REVISTA MATEMATICA de la
Universidad Complutense de Madrid

Volumen 4, niimeros 2 y 3 1991,
http://dx.doi.org/10.5209/rev_REMA.1991.v4.n2.17950

A Criterion for the Minimal Closedness of
the Lie Subalgebra Corresponding to a
Connected Nonclosed Lie Subgroup

JAN KUBARSKI

ABSTRACT. A Lic subalgebra k of a Lic algebra g is satd to be minimally closed
(after A. Malcev [117) if the corresponding connected Lic subgroup is closed in the
simply connected Lie group determined by g. The aim of this paper is to prove the
following theorem:

Let HC G be any connected (not necessarily closed) Lie subgroup of a Lie group
G. Denote by h. & and g the Lie algebras of H, of its closure H and of G. respectively.
If there exisis a Lie subalgebra cCg such that (a) c+h=g. (b) enk=h, then k is
minimalty closed.

As a corollary we obtain that if m (G} is finite, then no such a Lic subalgebra ¢
exists provided that H is nonclosed.

The proofl is carried out on the ground of the theory of Lie algebroids and by using
some ideas from the theory of transversally complete foliations,

0. INTRODUCTION

A) Let ¢ be any connected Lie group. Assume that HC G is any of its

connected and nonclosed Lie subgroups. Denote by h, k. g the Lie algebras of
H, of its closure H and ol G, respectively.

0.1. Problem. Does there exist a Lie subalgebra ¢Cg such that (a)
cth=g. {(b)cnh=h?

In work [7], some topological obstructions ol the existence of such a Lie
algebra ¢ were found. Namely, the following theorem was proved.
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0.2. Theorem. [If the following homomaorphism of algebras
— — hl’ —
VW — (VR*)— Hy (G/H) (1)

(where hpis the Chern-Weil homomorphism of the H-principal fibre bundle
P=(G-—G/H)}is nontrivial, then such a Lie subalgebra ¢ does not exist. m

Next, it was noticed that the case of 4 compact and semisimple Lie group
is a case for which homomorphism (1) is always nontrivial. As a corollary we
have.

0.3. Theorem. IfGisacompact and semisimple Lie group, then no Lie
subalgebra ¢ fulfilling (1) and (b) above exists. m

We add that (1) appears as the Chern-Wetl homomorphism of the Lie
algebroid of the TC-foliation 27 ={gH; g= G} of left cosets of G by H,
determined by the author [7], [8].

B) In the present paper, a Lie algebroid of a connected (not necessarily
" closed) Lie subgroup H of a given Lic group G is constructed precisely. 1t can
be noticed that it is the same as the one constructed in the theory of P. Molino
[12] for the corresponding TC-foliation . of left cosets. Next, we get to the
core of the structure of this Lie algebroid and prove some strengthening of
theorem 0.3 (by weakening the assumptions to the finiteness of m (G))
without using any characteristic classes. This fact is obtained as a corollary
from the theorem saying that:

0.4. Theorem. The existence of a Lie subalgebra ¢ fulfilling (a) and (b)
above implies the minimal closedness of k (in the sense of Malcev[11]).m

1. PRELIMINARIES

We give a few elementary {acts concerning the theory of Lie algebroids;
needed in the sequel. We assume that in our paper all the manifolds
considered are of (™-class and Hausdoerlf. By (M) we denote the ring of
™ {unctions on a manifold M, by X (M) the Lie algebra of ¢~ vector fields
on M, and by SecA the Qo(M)-module of all C global cross-sections of a
given vector bundle A (over M). ,

1.1. Definition [[5], [16]. By a transitive Lie algebroid on a manifold M
we mean a System

A=A v (2)



A Criterion for the Minimal Closedness of the Lie Subalgebra Corresponding... 161

consisting of a vector bundle A4 (over M) and mappings
M-.- I SecAxSecA—=Secd, v: A—TM,
such that
(i) (SecA, [[-.-1) is an R-Lie alge’bré,

(i vy, called by K. Mackenzie [9] an anchor, is an epimorphism of
vector bundles,

(it} Secy: SeeA—X (M), §—yé, is a homomorphism of Lie alge-
bras,

(v) L& Snll = F-LE 0D+ (veé) (N)-n for feQo (M), £ ne SecA.

g: = Kerv 15 a vector bundle and the short exact sequence
Y 4
O—ge—A-TM—O0 {3)

is called an Atiyah sequence of (2); in each vector space g.= Kery|,, xe M,
some Lie algebra structurc is defined by

[v.wl =[&n]l(x), &£neSecd, E(x)=v, n(x)=w. v, weg.,.

g, 1s called the isotropy Lie algebra of (2) at x. g is a Lie algebra bundle {2].
[5]. [&]. [9] called (after Mackenzic) the adjoint of (2).

Let (2) and (A", [[-,- T ¥} be two transitive Lie algebroids on the same
manilold M. By a strong homomorphism

Ho (AT v ) —(A LT y) (4)

between them [4], [10, p. 273] we mean a strong homomorphism of vector
bundles H: A"— A, such that

(1) veH=v"

(i) SecH: SecA'—SecA, E— Ho£&, 1s a homomorphism of Lie alge-,
bras.

Il homomorphism (4) is a bijection. then A~ is also a homomorphism of
Lie algebroids; then H is called an isomearphism of Lie algebroids.
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1.2. Example. By a wivial Lie algebroid [14] we mean any algebroid
isomorphic to (TMxg, [[-.-1, pr)) where g is a finitely dimensional Lie
algebra and the bracket [[ ... Jj is defined by

(X 0). (Y. DI=(X Y] “n—"vo+lo,n)),

X, YeX{(M), o,m: M—g ([o,m] is defined point by point:
Lo, n}(x}=[a{x) n(x)], x€ M).

1.3. Example (Sce (5], [6]. [9]). By the Lie algebroid A(P) of a
principal fibre bundle P=(P, w, M, G,.) we mean a transitive Lie algebroid
on M (A(P). [[-,-]].¥) in which A(P)=TP/G, v([v])==_(v) where [v]
denotes the equivalence class of v, and the bracket [£,n]]. €, nESecA(P), is
constructed on the basis of the following observation: For each cross-section
n€ SecA(P), there exists exactly one C right-invariant vector field '€ XR (P)
such that [7(z2)]=mn(mz), and the mapping SecA(P)— XR(P), n—x', is an
isomorphism of 0Q°(M)—modules. The bracket [[£, 7]l is a cross-section of
A(P) such that [[€, 5] =[¥, n'].

The Lie algebroid of a trivial principal fibre bundle P= Mx G is cano-
nically isomorphic to the trivial Lie algebroid 4 = TMxg. g is the right Lie
algebra of G, via

A(P)=T(MxG)/G=TMx(TG]G)3(v, [w])— (v, OR(w))& TMxg;
& denotes the canonical right-invariant 1-form on G [5), [6).

A transitive Lic algebroid strongly isomorphic to A (P) for some principal
fibre bundle is called inregrable [9]. There exist non-integrable Lie algebroids
discovered by R. Almeida and P. Molino [I]. Lie algebroids of some TC-
foliations are non-integrable, for example, the Lie algebroid of the foliation
of left cosets ol any connceted and simply connected Lie group by a
connecied nonclosed Lie subgroup has this property.

1.4. Definition. By a connection in transitive Lie algebroid (2), sec [5],
[9] [15], we mean a homomorphism of vector bundles A: TAf —- A such that
Y oA =idpy, 1€, a splitting of Atiyah sequence (3) of A

Y
O—pge—wAd=TM—O0.
A
By a curvature tensor of a connection X in (2} we shall mean a tensor

0,0 (M;g) (= SecAl T* Mg g) defined by

O, (X, Y)=AX, YI—[AX, A YT, X, YEX(M).
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A also determines a covariant derivative V in g by
Vio=[AX. 0]l XeX(M), ocSecg,

See (5], 9]

It turns out that the Lie algebra structure in SecA is uniquely determined
by g, ¥, {1 and A, namely, we have

1.5. Theorem [5], [9). The mapping o: TMBg—A, (v, w)— hv-tw,
is an isomorphism of Lie algebroids provided that in TM& g the /o!lowmg Lie
algebroid structure is defined:

(a) the bracket:

[(X. o), (I=(X. Y],— (X, N+ n—Vyo+[o.n]). X YeX(M),
o, n€Secg ([o.n] is defined point by point: [a,n] (x)=[o (x). 7(x)], x€ M).

(b) the anchor: y=pr;: TMGg—TM. »

2. THE LIE ALGEBROID OF A CONNECTED (NOT
NECESSARILY CLOSED) LIE SUBGROUP

[.et G be any connected lLie group and HC G any connected (not
necessarily closed) Lie subgroup of G. H determines the foliation » ={gH:
g€ G} of lelt cosets of G by H. % is a transversally complete foliation [12],
[13] because right-invariant vector fields are from the normalizer of X ()
and generate the entire tangent space 7,G [or any g€ G.

Denote by £ the tangent bundle to # and Q= TG/ E- G the transversal
bundle of .. Let
o TG—Q

be the canonical projection and let v, ve TG, denote the vector a(v).
R,: TG— TG stands for the differential of the right translation by £ G.

2.1. Lemma. (i) R, t€H (H is the closure of H), maps E into E
inducing the isomorphism of vector bundles R Q—Q, v +—R, (v).

(i) The mapping R: OXH — Q, (¥, 1) v R, (V). is a right sirong!:vﬁ'ee
action.
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Proof. Easy calculations, m

As a corollary we obtain

2.2, The topological space A (G: H) of orbits of the action R, i.e.

A(G: H)= Q= where T~We=I_(R,(¥)=Ww)
eff
has a uniquely determined structure of a C* manifold, such that the canonical
projection B: Q—A (G H) is a submersion.

In the sequel, the vector B8(7), v€Q, will be denoted by [¥] and
7y G— GfH stands for the canonical projection. Of course, 7 A(G;
H)— G/ H . [W] t—=m, (kW) 15 a correctly delined projection. Its smoothness
follows immediately from the commutativity of the diagram

ko
0w A (G: H)
lr l?
G ™ GIH

For the fibre A (G, H)z of Foverge G/ H, the mapping By Q—A(G H)jg,
g€m ~'(g). s a bijection. Via B, we introduce in A (G, H)z some structure of
a real vector space and, clearly, it is independent of the choice of g. We wish
to arrange the system (A (G, H), ¥, G/H) to be a vector bundle. For the
purpose, we find local trivializations of this system.

2.3. Definition. A C= cross-section [€ SecQ is called a transversal field
if. for any g€ G and (€ H,

Lg)= R, (L(g)

(that is, if { is H-right-invariant).

2.4. Example. The C* cross-section ¥, =av¥, where Y, stands for
the right-invariant vector field on G generated by weg (g is the Lic algebra
of G)is a transversal field. Therefore, transversal ficlds penerate the entire
space @y, for any g€ G.

2.5. Remarks, Denote by 1{G; H) the space of all transversal [iclds.

(a) /(G:H)forms a module over the ring (2°(G/ H) under the multipli-
cation f.0= fomy- L FEQGH). LENG: H).
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{b) If transversal fields , ,..., {, are linearly independent at a point g€ G,
then, immediately by the definition, they are linearly independent at each
point gf, t€H, and, in consequence, al some open Fp—saturated open
subset where 7, is the so-called basic foliation 5, ={gH:; g G}.

(c) Letl,{;€l(G; H), i=s.1f{;arelinearly independent on /=1, —![U]
(U openin G/H) and [ = 2 S for fige Q0 (), then the functions f7 are of

i=1

the form fi=fi.m,| U for some fi€Qo(U).

2.6. Proposition. Let g=dimG—dimH, ie. g=codim¥. Suppose
that L, ,.... L, are transversal fields linearly independent ar each point of a ser

U=, ~'[U), U open in G| H. Then

¢: UXRI—71-'[UJC A(G: H)
# a)— [Zea'tig)]. gem (@),

is a local trivialization of v: A(G; H)— G/ﬁ.

Proof. Of course, ¢z RI—A (G; H)z geU, is an isomorphism of
vector spaces. This proposition will be proved by showing that ¢ is a
diffeomorphism. For the purpose, take the mapping yr: UxRY—r~![ U] O,
(g 0)—>,a'{;(g), being a local trivialization of Q. Our assertion follows
now from the commutativity of the diagram

UxR"Ew-r"[U]CQ L
lﬂ',;,xff[ 1‘8 l
UxR*-Z- - [U)C A(G: H)L-G/H .»

2.7. Remark. The structure of a € manifold in A(G; H) can be
obtained independently by demanding that ¢’ s be dilfeomorphisms.

Now, we introduce a structure of a Lie algebroid into the vector bundle
A (G: H). Firstly, we define the anchor v: A (G H)—T(G/ H) by [ %] (i)
(the correctness 1s easy to obtain). Secondly, we introduce in Sec A (G H) a
structure of a Lie algebra in the way described below,
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Take a homomorphism of Q°(G/H)—modules

c: G H)—Sec A(Gr H), [—cp. (5)

where ¢ is a C™ cross-section of A(G:H) defined by ¢ (8)=[L(g)].
gem,~(g).

2.8. Lemma. ¢ s an isomorphism of (G HY—modules.

Proof. We check at once that (5) is 2 monomorphism. To sce that it is
also an epimorphism, take an arbitrary C* cross-section € Sec A (G H)and
defline a cross-section  of Q in such a way that the diagram

QiA (G: H)
i e
¢ G /i

commutes, i.e. ¢;=¢& The smoothness of { is the last thing to notice. In order
to get this, take transversal fields {, ,..., {, being a basis on U=m,~'[U](U is
open in G/ H and contains an arbltrdrtly taken point of G/H) Then ¢ ... ¢
forms a_basis of A(G:H) on U. Therefore, ¢=3 f7 ¢z on U for some
fieQe(U). Of course, [ = Sfiem,- C, on U, which ends the proof. m

2.9. The space /(G H} has a natural structure of a real lie algebra.
Indeed, let {,ve {(G; H)C Sec(. Take arbitrary vector fields X, YeX(G)
such that {=X (:=a+ X) and, analogously, v=¥. Put.

[LvE=[X Y] (6)
We need notice that
(a) [X. Y]e (G H).
(b) definition (6) is correct.

et us first observe
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2.10. Lemma. If {€l(G;H) is of the form (=X for a vector field
X X(G), then X belongs to the normalizer of X (%), that is,

[X, YIeX(¥) for all YEX(_'G/") (N

[i.e. X is the so-called foliate vecior field for %, see [13]].
Proof. Of course, it is sulficient to show relation (7) for left-invariant
vector fields ¥=X,, Ach, only. To this end, take an drbnrary g,_EG and

express { locally on a set U= m,—'[UJ containing g_(U open in G/ H), in the
form §|U_}‘j oM Yieyo fieQ(U), weg (for Y,, see 2.4). Then

=3, [Temyy Ygu— XwE€X(Fy)
and, furthermore, we have
LX. X-’T]IUZ[Z.Ti“Fhll!' Yojo—2Z. Xyl
=—[Z. X, )p€ X(Fy),

thus [X, X, ]EX(5).n

2,11, Remark. It can be proved that condition (7) is equivalent to the
fact that £ = X 15 a transversal hieid; however, the sufficiency of this condition
will not be used in the sequel. :

Now, we are able to prove (a) and (b) from 2.9.

(a): To get the equality. R, ([X, Y](e)=[X, ¥](gt), g€ G, 1€ H, take the
vector fields Z| =R, X —- X and Zy= R, Y— Y tangent to &. Applying 2.10,
we deduce that

R([X. Y1(eH=R{X YI)=R({X YD(et)
=R X, R Y](g)=[X+2Z,, Y+ Z,] (g1)
=[X Y](g1)

{h): Immediately from 2.10.

2.12. In SecA(G; H) we introduce the bracket [[.,.]] (forming a lL.ie
algebra) by demanding that (5) be an isomorphism of Lie algebras, ie.
Teo e Jli=qpu. L vEHG H).
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2.13. Theorem. The sysiem
AG )y =(A(G HL -1 9) (8)
is a transitive Lie algebroid on G| H.

Proof. (1) Secy: SeeA(G; H)— 3 (G/H) is a homomorphism of Lie
algebras. Tosee this, take £, n€ SecA(G: H). Find vector fields X, YeX ()
such that £ = ¢3¢, n=rcy. By the delinition of v,

(Secy) (7) @)= Tpuy (X,) for F=m4(g) € G,
from which we obtain that X is m-related to £ and, analogously, ¥ to ..

Therefore { X, Y] is m,-related to [y»£, y»n] and to y.[[£. n]] simultaneously.
which confirms our assertion.

(2) The equality [t 7-mll=F-L& T+ (v-OD-n [ (G/H).
£ neSec A(G, H), follows easily from

(X, fom-Y]=Fem - [X.¥]+(veer)(F)- V. m
Lie algebroid (8) will be called the Lie algebroid of a Lie subgroup H of

G. It can be interesting only in the case of a nonclosed ff because the
closedness of H implies the triviality of A (G, H): A(G; H=T(G/H).

2.14. Remark. One can prove [cl. [7]] that Lic algebroid (8) is equal to
the one constructed by P. Molino [12], [13] for the TC-foliation 5.

3. STRUCTURE THEOREMS

Let (8) be the Lie algebroid of a connected Lie subgroup H of a connected
Lie group & and

O—ge=A(G: H) 2~ T(G/ H) —0

its Ativah sequence. In this section we prove three fundamental facts
concerning A (G H):

® The adjoini Lie algebra bundle g of A{(G: H) is a trivial bundle of
abelian Lie algebras,

) o [fthe Lie algebroid A(G; H) admits a flar conneciion (i.e. a connection
with the zero curvature tensor), then it Is trivial,



A Criterion for the Minimal Closedness of the Lie Subalgebra Corresponding... 169

® [erh. b, g denote the Lie algebras of H, H and G, respectively. Suppose
that there existy a Lie subalgebra ¢Cg such that (a) ¢+h=g, (b) cNh=h.
Then A (G H) admits a flat connection.

The crucial role in the proving of the first fact is played by the {ollowing
Malcev theorem (for a short “foliated™ proof of it, see [7]).

3.1. The Malcev Theorem [I1], [17]. If H is a dense connected Lie
subgroup of a Lie group T, then H is a normal subgroup of T and T{H is
abelian. m

By this, according to our notations, k is an ideal of k and k/k is an abelian
Lie algebra.

3.2. Theorem. Fora vector weh., the cross-section X, of the transversal
bundle Q. induced by the left-invariant vector field X, is a transversal field,
and the mapping

¢: G/ Hxh/h—-gq.(Z, [W])}— [ X, ()], g€ m~ " (2), (9

is a global trivialization of the Lie algebra bundle g

Proof. 1t is sufficient to show that X,.. wek. is a transversal field: the
rest is easy. Clearly, for 1 H and gEG R(X.(g)= L (R,(w)) and
X.(et)= L (L, (w)) where L Q—Q is an automorphism of the vector
bundle Q. determined by the differential £, of the left-translation by g.
Therefore, it remains to prove that R, (w)— L, (w)€ E),, which means that the
vector field X: = ¥, — X, 18 tangent to the follatlon 7 at each point of H,

Firstly, we notice that X is foliate: to see this, we calculate: Let A€ h, then
(X, Xul =Y X Xp]= Xy €X(7) because [h, w]eh according to the
Malcev theorem.

Secondly, any foliate vector field X (for a foliation /) in any
dislinguished local coordinates x =(xf ..., xr vl . vd) (p_a'im Va
g=codim #) is of the form X(x !)—)_'a(r 1’)— +Zb’(1*)—[l'§]
therefore, which is easy to see, il it is tangent to .\ at a point z then it is
tangent to .7 at each point of the closure of the leaf Lhrough z. In our
situation, X (e)={¥,— X, J(e)=0& L, so - -by the above  our theorem is
proved. m

Now, we proceed to the second problem.
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3.3. Theorem. [f the Lie algebroid A(G; H) is flai, then it is trivial.

Proof. Let A:T(G/H)—A(G:H) be a flat connection in A (G: H).
Then, taking account of 1.4 and isomorphism (9) of Lie algebra bundles, we
have an isomorphism of Lie algebroids

p: T(G{HYxh/h— A (G H), (v.[W])—Av+[X, (2)].

vE TG/ H.Z2=m,(z), g€ G, provided that in T(G/H)xh/k the Lie algebroid
structure is defined by the following formula

[(X. o), (Y. ]|=([X. Y], Vin—Vyo+[o.7]),

X, YEX(G/H), o,x: G/ﬁ—_—-—ﬁ/_h. where V° is a covariant derivative in the
trivial vector bundle 7'(G/H)xh/h. such that ¢ maps V° onto ¥, e,

Vio=¢ - Vilpro)=¢~ «[[A X.@-a]l.

LLooking at example 1.2, we see that to end the prool, 1t 1s sufficient 1o
show the equality

which is equivalent to the fact that the covariant derivative Vy of any

constant function W: G/H —h/k, F—[w], weh, “is zero, i.e. that
[[A X. ¢ 1=0. The cross-section A X is locally of the form A X =3, Sfles .

[ie (G H), thus

because y o g, =0 and [[¢5, . e = r—73=0. =

II“ rll'f' '\'II'] =

It remains to consider the third problem.

3.4. Theorem. Suppose that there exists a Lie subalgebra ¢ Cg such
that (a) e+ h=g. (b) cNh=h. Then A(G; H) admits « fiat connection.

Proof. The construction of a flat connection in A (G; H) has four steps.
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Step 1. Denote by C C TG the lelt-invariant distribution generated by c,
i.e. the vector bundle tangent to the foliation {g F; g€ G} where F is the
connected Lie subgroup with the Lie algebra equalling ¢. C fullils the
following conditions (in which £}, is the vector bundle tangent to the foliation
Fh=1{gH; g G}):

() C+E,=T7G,

(2) CNE,=E

(3) Cis H-right-invariant [i.c. Clu= R,[E“‘,], g€G, e H,
(4) Cis involutive,

Clearly, (1), (2) and (4) hold. To sce (3), take an arbitrary vector ve& Qk
we have v=L,(w) for some wec. Since R, (v)=L, (R, (w)), we ‘need only to
observe that R (w)EC“ for te H. erte r-'lrmt,,, {,€ H;, then, by the
closedness of C in TG, we obtain that R, (w)=1imR, (w)EC because
R, [C]=C

Step 2. Let CC TG be a distribution realizing conditions (1) (4)
above. Via the epimorphism a: 76——Q we defline a subbundle ¢"C @ by
CL;—%[CU,] g€ G [The fact that €7 is a subbundle is obtained from the

relation £C C which holds by (2)]. € fulfils the following conditions:
(1Y Q& C=0 where '=E,/ECQ,
(2) Cis H-right-invariant [i.e. C,,= R,[C,]. g€G. 1€ H],
(3 LG, Hy.=Sec C'MI(G; H) is a Lie subalgebra oi'A."(G; H).

(1") and (2’) are obvious. To check (3'), take arbitrary I, v€/,(G: H) and
write Eﬁ,\’ v= "7 for some vector fields X. YeX(CO). According to (4),
[X, ¥Y]€X(C), which gives the relation [ X, Y]& Sec(”. On the other hand (sec

2.9), [ v]=[X, Y]e/(G: H).

Step 3. Let C"CQ be any vector subbundle realizing conditions
(1)< (3") above. Via the lincar homomorphism 8: 0— A (G: H) we define a
subbundle CCT A (G H) by C;=8,[C). g€m~ ' (). £€G/H. Thanks to
the equality 8« R,=f, 1€ H, the correctness ol this delinition is evident. To
see that C is a C vector subbundle of 4 (G; £, 1t 1s sufficient to notice that
a local €™ cross-section of A(G; H) lying in C and passing through an
arbitrarily taken vector from Cexists. Let ve 7|, and g = m, (¢). Take a local
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(™ cross-section ¢; {/— G ol the submersion m,: G—G/H, such that
v (g)=g, and consider the diagram

."*C’—;-C’C QE-—A (G, H)
! ! |

Ime g ™ GiH

e ]

i.

Diminishing ¢ i necessary, we may assume that the vector bundle
*C'—hne has a global ¢ cross-section Z passing through v, Put §{=
BoioZ @ U—A(G; H): € 1s, of course, a C* cross-section of A (G: H) over
{/ such that £(g)=[v]. The vector bundle C fulfils the conditions

(M g lC=A(G ),

(2) SecCis a Lie subalgebra of SecA(G: H).

(1) 'is evident by the observation that 8, maps isomorphically '), onto
8. [0 see (2), take arbitrary £ n€SecC. According to 2.8, there exist
transversal fields ¢, v such that ¢,=¢ and ¢, =7n. Of course, B,(g,) =& and
B, (v,) =1, g€m,~1(Z). From the definition of C we obtain that { and v

belong to L(G:H). By (3), [ v]€SecC'MI{G: H), therefore [[€ 7] =
e v € SecC.

Step 4. Let CC A(G; H) be a vector subbundle realizing conditions (1)
and (2) above. Then, of course, a splitting A of the Atiyah sequence of
A{G; H), see the diagram

O-ge-A(G:H)=g® CL-T(G/H)—O.
A

such that fmk = C, is a flat connection in A(G,; H). »

Combining the above theorems we get

3.5. Corollary. The existence of a Lie subalgebra ¢Cgq fulfilling
c+h=g and ¢cOVh="h implies the irivialiiy of 1the Lie algebroid A {G: H).
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4. MAIN RESULTS

let the symbols #H. H, G, k, k. g have the same meaning as in the previous
Llwo sections.

4.1. Theorem. [f there is a Lie subalgebra ¢ Cg such that (a) ct+h=g.
(DY cMh=h, then the Lie algebra b is minimally closed.

Proof. Corollary 3.5 states that the Lie algebroid A(G; H) of the Lie
subgroup HC G is trivial, i.e. there exists a Lie algebroid isomorphism
& A(G H)— A, =T(G/H)xh/kh. Such a Lie algebroid is, of course,
integrable: A, is the Lie algebroid of the trivial principal fibre bundle
P= G/ H x Fforan arbitrarily taken Lie group £ with the abelian Lie algebra
k/h, see |.3. The following reasoning is due to R. Almeida and P. Molino, see
the proofof their theorem {13, p. 138]. Consider the Lie algebroid (7Gx k/h.
[f-.- 1l or1) of the trivial principal fibre bundle & x F. The linear homomorphism
of vector bundles.

A TG—TGxXR/h,  v— (v, pry« ®([7]))

is a connection in this Lie algebroid. A s flat. Indeed, it is sufficient to show
the equality [AX,AY]|=A[X. ¥] only for X, YeX(G) such that the
corresponding cross-scctions X. ¥ of ¢ arc transversai fields. However, the
equality 1s then easy Lo obtain by using the fact that @ 1s a homomorphism of
l.ie algebras, namely, writing AX =(X, pry«® ooy my) (and, analogously, for
AY), we have

[AX A YT =X, pryePocgom) (Y, proedocyom)]]

=([X, Y], Yy@ryedecgom) =Yy (praebocyem)

+[prye docgem,, pracducyam])

(X Y] Yy P2 Pecq)om— Y S pras Pacy)em,
T prye®ecg, prosPocylom,)

=([X, Y], praol[(vecs, prao®ucy) (yo ey, prav ®oep) o my)
S (LXYL prell s, ecslmy)

S0 pra s, 5T

=([X. Y], prav oy m)

=A[X. Y]
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l.et 3 be the connection in G x F determined by A, i.e. the right-invariant
distribution DC T(G % F) for which

Dy o={v, pryod([0]): veTGY, g€C,

where ¢ denotes the neutral element of /. The flatness of A implies the
involutivity of D. Consider the diagram

pzZTTth.d _
GxF_____ G/HxF

]

G " G/A.

iet GCGXF be any leaf of the distribution D. Of course, p,—p]fG
G—G is a covering and, which is easy to obtain, fy = ps| G: G—»G/ HxFis
a submersion. Denote by % the lifting (by 7)) of the foliation % in G. l.et

(g. e G. For ve 7,G, the following conditions are equivalent.

(1) v is tangent to %,

(2)  Pis.a ' (v} is tangent to &,

(3) ﬁ2*(g. u)(ﬁl‘(g. a)7| (U) ) = O

From this we obtain that .% is defined by the submersion f;: G—G]HxF,

in pdmcular the leaves of % are closed. lntroducmg in G a structure of a
group in the standard way wc obtain: G is a Lie group and j, is a local
isomorphism of Lie groups. It is a standard calculation to obtatn that s
then the foliation of left cosets of G by Fwhere Fis a connected Lie subgroup
of G with the Lie algebra equalling ft=75+,—"|k] (¢ being the neutral clement
of G). Therefore F is a closed Lie subgroup. Of course, F, being closed alter
the lifting to some covering, is also closed after lifting it 1o the universal one,
which means that k is minimally closed. »

4.2. Theorem. [f m(G) is finite and H# H, then there exists no Lie
subalgebra ¢ Cg fulfilling the conditions ¢-+h=g and cNh=h.

- Proof.  Let my(G) be finite. Then, the universal covering is finite, which
implies the nonclosedness of the lifting H of H. Our assertion follows now
trivially from the previous theorem. m

To finish with, we can ask
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Can Theorem 4.1 be inverted ?

It turns out that the answer is no.

4.3. Example. Let G=U(2). Suppose that H:= T is a maximal torus
in G. 1t is well known that dimT=2 and the lifting of T to the universal
covering R SU(2)— U(2) is isomorphic to the cylinder Rx §'. Therefore,
any Lie subalgebra k of h (h—the Lic algebra of #) is minimally closed. We
prove, using theorem 0.2, that there exists some 1-dimensional Lie subalgebra
k of k for which.

(i} no Lie subalgebra cCg fulfilling {a) and (b) from 0.] exists.
(1) the corresponding connected Lie subgroup of T is dense in T,

Let A, V(h*)— Hyx (G/ 1) be the Chern-Weit homomorphism of the
T-principal fibre bundle P=(G—G/T). & and T have the same rank,
therefore, according to [3; Th.VI1I, p. 467], we have that

Ry R —H2 (G T)

is surjective. Moreover, dimh* =2 and dfa'nh'gR {G/ =1, thus dim Kerhff}z l.
Then it 1s obvious that there exists a covector O# B&eh* such that (1)
ht,,z)(B)#O, (2) h: = Ker8Ch is a subspace such that the corresponding Lie
subgroup HC T is dense in 7. Of course, the superposition

kY
(R/hys LRx - 2 (G T

is nontrivial: hf}uj(ﬁ}#() where B (h/h)* is a linecar homomorphism
determined by 8. Theorem 0.2 implics the nonexistence of a Lie subalgebra
¢ Cg fulfilling (a) and (b) above.
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