp. $id(X) \in W_p$) by saying $X \in C_p$ (resp. $X \in W_p$).

a) If $1 \le p < \infty$, $l_p \in C_r$ for $1 \le r < p^*$, and $l_p \in W_{p^*}$ for 1 (see (1.4) and (1.7)).

b) If $1 \le p \le \infty$, $L_p(\mu) \in C_r$ for $r \le \min(2, p^*)$. If $1 \le p \le \infty$, $L_p(\mu) \in W_r$ for $r = \max(2, p^*)$ (see (1.8) and (1.6)).

c) Tsirelson's space T is such that $T \in C_p$ for all $p \neq \infty$ (see [7]).

d) Tsirelson's dual space T^* is such that $T^* \in W_p$ for all p>1 (see [7]).

e) Super-reflexive spaces belong to some class W_p and, consequently, to some class C_q (see [6]).

f) If $X, l_r \in W_p$ then so does $l_r(X)$ (see [8]).

It is well-known [12] that every operator T from C(K,X) to Y has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ -field Σ of K and with values in $\mathfrak{L}(X,Y^{**})$, in such a way that

$$T(f) = \int f dm, \quad (f \in C(K, X)).$$

If $m:Bo(K) \longrightarrow \mathcal{G}(X,Y)$ is a finitely additive measure, we shall denote by |m| its semi-variation. One says that |m| is continuous at \emptyset if it has a control measure: a countably additive positive measure λ on Bo(K)such that

$$\lim_{\lambda(A)\to 0} |m|(A) = 0.$$

1.10. Proposition. When $T \in W(C(K,X),Y)$, its associated representing measure m is countably additive and verifies the following two conditions:

a) |m| is continuous at \emptyset , and b) for each $A \in Bo(K)$, $m(A) \in W(X,Y)$.

Thus, it seems natural to ask which properties pass from T to m and viceversa.

2. OPERATORS AND MEASURES

By mimicry of the proofs made in [3], [4] and [20] for the cases $p=1,\infty$ one can easily obtain:

2.1. Proposition. Let $T \in C_p(C(K,X),Y)$, and let m its representing measure. Then:

a) |m| is continuous at \emptyset , and b) for each $A \in Bo(K)$, $m(A) \in C_p(X,Y)$.

Nevertheless, these two conditions a) and b) do not characterize C_p operators. In [1], there is shown an operator T from $C([0,1],c_0)$ to c_0 which is not in C_1 but is such that its representing measure m has continuous semi-variation at \emptyset , and m(A) is a compact operator for any Borel set $A \subset [0,1]$.

2.2. Proposition. Let $T \in \mathcal{L}(C(K,X),Y)$ have a representing measure *m* satisfying:

a) |m| is continuous at \emptyset and admits a discrete control measure, and

b) for each $A \in Bo(K)$, $m(A) \in C_p(X,Y)$.

Then $T \in C_p(X,Y)$.

Since every Radon measure over a dispersed compact set is discrete (see [16, §2]), it follows that:

2.3. Corollary. If K is dispersed and $T \in \mathcal{L}(C(K,X),Y)$ is such that its representing measure m satisfies:

a) |m| is continuous at \emptyset , and b) for each $A \in Bo(K)$, $m(A) \in C_p(X,Y)$, then $T \in C_p(X,Y)$. Corollary (2.3) asserts that (2.1) is an equivalence when K is dispersed. We can also expect an equivalence when some condition is imposed on X.

2.4. Proposition. Let $1 \le p \le \infty$. The following are equivalent:

a) $id(X) \in C_p$.

b) Given any compact space K and any Banach space Y, an operator $T \in C_p(C(K,X),Y)$ if and only if its representing measure satisfies

i) |m| is continuous at \emptyset , and

ii) for each $A \in Bo(K)$, $m(A) \in C_p$.

Concerning the dual scale of weakly-p-compact operators, we have:

2.5. Lemma. Let $T \in \mathcal{L}(C(K,X),Y)$ and $p \ge 1$. The following are equivalent (\hat{T} is the restriction to $B(\Sigma,X)$ of the operator T^{**}):

a) $T \in W_p(C(K,X),Y)$, b) $\hat{T} \in W_p(B(\Sigma,X),Y)$, c) $T^{**} \in W_p(C(K,X)^{**},Y)$.

Proof. Since $T \in W(A,B)$ if and only if T^* (or any of its iterated duals) is weak*-to-weak continuous, and the unit ball of A is weak*-dense in the unit ball of A^{**} , we have:

$$T^{**}(\boldsymbol{B}_{A^{''}}) = T^{**}(\overline{\boldsymbol{B}}_{A^{''}}) \subset \overline{T(\boldsymbol{B}_{A})}$$

from which the result follows.

. . .

That immediately gives:

2.6. Proposition. Let $T \in W_p(C(K,X),Y)$, $p \ge 1$. Its associated measure verifies:

a) |m| is continuous at \emptyset , and

b) for each $A \in Bo(K)$, $m(A) \in W_p(X,Y)$.

The converse is not true; see the comments after (2.1).

3. DUNFORD-PETTIS-LIKE PROPERTIES

A Banach space X is said to have the Dunford-Pettis property if any weakly compact operator $T:X \rightarrow Y$ transforms weakly compact sets of X into norm compact sets of Y. This property can be described by means of the inclusion $W(X,Y) \subset B(X,Y) = C_{\infty}(X,Y)$. We can weaken this requirement in the following manner:

3.1. Definition. Let $1 \le p \le \infty$. We shall say that a Banach space X has the Dunford-Pettis property of order p (in short DPP_p) if the inclusion $W(X,Y) \subseteq C_p(X,Y)$ holds for any Banach space Y.

Obviously DPP_p implies DPP_q when q < p. Also, $DPP=DPP_{\infty}$ and every Banach space has DPP_1 . It follows from the definition that if $id(X) \in C_p$ then X has DPP_p , and that if $id(X) \in W_p$ then X does not have DPP_p . The following result contains analytical and geometrical characterizations of the DPP_p .

3.2. Proposition. For a given Banach space X, the following are equivalent:

a) X has DPP_p $(l \le p \le \infty)$.

b) If (x_n) is a weakly-p-summable sequence of X and (x_n^*) is weakly null in X* then $(x_n^*x_n) \rightarrow 0$.

c) Every weakly compact operator $T:X \rightarrow Y$ transforms weakly-pcompact sets of X into norm compact sets of Y.

Proof. The proof of the equivalence between (a) and (b) is obtained as in [21]. We prove the equivalence of (a) and (c).

(c) \Rightarrow (a): Consider $T:X \rightarrow Y$ a weakly compact operator, and (x_n) a weakly-*p*-summable sequence in X. We form the set:

$$conv_p((x_n)) = \left(\sum_{n=1}^{\infty} \lambda_n x_n : \Sigma_n |\lambda_n|^p \le 1\right)$$

which we shall refer to as the p^* -convex hull of (x_n) . Clearly, $conv_{p^*}(x_n)$, the continuous image by the natural operator associated to (x_n) of the unit ball of l_{p^*} , is a weakly-p-compact set. Since $T \in C_p$ and $l_p \in W_{p^*}$, $T(conv_{p^*}(x_n))$ is compact, and (Tx_n) is norm-null.

(a) \Rightarrow (c): If A is a weakly-p-compact set of X, then for each bounded sequence (z_m) of A there is a point $z \in A$, and a sub-sequence (z_n) , such that (z_n-z) is weakly-p-summable. We set $(x_n)=(z_n-z)$, and apply to this sequence the preceding argument, to conclude that (Tx_n) admits a norm null sub-sequence.

3.3. Examples. The following examples are immediate after (1.9). In fact, these results give the optimum values of p.

- a) C(K) and L_1 have the DPP, and therefore the DPP_p for all p.
- b) If $1 < r < \infty$, l_r has the DPP_p for $p < r^*$.
- c) If $1 < r < \infty$, $L_r(\mu)$ has the DPP_p for $p < \min(2, r^*)$.

d) Tsirelson's space T has DPP_p for all $p < \infty$. However, since T is reflexive, it does not have DPP.

e) Tsirelson's dual space T^* does not have DPP_p for any p>1.

Coming back to continuous vector function spaces, we have:

52

3.4. Proposition. If $id(X) \in C_p$ then, for any compact K, C(K,X) has DPP_p .

Proof. Let $T \in W(C(K,X),Y)$. If (f_n) is a weakly-*p*-summable sequence in C(K,X), then for each $t \in K$, the sequence $(f_n(t))$ is also weakly-*p*summable in X, and thus it is norm null. The sequence (Tf_n) is also null by [5, Th. 2.1].

3.5. Corollary. Given any compact space K and $1 , <math>C(K, l_p)$ has DPP, for all $r < p^*$; it does not have DPP_{p^*} .

A "limit case" is provided by Tsirelson's spaces (compare this result with (3.13)):

3.6. Corollary. If T denotes Tsirelson's space then, given any compact space K and $1 , <math>C(K,T^*)$ has DPP_p but not DPP.

Now, we see what happens if we replace the condition " $id(X) \in C_p$ " by the weaker "X has the DPP_p".

3.7. Example. Talagrand's construction of a Banach space X having *DPP* but such that C(K,X) does not have *DPP* (see [22]), can be modified in such a form that we obtain Banach spaces T_p (p>1) having *DPP*, and such that $C(K,T_p)$ does not have DPP_p . Talagrand's original example corresponds to T_2 .

What can be said about C(K,X) when X simply has DPP_p ? The following theory was developed in [4] and [2] for DPP.

3.8. Definition. An operator $T:C(K,X) \rightarrow Y$, whose associated measure *m* has continuous semi-variation at \emptyset , is said to be almost- C_p if, for each weakly-p-summable sequence (x_n) of X and each bounded sequence (ϕ_n) of C(K), the sequence $T(\phi_n x_n)$ converges to 0 in Y. Obviously, C_p -operators are almost- C_p .

3.9. Theorem. The following are equivalent:

a) X has DPP_p.

b) For each compact space K, every weakly compact operator $T:C(K,X) \rightarrow Y$ is almost- C_p .

c) Every weakly compact operator $T:C([0,1],X) \rightarrow Y$ is almost- C_p .

d) Every weakly compact operator $T:C([0,1],X) \rightarrow c_0$ is almost- C_p .

(The proof is exactly as [2, Th. 5]).

3.10. Corollary ([10, [13]). Let $1 \le p \le \infty$. For a dispersed compact space K, the following are equivalent:

a) C(K,X) has DPP_p . b) X has DPP_p .

Proof. Implication a) \Rightarrow b) follows from (3.9). Conversely, if $T \in W(C(K,X),Y)$ with representing measure *m*, for each Borel set $A \subset K$, $m(A) \in W(X,Y) \subset C_p(X,Y)$, since X has DPP_p . Applying (2.3), we obtain $T \in C_p$.

Concerning the scales W_p , Diestel and Seifert proved in [11] that weakly compact operators defined on C(K) spaces are *Banach-Saks* operators. Recall that an operator $T \in \mathcal{L}(X,Y)$ is said to be Banach-Saks (in short $T \in BS$) if any bounded sequence (x_n) of X admits a sub-sequence (x_m) such that (Tx_m) has norm-convergent arithmetic means.

Núñez [18] extended this result to C(K,X) spaces showing that, when X is super-reflexive, then weakly compact operators defined on C(K,X) are Banach-Saks. In [9], it is shown a vector measure whose range is not a weakly-*p*-compact set for any *p*. That example provides a weakly compact operator *T*, defined on a certain C(K) space, which, for every *p*, does not belong to W_p , showing that, in general, $X \in W_p$ does not imply

 $W(C(K,X),Y) \subset W_p(C(K,X),Y)$, and therefore, that in some sense, the result of Diestel and Seifert cannot be improved.

Despite that negative result, when K is a dispersed compact space, some positive results can be obtained:

3.11. Proposition. If $X \in W_p$ then $W(c_0(X), Y) \subset W_p(c_0(X), Y)$.

Proof. Let $T \in W(c_0(X), Y)$ and let (f_n) be a bounded sequence in $c_0(X)$. Let $\varepsilon > 0$. For each $n \in \mathbb{N}$, a number p_n exists so that $||f_n(k)|| \le 2^{-n}$ for $k \ge p_n$.

We write
$$f_n = f_n^d + f_n^i$$
, where
 $f_n^i = (f_n(1), \dots, f_n(p_n - 1), 0, 0, \dots)$

and

$$f_n^d = (0, 0, \dots, 0, f_n(p_n), f_n + 1), \dots).$$

Since $||f_n^d|| \rightarrow 0$, it is enough to see that $T(f_n^i)$ admits a weakly-*p*-convergent sub-sequence. For each $k \in \mathbb{N}$, there exists q_k such that $w_p((f_n^i(k) - x_k)_{n \ge q_k}) \le \lambda$ (the constant λ can be chosen uniformly [15]).

We determine inductively a sequence of indices $(q_{s(n)})$ as follows:

 $q_{s(0)} = q_1$ and $q_{s(n+1)} \ge \max\{q_k : k \le p(q_{s(n)})\}$

so that $p(q_{s(n+1)}) > p(q_{s(n)})$, and consider the sub-sequence $f_n^i = f_{q_{s(n)}}^i$.

We now write $f_n^i = s_n + t_n$ where

$$t_n = (0, 0, 0, \dots, f_n^i(p_{q_n}), \dots, f_n^i(p_{q_{n+1}}), 0, 0, \dots),$$

so that it is the continuous image of a block basic sequence constructed against the canonical basis of c_0 . We see that, passing to a sub-sequence if necessary, (Tt_n) converges to 0.

Dunford-Pettis-like Properties of Continuous...

The sequence

$$(z_n) = \begin{cases} z_n(k) = f_n^i(k) & \text{if } k \le p(q_{s(n-1)}), \\ \\ z_n(k) = 0 & \text{otherwise,} \end{cases}$$

however, is the continuous image of (a part of) the summing basis $(e_1+...+e_n)_n$ of c_0 .

If we set $x=(x_1,x_2,x_3,...) \in l_{\infty}(X)$, we see, passing again to a subsequence if necessary, that $||Tz_n - T^{**}x|| \le 2^{-n}$.

Finally, if (ξ_n) is a finite sequence in the unit ball of l_{p^*} , then

$$\|\Sigma_{n}\xi_{n}(Ts_{n}-T^{**}x)\| \leq \|\Sigma_{n}\xi_{n}(Ts_{n}-Tz_{n}+Tz_{n}-T^{**}x)\|$$
$$\leq \|T\| \cdot \|\Sigma_{n}\xi_{n}(s_{n}-z_{n})\| + 1 \leq \lambda \cdot \|T\| + 1,$$

thus finishing the proof.

Remark. If the choice of indices indicated in the proof is not possible because the sequence (p_n) does not go to infinity, then we would be working in a finite product space X^n ; if it is because the sequence of q_n stops at q, then we shall follow the same reasoning as in the last part with the sub-sequence, f_q, f_{q+1}, \ldots

3.12. Theorem. Let K be a dispersed compact space and $X \in W_p$. Then:

$$W(C(K,X),Y) \subset W_p(C(K,X),Y).$$

Proof. Let $T \in W(C(K,X),Y)$ and let (f_n) be a bounded sequence in C(K,X). By a standard argument we can assume K to be countable, $K = \{t_1, t_2, ...\}$. Since m (the associated measure of T) has continuous semi-

- -----

variation at \emptyset , a p_n exists for each $n \in \mathbb{N}$ such that, if we set $B_k = \{t_j: j \ge k\}$, then $|m| (B_n) \le 2^{-n}$.

Once more we write $f_n = f_n^d + f_n^i$ where f_n^d converges to 0 and f_n^i is eventually zero. Since f_n^i is a bounded sequence in a space isomorphic to some $c_0(\mathbb{N},X)$, the proof of (3.11) applies.

3.13. Corollary. If K is a dispersed compact space and T^* denotes Tsirelson's dual space, then $W(C(K,T^*),Y) \subset W_p(C(K,T^*),Y)$ for all p>1.

A sufficient condition on X which guarantees the inclusion $W(C(K,X),Y) \subset W_p(C(K,X),Y)$ is given by:

3.14. Theorem. If X does not contain c_0 finitely represented, then

$$W(C(K),X) \subset W_{2}(C(K),X).$$

Proof. If X does not contain c_0 finitely represented, then there is a p>1 such that $\mathscr{U}(C(K),X) = W(C(K),X) \subset \prod_p(C(K),X)$ by [19]. But each *p*-summing operator sub-factorizes through an L_p -space, which gives $\prod_p \subset W_2$ when $p\geq 2$, and thus for all *p*.

The hypothesis is not necessary: just consider Tsirelson's space T^* .

4. FINAL REMARKS AND FURTHER QUESTIONS

Results (3.12) and (3.14) suggest the following problems:

Problem K. Characterize the compacts K such that for any Banach space X

$$W(C(K),X) \subset W_2(C(K),X).$$

Problem X. Characterize those Banach spaces X such that for any compact K

Dunford-Pettis-like Properties of Continuous...

$$W(C(K),X) \subset W_2(C(K),X).$$

Notice that the hypothesis of (3.14) is not necessary: if K is dispersed, then $W(C(K,T^*),Y) \subset W_p(C(K,T^*),Y)$ for all p>1 and T^* is not, for any $p<\infty$, of cotype p.

An application could be the following conjecture, essentially due to Drewnowski: Is it true that $\mathfrak{L}(l_2,X)=K(l_2,X) \Leftrightarrow \mathfrak{L}(l_\infty,X)=K(l_\infty,X)$? One implication is clear. To see the other, notice that $X \in C_2$ and $\mathfrak{L}(l_2,X)=K(l_2,X)$ are equivalent. Since $C_2 \circ W_2=K$, and since $X \in C_2$ implies $\mathfrak{L}(l_\infty,X)=W(l_\infty,X)$, the question is whether **a**) Banach spaces $X \in C_2$ satisfy affirmatively Problem X, or **b**) the Stone-Čech compactification of N, β N, satisfies affirmatively Problem K.

Another unsolved question about the relationships between T and m is the following: Is it true that if K is a dispersed compact, and, for every Borel set A, the operator $m(A) \in W_p$, then $T \in W_p$?

The example in [9] mentioned before (3.11) shows that the hypothesis "*K* dispersed" cannot be removed.

Besides this, Núñez proved in [18] that if $T:C(K,X) \rightarrow Y$, K is dispersed and, for every Borel set A, the operator $m(A) \in BS$, then $T \in BS$. The connection with Núñez's result is the following:

Obviously property W_p implies the Banach-Saks property. Moreover, for p>1, the *p*-Banach-Saks property is defined as follows: A Banach space X is said to have the *p*-Banach-Saks property when each bounded sequence (x_m) admits a sub-sequence (x_n) and a point x such that (x_n-x) is a *p*-Banach-Saks sequence, i.e., satisfies an estimate of the form

$$\|\sum_{k=1}^n x_k\| \leq C \cdot n^{1/p}$$

for some constant C>0 and all $n \in \mathbb{N}$. It is also clear that property W_p implies the p*-Banach-Saks property. In [6] can be seen a proof that, conversely, the p*-Banach-Saks property implies, for all r>p, the property W_r . Therefore, what this question is looking for is the extension of Núñez's result to the scale of p-Banach-Saks properties.

References

- [1] BOMBAL, F. Operators on spaces of vector-valued continuous functions. Extracta Math. 1, n. 3, 103-114 (1986).
- [2] BOMBAL, F. On the Dunford-Pettis property. Portugaliae Math. 45, Fasc. 3, 265-272 (1988).
- [3] BOMBAL, F. and CEMBRANOS, P. Characterization of some classes of operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Phil. Soc. 97, 137-146 (1985).
- [4] BOMBAL, F. and RODRIGUEZ-SALINAS, B. Some classes of operators on C(K,E). Extension and applications. Arch. Math. 47, 55-65 (1986).
- [5] BROOKS, J.K. and LEWIS, P.W. Operators on continuous function spaces and convergence in the spaces of operators. Adv. in Math. 29, 157-177 (1978).
- [6] CASTILLO, J.M.F. and SANCHEZ, F. Weackly-p-compact, p-Banach-Saks and super-reflexive Banach spaces. To appear in J. Math. Anal. and Appl.
- [7] CASTILLO, J.M.F. and SANCHEZ, F. Remarks on some basic properties of *Tsirelson's space*. To appear in Note di Mat.
- [8] CASTILLO, J.M.F. and SANCHEZ, F. Upper-l_p-estimates in vector sequence spaces, with some applications. Math. Proc. Cambridge Philos. Soc. 113 (1993) 329-334.
- [9] CASTILLO, J.M.F. and SANCHEZ, F. Remarks on the range of a vector measure. To appear in Glasgow Math. J.
- [10] CEMBRANOS, P. On Banach spaces of vector valued continuous functions. Bull. Austral. Math. Soc. 28, 175-186 (1983).
- [11] DIESTEL, J. and SEIFERT, C.J. *The Banach-Saks ideal*, *I. Operators acting* on $C(\Omega)$. Commentationes Math. Tomus in honorem Ladislaw Orlicz I, 109-118 (1979).
- [12] DIESTEL, J. and UHL, J.J. Jr. Vector measures. AMS Math. Surveys, 15 (1977).
- [13] DOBRAKOV, I. On representation of linear operators on $C_0(T,X)$. Czechoslovak Math. J. 21, 13-30 (1971).
- [14] HEINRICH, S. Closed operators and interpolation. J. Funct. Anal., vol. 35, n. 3, 397-411 (1980).
- [15] KNAUST, H. and ODELL, E. Weakly null sequences with upper l_p-estimates. LNM 1470. Springer-Verlag.
- [16] LACEY, H.E. The isometric theory of classical Banach spaces. Springer-Verlag (1974).

Dunford-Pettis-like Properties of Continuous...

- [17] MADDOX, I.J. A non-absolutely summing operator. J. Austral. Math. Soc. Ser A 43, n. 1, 70-73 (1987).
- [18] NUÑEZ, C. Banach-Saks operators on spaces of continuous functions. Ann. Mat. Pura ed Appl.
- [19] ROSENTHAL, H.P. Some applications of p-summing operators to Banach space theory. Studia Math. vol. 58, 21-43 (1976).
- [20] SAAB, P. Weakly compact, unconditionally converging and Dunford-Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Phil. Soc. 95, 101-108 (1984).
- [21] SANCHEZ, F. Sucesiones débilmente p-sumables en espacios de Banach. Pub. Dept. Mat. Univ. Extremadura vol. 28 (1991).
- [22] TALAGRAND, M. La propriété de Dunford-Pettis dans C(K,E) et $L_i(E)$. Israel J. Math. 44, 317-321 (1983).

Departamento de Matemáticas Universidad de Extremadura Avda. de Elvas, s/n 06071 Badajoz SPAIN Recibido: 12 de diciembre de 1991 Revisado: 6 de marzo de 1992