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Dunford-Pettis-like Properties of
Continuous Vector Function Spaces

JESUS MLF. CASTILLO AND FERNANDO SANCHEZ

ABSTRACT. In this paper, the structure of some operator ideals A defined on continuous
function spaces is studied. Conditions are considered under which "Te 2" and "the representing
measure of T takes values in 4" are equivalent for the scales of p-converging (C,) and weakly-
p-compact (W)} operators. The scale C, is intermediate between the ideals C,=U
(unconditionally summing operators), and C_=3 (completely continuous operators), which have
been studied by several authors (Bombal, Cembranos, Rodriguez-Salinas, Saab). The dual
scale W is intermediate between the ideals X {compact operators) and W_=W (weakly compact
operators), and the results presented have a close connection with those of Diestel, Nifiez and
Seifert.

1. PRELIMINARIES

In this paper, B(Z,X) denotes the space of all bounded X-valued Z-
measurable functions; if 1<p<ece, p* denotes the conjugate number of p;
if p=1, { . plays the role of c,.

p!l

1.1. Definition. A sequence (x,) in a Banach space X is said to be
weakly-p-summable (15p<eo) if (x*x,)el, for all x*e X*, or equivalently,
if there is a constant C>0 such that
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suply Ex I<sC ‘H(&,.)"r,,,

R k=

for any sequence (§)el.. We shall denote by w,(x,),) the infimum of
those constants C.

We shall say that (x,) is weakly-p-convergent to xe X if (x,-x} is
weakly-p-summable. Weakly-co-convergent sequences are simply the
weakly convergent sequences.

1.2. Definition. Ler 1<p<ec. An operator Te (XY} Is said to be p-
convergent if it transforms weakly-p-summable sequences into norm null
sequences. We shall denote by C, the class of p-convergent operators.

When p=eo this definition gives the ideal B of completely continuous
operators, that is to say, those transforming weakly null sequences into
norm null sequences. When p=1, it is easy to verify that C,=U, the ideal
of unconditionally summing operators, i.e., those transforming weakly-1-
summable sequences into summable ones. Obviously C ,cC, when p<q.

The scale of C, ideals are intermediate between the ideals B and U.
It is clear (from the definition) that C, are injective operator ideals, and,
since any separable Banach space is a quotient of [/, they are not
surjective. On the other hand, it is easy to see that C, is closed: let (T,)
be a sequence of p-converging operators with limit (in the operator norm)
T. If (x,) is a weakly p-summable sequence and £>0, then |Tx, j<e x|+
ITx,<2¢ and (Tx,) is norm null.

1.3. Definition. A bounded set K in a Banach space is said to be
relatively weakly-p-compact (I1<p<ec) if every sequence in K has a
weakly-p-convergent sub-sequence. An operator Te S#(X,Y) is said to be
weakly-p-compact, [<p<eo, if T(By) is relatively weakly-p-compact. We
shall denote by W, the ideal of weakly-p-compact operators.

The W operators are meant to be a gradations of the class of weakly
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compact operators, It is clear that W_=W (weakly compact operators), and
it is easy to see that id(X)e W, if and only if X is finite dimensional.
Obviously W,cW, when p<q.

The ideals W, are injective and surjective but not closed. The ideal
W, is not closed since W,#W3=K, the ideal of compact operator (see [14]).
To see W, is not closed for p>1, we apply (14, Prop. 1.6] to the diagram:

»l <«
lp flf Sl lq

Iy

for 1<p<r<q. The left arrow is the identity and the right arrow is the
inclusion, which belongs to W,.. If this operator ideal was closed, the

middle inclusion should also be in W ., which is not, since CPOWP=K and .

1.4. Proposition. Let 1<p<eo, then id (LljeW,.

Proof. Let (x,) be a bounded sequence in /. It admits a weakly
convergent sub-sequence (x,). Let x be its weak limit, and let us call
vi=x-x. If (y,) is norm null, we have finished. If not, and we have
ly,l2e>0 for some sub-sequence, applying the Bessaga-Pelczynski
selection principle, we obtain a new sub-sequence, equivalent to the
canonical basis (e,) of /,, which is weakly p*-summable.

An easy consequence is:

1.5. Proposition. ${1,..X)=K{(!,..X) if and only if id(X)e C,.
Moreover, an operator T belongs to C,(X,Y) if and only if for each

Jje<(l,.X) the composition Tej is compact. From this and the proof of
(2.5) we obtain

1.6. Proposition. If Te Wy(X,Y} then T*e C(Y*X*) for all r<p*.



46 Jesiis M.F. Castillo and Fernando Sdnchez

1.7. Corollary. Let 1<p<oo, id(l )e C, for all r<p*.

Remarks.

1. The progression expressed by (1.7) suddenly breaks down when
p<l, due to [17], where it is shown that a weakly-1-summable sequence
(x,) exists in each /,, p<1, for which |x,[|, —> +oe,

2. Regarding Proposition 1.5, this result is equivalently to Pitt’s
lemma: $0(/,,/)) = K(/,, ) if and only if p>q.

For L, spaces the situation is:

1.8. Proposition.

a) If 2<p<o then id(L JeW,.
b) If I<p<2 then id(L )e W ..

Proof. Part a) can be obtained by uvsing the Kadec-Pelczynski
alternative: every normalized weakly null sequence in L, has a sub-
sequence equivalent cither to the unit vector basis of /, or the unit vector
basis of 1.

Part b) follows from a standard duality argument. If (x,) i1s a
normalized weakly null sequence in L, and (x,) is a basic sub-sequence
of (x,), consider a bounded sequence (y,) of biorthogonal functionals in
L., and (again) the Kadec-Pelczynski alternative.

1.9. Examples. (See [21] for details). We shall abbreviate id(X)e C,
(resp. id(X)e W,) by saying XeC, (resp. Xe W)).

a) If 15p<eo, L€ C, for 1<r<p*, and [,e W,. for I<p<co (see (1.4) and
(L.7).
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b) If 1<p<eo, L ()€C, for r<min(2,p*). If 1<p<oo, L ()W, for
r=max(2,p*) (see (1.8) and (1.6)).

¢) Tsirelson’s space T is such that Te C, for all p#ee (see [7]).
d) Tsirelson’s dual space T* is such that T*e W, for all p>1 (see [7]).

e) Super-reflexive spaces belong to some class W, and, consequently,
to some class C, (see [6]).

f) If X,/,e W, then so does /(X) (see [8]).

It is well-known [12] that every operator T from C(K.X) to Y has a
finitely additive representing measure m of bounded semi-variation,
defined on the Borel o-field Z of K and with values in €(X,¥**}, in such
a way that

()= J:fdm, (fe C(K.X)).

If m:Bo(K) — L(X,Y) is a finitely additive measure, we shalil denote
by | m| its semi-variation. One says that | m| is continuous at @ if it has
a control mesasure: a countably additive positive measure A on Bo(K)
such that

lim |m|(A) = 0.
MAY->0

1.10. Proposition. When Te W(C(K X),Y), its associated representing
measure m is countably additive and verifies the following two conditions:

a) | m| is continuous at &, and
b) for each Ae Bo(K), m(A)e W(X,Y).

Thus, it seems natural to ask which properties pass from T to m and
viceversa.



48 Jesiis M.F. Castilio and Fernando Sdnche:z
2. OPERATORS AND MEASURES

By mimicry of the proofs made in [3], [4] and [20] for the cases
p=1,%0 one can easily obtain:

2.1. Proposition. Ler Te C(C(K.X),Y), and ler m its representing
measure. Then:

a) |m/| is continuous at O, and
b) for each A Bo(K), m(A)e C(X.Y).

Nevertheless, these two conditions a) and b) do not characterize C,
operators. In [1], there is shown an operator T from C({0,1],c;) to ¢,
which is not in C, but is such that its representing measure m has
continuous semi-variation at &, and m(A) is a compact operator for any
Borel set Ac{0,1].

2.2. Proposition. Let Te H(C(K . X),Y) have a representing measure
m satisfying:

a) | m| is continuous at & and admits a discrete control measure,
and
b) for each Ae Bo(K), m(A)e C(X.Y).

Then TeC(X,Y).

Since every Radon measure over a dispersed compact set is discrete
(see [16, &§2]), it follows that:

2.3. Corollary. If K is dispersed and Te H(C(K X),Y) is such that its
representing measure m satisfies:

a) |m| is continuous at @, and

b} for each Ae Bo(K), m(A)e C (X Y),
then TeC(X.Y).



Dunford-Pettis-like Properties of Continuous... 49
Corollary (2.3) asserts that (2.1) is an equivalence when K is
dispersed. We can also expect an equivalence when some condition is
imposed on X,
2.4. Proposition. Let 1<p<ec. The following are equivalent:
a) id(X)e C,.

b) Given any compact space K and any Banach space Y, an operator
Te C(C(K.X),Y} if and only if its representing measure satisfies

i) |m| is continuous at @, and

ii) for each A€ Bo(K), m{A)eC,.

Concerning the dual scale of weakly-p-compact operators, we have:

2.5. Lemma. Ler Te Y C(KX)Y) and p=I. The following are
equivalent (T is the restriction to B(X,X) of the operator T**):

a) Te W (C(K.X).Y), b) Te W, (B(ZX).Y), c) T**eW (C(K.X)** ).

Proof. Since Te W(A,B) if and only if T* (or any of its iterated duals)

is weak*-to-weak continuous, and the unit ball of A is weak*-dense in the
unit bail of A**, we have:

T*‘(BA,,) = Tﬁ"(B:G(A"‘A')) - .A
from which the result follows.

That immediately gives:

2.6. Proposition. Ler Te W, (C(K X),Y), p21. Its associated measure
verifies:
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a) | m| is continuous at &, and
b) for each Ae Bo(K), m(A)e W (X.Y).

The converse is not true; see the comments after (2.1).

3. DUNFORD-PETTIS-LIKE PROPERTIES

A Banach space X is said to have the Dunford-Pettis property if any
weakly compact operator T:X — Y transforms weakly compact sets of X
into norm compact sets of Y. This property can be described by means of
the inclusion W(X,Y)<B(X,Y)=C_(X,Y). We can weaken this requirement
in the following manner:

3.1. Definition. Let I <p<ec. We shall say that a Banach space X has
the Dunford-Pettis property of order p {(in short DPP,) if the inclusion
W(X,Y)cC (X,Y) holds for any Banach space Y.

Obviously DPP, implies DPP, when g<p. Also, DPP=DPP,, and
every Banach space has DPP,. It follows from the definition that if
id(X)e C, then X has DPP,, and that if id(X)e W, then X does not have
DPP, The following result contains analytical and geometrical
characterizations of the DPP,.

3.2. Proposition. For a given Banach space X, the following are
equivalent:
a) X has DPP, (1<p<eo}.

b) If (x,) is a weakly-p-summable sequence of X and (x.) is weakly
null in X* then (x,x,) — 0.

c) Every weakly compact operator T:X — Y transforms weakly-p-
compact sets of X into norm compact sets of Y.
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Proof. The proof of the equivalence between (a) and (b) is obtained
as in [21]. We prove the equivalence of (a) and (c).

(c)=(a): Consider T:X — Y a weakly compact operator, and (x,) a
weakly-p-summable sequence in X. We form the set:

-

conv ((x)) =13 Ax IR [P<L)

n=1

which we shall refer to as the p*-convex hull of (x,). Clearly, conv,.(x,),
the continuous image by the natural operator associated to (x,) of the unit
ball of /., is a weakly-p-compact set. Since TeC, and [eW,,
T(conv,(x,)) is compact, and (Tx,) is norm-nuil.

(a)=(c): If A is a weakly-p-compact set of X, then for each bounded
sequence (z,,) of A there is a point ze A, and a sub-sequence (z,), such that
(z,-z) is weakly-p-summable. We set (x,)=(z,-z), and apply to this

sequence the preceding argument, to conclude that (Tx,) admits a norm
null sub-sequence.

3.3. Examples. The following examples are immediate after (1.9). In
fact, these results give the optimum values of p.

a) C(K) and L, have the DPP, and therefore the DPP, for all p.

b) If 1<r<es, {, has the DPP, for p<r*.

¢) If I<r<eo, L (u) has the DPP, for p<min(2,r¥).

d) Tsirelson’s space T has DPP, for all p<e. However, since T is
reflexive, it does not have DPP.

e) Tsirelson’s dual space T* does not have DPP, for any p>1.

Coming back to continuous vector function spaces, we have:
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3.4. Proposition. If id(X)e C, then, for any compact K, C(K X} has
DPP,.

Preof. Let Te W(C(K X),Y). If (f)) is a weakly-p-summable sequence
in C(K,X), then for each te K, the sequence (f,(¢)) is also weakly-p-
summable in X, and thus it is norm null. The sequence (Tf,) is also null
by [5, Th. 2.1].

3.5. Corollary. Given any compact space K and 1<p<eo, C(K,L } has
DPP, for all r<p*; it does not have DPP ...

A "limit case" is provided by Tsirelson’s spaces (compare this result
with (3.13)):

3.6. Corollary. If T denotes Tsirelson's space then, given any
compact space K and [<p<e, C(K,T*) has DPP, but not DPP.

Now, we see what happens if we replace the condition "id(X)eC,"
by the weaker "X has the DPP.".

3.7. Example. Talagrand’s construction of a Banach space X having
DPP but such that C(K.X) does not have DPP (see [22]), can be modified
in such a form that we obtain Banach spaces T, (p>1) having DPP, and
such that C(K,T,) does not have DPP,. Talagrand’s original example
corresponds to T,

What can be said about C(K,X) when X simply has DPP,? The
following theory was developed in [4] and [2} for DPP.

3.8. Definition. An operator T:C(KX) — Y, whose associated
measure m has continuous semi-variation at @, is said to be almost-C »
if, for each weakly-p-summable sequence (x,) of X and each bounded
sequence (b,) of C(K), the sequence T(®.x,) converges to 0 in Y.
Obviously, C,-operators are almost-C,,.
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3.9. Theorem. The following are equivalent:
a) X has DPP,,

b) For each compact space K, every weakly compact operator
T:C(K.X) — Y is almost-C,,.

c) Every weakly compact operator T:C([0,1]1,X) — Y is almost-C,.
d) Every weakly compact operator T:C([0,1),X) = ¢, is almost-C,,.

(The proof is exactly as [2, Th. 5]).

3.10, Corollary ([10, [13]). Let 1<p<es, For a dispersed compact
space K, the following are equivalent.

a) C(K.X) has DPP,,.
b) X has DPP,.

Proof. Implication a)=b) follows from (3.9). Conversely, if
Te W(C(K X),Y) with representing measure m, for each Borel set ACK,
m{A)e W(X.Y)cCX.Y), since X has DPP, Applying (2.3), we obtain
TeC,.

Concemning the scales W, Diestel and Seifert proved in [11] that
weakly compact operators defined on C(K) spaces are Banach-Saks
operators. Recall that an operator Te $%(X.Y) is said to be Banach-Saks (in
short Te BS) if any bounded sequence (x,) of X admits a sub-sequence
(x,,} such that (7x,) has norm-convergent arithmetic means.

Nifiez [18] extended this result to C(K X) spaces showing that, when
X is super-reflexive, then weakly compact operators defined on C(K,X} are
Banach-Saks. In [9], it is shown a vector measure whose range is not a
weakly-p-compact set for any p. That example provides a weakly compact
operator T, defined on a certain C(K) space, which, for every p, does not
belong to W, showing that, in general, XeW, does not imply
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W(C(K.X),Y)CW (C(K.X),Y), and therefore, that in some sense, the result
of Diestel and Seifert cannot be improved,

Despite that negative result, when K is a dispersed compact space,
some positive results can be obtained:

3.11. Proposition. if Xe W, then W(c(X).Y)CW (c,(X).Y).

Proof. Let Te W(c,(X},Y) and iet (f,) be a bounded sequence in c,(X).
Let £>0. For each ne N, a number p, exists so that ||f,(k)|<e2™ for k2p,.

We write f,,=ﬁ,d+f,f, where
£, (p,~1),0,0,...)

and

£150.0,..0.£.(p).f,+1),..).

Since ILf,,dll—) 0, it is enough- to see that T(f"")) admits a weakly-p-
convergent sub-sequence. For each keN, there exists g, such that
wp((f,,’(k) —xk)nzqk)s?u (the constant A can be chosen uniformly [15]).

We determine inductively a sequence of indices (g,,,) as follows:

qs(m:"h and g, 2max{q; : kSp(gy,)}

so that p(q,.,.,)>P(qy), and consider the sub-sequence f,,'-=ﬁ1:“.

We now write ﬁf=sn +t where

1,5(0,0.0,....f,, )s-3 0, ).0.0,..0),

so that it is the continuous image of a block basic sequence constructed
against the canonical basis of ¢,. We see that, passing to a sub-sequence
if necessary, (Tt,) converges to 0.
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The sequence

z(ki=fifk)  if kSp(qyms)s
(z,) =
z,(kj=0 otherwise,

however, is the continuous image of (a part of) the summing basis
(e +...+e,), of ¢,

If we set x=(x,x,.x;,...)€l_(X), we see, passing again to a sub-
sequence if necessary, that |7z, -T**x|<2™",

Finally, if (§,) is a finite sequence in the unit ball of ., then
VZ.8,(Ts,-T**x)| £ X £,(Ts,-Tz,+Tz,-T**x)|
SITIIZE s,z + 1S AATY + 1,
thus finishing the proof.
Remark. If the choice of indices indicated in the proof is not
possible because the sequence (p,) does not go to infinity, then we would
be working in a finite product space X"; if it is because the sequence of

q, stops at g, then we shall follow the same reasoning as in the last part
with the sub-sequence, f,, f,.,, ...

3.12. Theorem. Let K be a dispersed compact space and Xe W,
Then:
W(C(KX) Y)W (C(KX).Y).
Proof. Let Te W(C(K,X),Y} and let (f,) be a bounded sequence in

C(K X). By a standard argument we can assume K to be countable,
K={1t,,....}. Since m (the associated measure of T) has continuous semi-
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variation at &, a p, exists for each ne N such that, if we set B,={z;: j2k},
then |m| (B,)<2”".

. d f d i .
Once more we write f =f, +f, where f,’ converges to 0 and f, is

eventually zero. Since f, is a bounded sequence in a space isomorphic to
some c,(N,X), the proof of (3.11) applies.

3.13. Corollary. If K is a dispersed compact space and T* denotes
Tsirelson’s dual space, then W(C(K,T*),Y)CW (C(K.T*),Y) for ail p>1.

A sufficient condition on X which guarantees the inclusion
W(C(KX).Y) c W,(C(K.X)Y) is given by:

3.14, Theorem. If X does not contain c, finitely represented, then

W(C(K)X) © Wy(C(K) X).

Proof. If X does not contain ¢, finitely represented, then there is a
p>1 such that £(C(K).X)} = W(C(K).X) C TL(C(K)},X) by [19]. But each p-
surnming operator sub-factorizes through an L -space, which gives Il ,cCW,

when p=2, and thus for all p.

The hypothesis is not necessary: just consider Tsirelson’s space T*.

4. FINAL REMARKS AND FURTHER QUESTIONS
Results (3.12) and (3.14) suggest the following problems:

Problem K. Characterize the compacts K such that for any Banach
space X

W(C(K) X}  Wo(C(K).X).

Problem X. Characterize those Banach spaces X such that for any
compact K
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W(C(K).X) < WH{C(K).X).

Notice that the hypothesis of (3.14) is not necessary: if K is
dispersed, then W(C(K,T*),Y) c W (C(K,T*),Y) for all p>1 and T* is not,
for any p<ee, of cotype p.

An application could be the following conjecture, essentially due to
Drewnowski: Is it true that L(},.X)=K({,.X) < 2L _X)=K(_X)? One
implication is clear. To see the other, notice that XeC, and $(/,.X)=
K(l,,X) are equivalent. Since C,°W,=K, and since Xe C, implies 9( ,X)= .
W(_,X), the question is whether a) Banach spaces Xe(, satisfy
affirmatively Problem X, or b) the Stone-Cech compactification of N, BN,
satisfies affirmatively Problem K.

Another unsolved question about the relationships between T and m
is the following: Is it true that if X is a dispersed compact, and, for every
Borel set A, the operator m(A)e W, then Te W ?

The example in [9] mentioned before (3.11) shows that the
hypothesis "K dispersed’ cannot be removed.

Besides this, Nufiez proved in (18] that if T:C(K.X) — Y, K is
dispersed and, for every Borel set A, the operator m(A)e BS, then Te BS.
The connection with Niifiez’s result is the following:

Obviously property W, implies the Banach-Saks property. Moreover,
for p>1, the p-Banach-Saks property is defined as follows: A Banach
space X is said to have the p-Banach-Saks property when each bounded
sequence (x,) admits a sub-sequence (x,) and a point x such that (x,-x) is
a p-Banach-Saks sequence, i.e., satisfies an estimate of the form

n
I3 x,I<Cn
k=1

for some constant C>0 and all neN. It is also clear that property W,
implies the p*-Banach-Saks property. In [6] can be seen a proof that,
conversely, the p*-Banach-Saks property implies, for all r>p, the property
W,. Therefore, what this question is looking for is the extension of
Nuiiez’s result to the scale of p-Banach-Saks properties.
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