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ABSTRACT. In this paper, dic structure of sorne operator ideals A deftned on continuous
ftrnction spaces is studied. Conditions are considered under which “Te A ami ‘dic representing
measure of T takes values in X are equivalent for tite scaíes of p-converging (C,,) azul weakly-
p-compacr (1V,,) operatora. The scale (2,, is intermediate between the ideala C,=U
(unconditionally sununing operators), and C.,wB (completely continuous operators), which have
been studied by several authors (Bombal, Cembranos, Rodríguez-Salinas, Saab). The dual
scale 1V,, is intermediate between dic ideals K(cornpact operators) and VsQ~=W (weakly compact
operators), and dic results presented have a close connection with those of Diestel, Núfiez and

Seifert.

1. PRELIMINARIES

In this paper, B(Z,X) denotes die space of alí bounded X-valued E-
measurable functions; if I~~=oo,p* denotes tIte conjugate number of p;
it p=I, li,. plays tIte role of c0.

1.1. Definition. A sequence (¿vr,) in a Banacit space 7< Ls said to be
wealdy-p-summable (J=p=oo) ti (x*xjel~for ah x*EX*, or equivalencly,
zf citere is a constant C>O such titat
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fl k1

for any sequence <t)e 4,~. Wc sitail denote by w~((x,,t) tite infimum of
titose constanís C.

We sitail say íitaí (x~) is weakly-p-convergení to xeX ¿1 (x~-x) Ls
weakly-p-sumniablc. Wealdy-oo-convergent sequences are simply tite
weakly convergent sequences.

1.2. Definition. Leí 1=p=oo.An operator Te ~(X,Y) is said to be p-
convergení ¿fil íransfornis weakly-p-summab¡e sequences into norm nuil
sequences. We sitail denote by C,, tite class of p-convergent operators.

WIten p=co this definition gives tIte ideal B of completely continuous
operators, tItat is to say, those transforming weakly nulí sequences into
norm nulí sequences. WIten p=l, it is easy to verify that C1=U, tIte ideal
of unconditionally summing operators, i.e., those transforrning weakly-]-
summable sequences into summable ones. Obviously CqCCp when p.cq.

TIte scale of (3,, ideals are intermediate between tIte ideals B and U.
It is clear (from tIte definition) that (3,, are iftjective operator ideals, and,
since any separable Banach space is a quotient of /,, tItey are not
surjective. On tIte otIter Itand, it is easy to see ¡bat C,, is closed: leL (T0)
be a sequence of p-converging operators with limit (in tIte operator norm)
T. II (y0) is a weakly p-summable sequence and s>O, tIten ¡PTx0I¡=EI¡x,jI+
~T¿0Ij=2Eaid (Tx0) is norm nulí.

1.3. Definition. A bounded set K in a Banacit space is said lo be
relairively weakly-p-compacz’ (J=p=oo) ¿f every sequence iii 1< itas a
weakly-p-convergent sub-sequence. An operator Te ~f<’X,Y)is said lo be
weakly-p-cornpact, I=p=c’o,if T(B~) is relatively weakly-p-compací. Wc
sirnil denote by Vil, tite ideal of weakly-p-compact operators.

me w,, operators are meant te be a gradations of tIte class of weakly
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compact operators. It is clear that W..=W (weakly compact operators), aid
it is easy to see tItat id(X)e W1 if and only if 7< is finite dimensional.
Obviously W,,cW0 when p<q.

TIte ideals W~ are injective aid surjective but not closed. TIte ideal
W1 is not closed since W1!=W~=K,tIte ideal of cornpact operator (see [14]).
To see 1V,, is not closed forp>1. we apply [14, Prop. 1.6] to tIte diagram:

lq

p

for 1 .cpcr<q. The left arrow is tIte identity aid ¡be right arrow is tIte
inclusion, which belongs to Wq*. If diis operator ideal was closed, ¡be
middle inclusion sItould also be ir> W~.. wIticIt is not, since C,,oW,,=K and

1.4. Proposition. Leí lccpcoo, titen íd (l,,)c Wr.

Proof. Let (xv) be a bounded sequence in 1,,. It admits a weakly
convergent sub-sequence (xi). Let x be its weak limit, and let us cali
Yk=Xk~X. If (y~) is norm nulí, we Itave finished. If not, aid we Itave
IIy~II=E>O for sorne sub-sequence, applying die Bessaga-Pelczynski
selection principIe, we obtain a new sub-sequence, equivalent to tIte
canonical basis (ea) of 1,,, wIticIt is weakly p*summable.

An easy consequence is:

1.5. Proposition. 9Y4.S)=K(l~,~.X) cf aud only cf id<’X$ (3,,.

Moreover, an operator T belongs to C,,(X,Y) if aid only if for eacIt
je ~(l,,,X) tIte composition Toj is cornpact. Frorn ¡bis and the proof of
(2.5) we obtain

1.6. Proposition. « Te W,,<’X,Y) riten re C/Y*,X*) for alt r~cp*.
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1.7. Corollary. Itt l’cp.coo, id(14e Gr for ah r<zp*.

Remarks.

1. TIte progression expressed by (1.7) suddenly breaks down wIten
pczl, due to [17], where it is shown tItat a weakly-1-summable sequence
(x0) exists in eacIt 1,,, pci, for which ¡Ix~h,, —* +00.

2. Regarding Proposition 1.5, ¡bis result is equivalently to Pitt’s
lemrna: ~(l,,~Iq)= K(l,,¿) if aid only if p>q.

For L,, spaces tIte situation is:

1.8. Proposition.

a) 1f2=p.cootiten id(L»e VV2.
b) ¡fi “cp<2 riten id<L>e W,,~.

Proof. Pan a) can be oblained by using tIte Kadec-Pelczynski
alternative: every nonnalized weakly nuil sequence in L,, has a sub-
sequence equivalent either to tIte unit vector basis of 1,, or tIte unit Vector
basis of ‘2~

Pan b) follows from a standard duality argument. If (x~) is a
normalized weakly nuIl sequence in L,, and (xk) is a basic sub-sequence
of (x~), consider a bounded sequence (y) of biorthogonal functionals ir>

and (again) tIte Kadec-Pelczynski altemative.

1.9. Exainples. (See [21] for detajís). We sItalí abbreviate id(X)e (3,,
(resp. id(X)e W,,) by saying J<e (3,, (resp. Xc VV,,).

a) If l=p«zoo,
1t~r for 1=r<p*,andl

1,eW,,,for I<p.coo (see (1.4) aid
(1.7)).
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b) If l$rcoo, L,,(u» (3, for rcmin(2,p*). If 1cpc~o, L4uW 1V,. for

r=max(2,p*) (see (1.8) and (1.6)).

c) Tsirelson’s space T is sueIt that TeC,, for alí p!=oo(see [7]).

d) Tsirelson’s dual space T* is such that T~te VV,, for allp>1 (see [7]).

e) Super-reflexive spaces belong to sorne class VV,, aid, consequently,
to sorne class G~ (see [6]).

f) íf X,4e VV,, tIten so does 4(X) (see [8]).

It is well-known [12] ¡bat every operator T from G(K,X) to Y Itas a
finite]y additive representing measure m of bounded serni-variation,
defined on tIte ford a-field E of K and witIt values in ~E(X,Y**),in such
a way ¡bat

T(fl=Jjilm, (fe G(K,X)).

If m:Ro(K) -4 ~(X,19is a finitely additive measure, we shall denote
by its semi-Variation. One says ¡bat 1 m is continuous at 0 if it has
a control mesasure: a countably additive positive measure on Bo(K)
sucIt ¡bat

hm mI(A) = 0.

1.10. Proposition. When Te W~”G<’K,X),Y), lIs associated representing
measure ni is countably additive and verifies titefollowing two condicions:

a) ni Ls concinuous al 0, and
b) for each Ae Bo(K), m<A)e W(X,Y).

TItus, it seerns natural to ask which properties pass from T to ni aid
viceversa.
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2. OPERATORS AND MEASURES

By mirnicry of tIte proofs made in [3],
p=l,oo one can easily obtain:

21. Proposition. Let Te C,,(C(KJX),Y>,
measure. Titen:

[4] aid [20] for tIte cases

and ter nt its representing

a) ni is concinuous al 0, and
b) for eacit Ae Bo(K), cn(A)e GJ/X,Y).

NevertIteless, diese two conditions a) aid b) do not cItaracterize (3,,
operators. Iii [lii, there is shown aix operatOT T from GUO,h],c0> to c0
wIticb is not in G~ but is sucIt that its representing measure ni Itas
continuous seml-variation at 0, and ni(A) is a compact operator for any
Borel set Ac[O,1].

2.2. Proposition. Ler Te 4G<K,X),Y) itave a representing measure
ni satisfying:

a) ni is coníinuous at 0 and admirs a discrete control measure,
and

b) for eacit AeBo<’K), m(A)e G,,(X,Y).

Titen TeG,,(X,Y).

Since every Radon measure over a dispersed compact set is discrete

(see [16, §2]), it follows tItat:

2.3. Corollary. IfK is dispersed and Te ~‘(C(K,X),Y) is sucit that its
represeníing measure ni satisfies:

a) m Ls continuous al 0, and
b) for eacit Ae Ro(K), m(A)e GJ/X,Y),

titen Te GJ/K,Y).
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Corollary (2.3) asserts tItat (2.1) is mi equivalence wIten 1< is
dispersed. Wc can also expect aix equivalence wIten sorne condition is
imposed on X.

2.4. Proposition. Let J=p=oo.Tite fohlowing are equivalent:

a) id(X)e (3,,.

b) Given any comnpact space K and any Banacit space Y, an operacor
Te G,,(C(K,XLY) ¡f and only ¡f ics representing measure satisfies

i) m is continuous a: 0, aniS

u) for eacit Ae Bo<K), m(A)e (3,,.

Concerning the dual scale of wealdy-p-cornpact operators, we have:

2.5. Lemma. Leí Te ~‘(G(K,X),Y) and p=J.Tite fohlowing are
equivalení (É is tIte restriction to B(E,X) of tIte operator 7~lc*):

a) TeW,,(G(K,X),Y). b) Te W,,(B(S,X),Y), c) T**E W,,(G(K,X)**,Y).

Proof. Since Te W(A,B) if and only if r” (or any ofits iterated duals)
is weak*~to~weak continuous, aid tIte unit bali ofA is weak*~dense in tIte
unit batí of A**, we Itave:

T*ó(BA..) = Tfl(B$A A» c T(B~3

from whicIt tIte result follows.

That immediately gives:

2.6. Proposition. Leí Te VV,, (G(KX),Y), p=J.lis associated measure
verifies:
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a) ni 1 is continuozes al 0, and
b) for eacit AE Bo(K), m(Ak W,,(X,Y).

TIte converse is not true; see tIte comments after (2.1)..

3. DUNFORD-PETTIS-LIKE PROPERTIES

A BaiacIt space X is said to Itave tIte Dunford-Peltis property if any
weakly compact operator T:X —> Y transforms weakly cornpact sets of 7<
into norm cornpact sets of Y. TItis property can be described by means of
tIte inclusion W(X,Y)cB(X,Y)=CJX,Y). We can weaken tItis requirement
in tIte following manner:

3.1. Definition. Leí J=p=oo.We sitalí say titat a Banacit space X itas
tite Dunford-Pettis property of order p (in sitorí DPP,,) ~ftite inclusion
W(X,Y)cG,,(X,Y) itolds for any Banacit space Y?

Obviously DPP,, implies DPPq wIten q<p. Also, DPP=DP& and
every BanacIt space Itas DPP1. It follows frorn tIte definition tItat if
id(X)e (3,, ¡ben 7< Itas DPP,,, and tItat if id(X)e VV,, tIten X does not Itave
DJ’P,,. TIte following result contains analytical and geometrical
cItaracterizations of ¡be DPP,,.

3.2. Proposition. For a given Banacit space X, tite following are
equivalení:

a) X itas DPP,, (J=p=oo).

b) ¡f (x0) Ls a weakly-p-summable sequence ofX and (4) Ls weakly
nuhl in 7<~ liten (4x~) —*0.

c) Every wealdy compací operalor T:X -4 Y transfonns weakly-p-
compact seis of X mío non compací seis of Y.
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Proof. The proof of the equivalence between (a) and (b) is obtained
as in [21]. Wc prove the equivalence of (a) and (c).

(c)~(a): Consider TX —* Y a weakly compact operator, and (xc) a
weakly-p-summable sequence in X. We form the set:

conv «x)) = ~jjXx : X~ j” =1
n1

which we shali refer to as dic p*~convex huí? of (xj. Clear¡y, eonv~~(x~).
the continuous image by the natural operator associated to (xv) of dic unit
bali of is a weakly-p-compact set. Since Te and ¡~eWc.,
T(conv~dx~)) is compact, and (Tx~) is norin-nuil.

(a)~(c): IfA is a weakly-p-compact set of X, then for each bounded
sequence (z»,) ofA there is a point zeA, and a sub-sequence (za), such that
(z~-z) is weakly-p-summable. We set (x~)=(z~-z), and app¡y to this
sequence the preceding argument. to conclude that (Tx~) admits a nonn
nuil sub-sequence.

3.3. Examples. The following examples are immediate after (1.9). In

fact, diese results give the optimum values of p.

a) C(K) and L1 have dic DF?, and therefore dic DPP~ for aH fi.

b) If 1<r<oo, 4 has the DPP~ for p<r*.

e) If lcr<oo, Lr(JU) has the DF?,, for pcmin(2.r*).

d) Tsirelson’s space T has DF?,, for ah pcoo. However, since T is

reflexive, it does not have DF?.

e) Tsirelson’s dual space T~’< does not have DF?,, for anyp>1.

Coming back to continuous vector function spaces, we have:
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3.4. Proposition. If id(X)e 12,, ¿lien, for any compact K, C(K,X) has
DPP,,.

Proof. Let TeW(C(K,X),Y). If (fa) is a weakly-p-summable sequence
in C(K,X), then for each te K, the sequence (f¿t» is also weakly-p-
summable lii X, and thus it is nonn ¡mli. The sequence (Tf~) is also nuil
by [5, Th. 2.1].

3.5. Corollary. Given any compact space K and 1.cp<oo, C(K,l,,) has
DFFrfor alt rcp*; it does not have DF?,,~.

A “limit case” is provided by Tsirelson’s spaces (compare this result
with (3.13)):

3.6. Corollary. ¡f T denotes Tsirelson’s space then, given any
compact space K and l<p<oo, C(K,T’fl has DPI’,, but not DF?.

Now, wc see what happens if we replace the condition “id(X)e C,,”
by the weaker “X has the DPI’,,”.

3.7. Example. Talagrand’s construction of a Banach space X having
DF? but such that C(K,X) does not ¡¡ave DPI’ (see [22]),can be modified
in sueh a form that we obtain Banacb spaces T,, (rt’l) having DPI’, and
such that C(K,T,,) does not have DFF,,. Talagrand’s original example
corresponds to ~‘2•

What can be said about C(K,X) when X simply has DPP~? ‘1’he
following theory was developed in [4] and [21for DF?.

3.8. Definition. An operator T:C(K,X) —+ Y, whose associated
measure m has coníinuous semi-variation at 0, is said w be almost-C,,
if for each weakly-p-swnmable sequence (xv) of X and each bounded
sequence (~,,) of C<’K), the sequence T(@,,x~) converges to O in Y.
Obviously, C~-operators are almost-C,,.
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3.9. Theorein. The following are equivalen::

a) X has DF?~.

b) Por each compac: space K, every weakly conzpac: operator

T:C<K,X) —4 Y is almosr-C~.
e) Every weakly cornpac: operator T:C([O,1],X) —~ y is almost-C,,.

d) Every weakly compact operator T:C([O,1],X) —4 e,, is a¡most-C~.

(The proof is exactly as [2, Th. 5]).

3.10. Corollary ([10, [13]). Le: l=p=oo.For a dispersed compact
space K, the following are equivalen::

a) C(K,X) has DF?,,.
b) X has DF?,,.

Proof. Implication a)~b) follows from (3.9). Carxversely, if
Te W(C<’K,X),Y) with representing measure m, for each Dore) set AcK.
m(A)e W(X,Y)cC/X,Y), since X has DF?,,. Applying (2.3), we obtain
Te 12,,.

Conceming the scales 14’,,, Diestel and Seifert proved iii [11] that
weakly compact operators defined on 12(K) spaces are Banach-Saks
operators. Recail diat an operator Te~«X,Y) is said to be Banach-Saks (in
short Te BS) if any baunded sequence (x~) of X admits a sub-sequence
(Xm) such that (Txm) has norm-convergent arithnietic means.

Núñez [18]extended this result to C(K,X) spaces showing that, when
X is super-reflexive, then weakly compactoperators defrned on C<K,X) are
Banach-Saks. In [9], it is shown a vector measure whose range is not a
weak]y-p-compact set for any p. That exampleprovides a weakly compact
operator T, defined on a certain C(K) space, which, for every p, does not
belong to 1V,,, showing that, in general, Xc W,, does ¡mt imply
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W(C(K,X),Y)cW,,<C<K,X),Y), and dierefore, that in sorne sense, the result
of Diestel and Seifert cannot be improved.

Despite that negative result, when K is a dispersed compact space,
sorne positive results can be obtained:

3.11. Proposition. !fXe 1V,, ihen W(c,IX).Y)CW,,(c/X),Y).

Proof. Let Te W¿’c0(X),Y) and let q~) be a bounded sequence in c0(X).
Let g>O. For each nc N, a number p~ exists so that I[f~(k)II=s2-~ for k=p~.

Wc write L=f: ~f, where

and
0,f(p),f ±1),...).

Since ¡¡t,dII -40, it is enough to see that T(f’)) adrnits a weakly-p-
convergent sub-sequence. For each ke N, there exists q~ such that
w((f](k)-xk)Q=% (the constant % can be chosen uniformly [15]).

Wc determine inductively a sequence of indices (q5<~>) as follows:

and q3(~.J)=nax<q~:

so that p(q5<fl+,)>p(q~(fl)), and consider the sub-sequence f,,’=f~.

Wc now write f,,’=s+t where

so that it is the continuous image of a block basic sequence constructed
against dxc canonical basis of e0. Wc see that, passing to a sub-sequence
if necessary, (Tt~) converges to O.
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The sequence

(za) = ~ zn(k)=fnOC) if kSp(q~(,,J,),

1 jk)=O otherwise,

however, is dic continuous image of (a pan of) dic surnrning basis
(e1+...+e~)~ of c0.

If we set x=(x1.12,x )e IJX), we see, passing again to a sub-
sequence if necessary, that l[Tz~~T~~*xIk=2n.

Finally, if (F,) is a finite sequence lii the unit bali of 1,,., then

IX~~~(Ts~T**x) 1k =IIZnEan(TSn~TZn+TZn~T~~C*X) 1k

=ifTIhIII~~js~-z~)h + 1 =kIIT~ + 1,

thus frnishing the proof.

Remark. If the choice of indices indicated in the proaf is not
possiblc because die sequence (pa) does not go to infinity, then we would
be working in a finite product space X~; if it is because the sequence of
q~ stops at q. then we shall follow the same reasoning as in tite last part
with the sub-sequence, fq’ fq+

3.12. Theorem. Le: K be a dispersed compac: space and Xe 3V,,.
Then:

W(C(K,X),Y)cW,,(C(K,X),Y).

Proof. Let Te W(C(K,X),Y) and let (fa) be a bonoded sequence in
C(K,X,). By a standard argument we can assume K to be countable,
K={t1,t2~..). Since m (the associated measure of 27) has continunus serni-
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variation at 0, a p~ exists for cadi ne N sucí that, if we set Be ¡ y
Ihen 1 m 1 (B,,)=2~.

Once more we write f~=fi;’-vfi; where ~‘ converges to O and fi; is
eventually zero. Since f,’ is a bounded sequence iii a space isornorpile to
sorne c4N,X), tie proof of (3.11) applies.

3.13. Corollary. If K is a dispersed conipac: space and T* denotes
Tsirelson’s dual space, ¿lien W(12(K,T*),Y)CW,,(C(KXt),Y)for ah p>l.

A sufficient condition on X which guarantees dxc inclusion
W(C<K,XLY) a W,,<C<K,XtY) is given by:

3.14. Theorem. If X does not contain c0 finitely represented, ¿lien

W(C(K)X) a W2(C(K)X).

Proof. If X does not contain e0 frnitely represented, tien tiere is a
p>.l sucí that ~(C(K),X) = W(C(KLX) a rI,,(C(K)X) by [19]. Rut eaehp-
sumrning operator sub-factorizes through an L,,-space, which gives fl,,aW2
when p=2,and Uws for ah p.

Tie hypothesis is not necessary: just consider Tsirelson’s space PC.

4. FINAL REMARKS AND FURTHER QUESTIONS

Results (3.12) and (3.14) suggcst the following problerns:

Problem K. Characterize ihe compacts K such that for any Banach
space X

W<’C(K),X) c WJC(K)X).

Problem X. Characterize those Banach spaces X such that for any
compact K
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W(C<’KÉX) c WJC<’K),X).

Notice that the hypothesis of (3.14) is not necessary: if K is
dispersed, then W(C(K,PC),Y) a W,,(C(K,PC),Y) for alt p>l and PC is not,
for any p.cc’o, of cotype p.

An application could be die following conjecture, essentially due to
Drewnowski: Is it true that ~(l2,X)=K(l2X)~ Sf(LX)=K(LX)? One
implication is clear. To see the odier, notice that Xc 122 and ~2(l2,X)=
KQ»X) are equivalent. Since C2oW2=K, and since Xc C2 implies ~(L.,X)=
W(4~,X), the question is whether a) Banach spaces Xc 122 satisfy
affirrnatively Problem X, or b) the Stone-Éech compactification of N, 13W,
satisfies affirmative]y Prob]em 1<.

Another unsolved question about thc relationships between T and m
is dic following: is it true that ifK is a dispersed compact, and, for every
Borel set A, the operator m(A)e 1V>,, then Te

The example in [9] mentioned before (3.11) shows that the
hypothesis “K dispersed” cannot be removed.

Resides this, Núñez proved in [18] that if T:C(K,X) —* Y, K is
dispersed and, for every Borel set A, the operator m(A)eBS, dien TeBS.
Tie connection with Núñez’s result is the following:

Obviously propcrty W,, implies the Banach-Saks propcrty. Moreover,
for p>l, the p-Ranach-Saks property is defined as follows: A Banach
space X is said to have the p-Banach-Saks property when each bounded
sequence (Xm) admits a sub-sequence (x~) and a point x such diat (x~-x) is
a p-Banach-Saks sequence, i.e., satisfies an estimate of the form

‘1

lE X,j¡=Cfl ‘y”
k1

for sorne constant 12>0 and ah nc N. It is also clear diat property 1V,,
implies the p*~Banach~Saks property. In [6] can be seen a proof that,
conversely, tic p*.BanachSaks property implies, for aJ] r>p, the property
W~. Therefore, what this question is looking for is the extension of
Núñez’s result to the seale of p-Banach-Saks properties.
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