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Optimal Control of Quasilinear Elliptic
Equations with non Differentiable
Coefficients at the Origin

EDUARDO CASAS and LUIS ALBERTO FERNANDEZ

ABSTRACT. In this paper we study some optimal control problems of systems
governed by quasilincar elliptic equations in divergence form with non differentiable
coefficients at the origin, We prove existence of solutions and derive the optimality
conditions by considering a perturbation of the differential operator coefficients that
removes the singularity at the origin. Regularity of optimal controls is also deduced.

1. INTRODUCTION

We will be considering optimal control problems involving the dilferential
aperator

Av=—divie{x, [Iv]) )+ (x, ») (1.1

withe: 2 x(0, +%)— (0, +°) and ¢ Ox R - R, where {1 is a bounded open
subset of RY with Lipschitz continuous boundary I,

Authors have studied control problems associated with quasilinear elliptic
operators in {2, 3, 5]. The novelty of this work is that the non dillerentiability
of ¢{x,.) at 0 is allowed, which causes the non dilTerentiability of state with
respect to the control. This 15 not an obstacle to prove existence of optimal
controls. but it becomes complicated to derive the optimality conditions. To
overcome this difficulty, we introduce a family of approximating control
problems that fall in the class of problems treated in [3.5].
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Operator 4 introduced above is less general than those ones studied in
[2,3.5]. Nevertheless, most of the known quasilinear elliptic operators belong
to this class. Next, we establish the hypotheses on A.

Let b O x[0, +90)—{0}, +o0) be the function defined by
bix, )= (x, 5)s
We will assume the following conditions

He C{E [0, )M O (11 (0, +22)) (1.2)

¥ {..s) is a measurable function on ()
(1.3)

w(x..) belongs to CH(R)

ab
RY (k+s)”*2Sa—(.\‘. =N (k) Vse(0, 4 (1.4}

Y

N b
¥ T (x, 8) l S A (hts)els Wse(0,teoe)  (1.5)
=1 | dx;
ad
()S—a%(.\‘. S L s VscR (1.6)

hlx. )=y {x, 0)=0 (1.7

for some & €0, 1]. some a€(1, +¢), some strictly positive constants A, A,,
some positive and non decreasing (unction fand a. e. x< (.

Let us consider the boundary value probiem:

Ar=vw in )

(1.8)
p=10 on [’
We make the following additional assumption on «
w>Nj2 (1.9)

in the sequel. W15 (41) will denote the dual of the usual Sobolev space
e (!1)(?1]( + }3 = 1) and (...) their duality product. Also, D{f}) will denote

the space of infinitely differentiable functions with @ compact support in {),
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We will prove that problem (1.8) has a unique solution ¥,€
Wl () ML= (Q) for each ve £2(£)). Hypothesis (1.9) is essential to deduce
the boundedness of the solution p,,

Remark:
Hypothesis (1.7) can be weakened in the following form:
¥ (,.0)€ L2(£)
In this case it is enough to do the change
Yxs) = (x ) —(x0)

let us give some examples of the principal part of operators A that satisfy
previous hypotheses with b& CT{(Q %[0, + o=)):

Example 1.—(Case a =2, k70)
@ (x, 5) = A(x)+sin (Ing)+ 5«2

‘with A€ C' (1) such that 2<<TA{x) Yyeq.

Example 2.—(Casc « <2, k=10)

o (s)= -2

Example 3.—(Case a<<2, k+#0)
w{x, s)=sin* [Ins|' 2exp (—s)+ A (x) (k + 502

with A€ C'(}) such that 0<TAy<<A(x) VYx<} for a sufficiently large
constant Ag. .

If @2 and £ =0, it follows easily from (1.2), (1,5), (1.4) and (1.7) that

. . . .
he C' {1 x[0,+ ) with a—;(.\', 0)=0. Therefore, the operator A satisfies the

hypotheses of papers [3.5], as we will see later (lemma 2.2).
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Let us introduce the following optimal control problem:

Minimize J(v)
veRr

(F)

[14

(1.10)

where H is a non empty. convex and closed subset of L2 () and J: L2(Q)—R
is the functional defined by

L, — |2 dx + —‘2? J lv|2 dx (1

0 £l

J (u):'?f

with v, a fixed element of £2(0)) and p a non negative constant. Let us remark
that thanks to {1.9). it is verified the continuous imbedding

L2(Q)C W-1-8(0)

Remark

If we suppress (1.9), it is possible to carry out the study of ().
substituting (1.6) by condition

0= % (x. 5 A (k + 5]y (1.6%)

for all x2 0 und all s€R.

Nevertheless. for 1 <Ta= and M= 3, we must formulate (P,) in a

N+2
slight different form. Variations are mouvated by the lact that in this case
Wi (L)) is not imbedded in £2({)) (see Casas and Fernandez [2]).

The plan of the paper is as {ollows: in next section, we state some auxiliary
lemmas about the differential operator and state cquation; in Section 3, we
prove existence of solutions and formulate the optimality necessary conditions
for (P): Sections 4 and 5 are devoted to the prool of these optimality
conditions: in last section, we obtain H#'(Q) regularity (resp. W) if o< 2)
for optimal controls.

2. SOMF AUXILIARY LEMMAS

In this section, we prove existence, uniqueness and continuous dependeuce
of solutions of Dirichlet problem associated with operator A as well as some
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perturbed operators A.. We begin showing some properties about the coeffi-
cients:

Lemma 2.1.  Let us suppose (1.2), (1.4) and b (x,0)=0. Then, there are
positive constants Ay and Ay depending only on o, A and A, such that

Ak T2 (x, ) S Ay (A +5) 2 Yxe(l, VYse(0,+o)

Proof

Using (1.2) and the fact that A(x, 0)=0, we get

3

ey, s)s=hlx, s :f %(x, Hdt

]

In virtue of (1.4), we have that

A f(k-i—:)u_ldrij g—b(x, NdrE A, ] (k -+ ne-2dr
t o O

) ) a

If @22, it is clear that

()l" + S)a-—[ _ A.('r—l _
o— | -

Ay J‘ (k4 0e=2di =75
(

)

k(ktsy2—ke'tsk+s)e? A
= ok + )25,

= a—1

If @52, applying the mean value theorem, it follows that

L SNeor—| - foa—1
;\] (A + .5) | K = A 1(!\' + 9.\')"'—2.\'2 "\I (]\' ‘l‘S)U_z &
o —

because 6< (0, 1).
In any case, we obtain that

Ah I (xy) Yxecll, Yy (0, + )
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A
lr (if @=2) and A=A, (ifa<2).

with A=

For the upper bound. let us remark that if =2, 1t is verified that

A, J (A+nmtdi= Ay (k - gyl
!

and i @=<<2,

‘ ke — forl A
Ay [ A+ dr = Ay ( 5) = "1 (k +b‘)”_2s
o —

a— |

Eall

A
Thus, we deduce that :\4:—‘*1 (fe=2)and \uy=A (I a=2)m
o —

Next, we introduce the perturbed differential operator coefficients and
state the coercivity and growth conditions.

Lemma 2.2.  Let us suppose (1.2), (1.4), (1.5} and b(x, 0)=0. For each
e=0), ler us introduce at: O x RY RN defined by
arlx.n)=¢lxe*|nn
Then, ate CYQXRY) if e >0 and "< COQXRIN C X (RN0)).

Maoreover, there exist a positive constani A depending onlv on N a, Apand
Ao such that

Yo dab

E. 'a—L(-\'- MEE= Nk Fetny 2E?
i ;

S| dad .

Y Lo = Astk et ]
i 1| dn;

N dat .

N bl A B R NE Da
iior| dyy

o all xC Qo jor alf ERY and Jor all ne RY (respr. n G RO if ¢ =0).



Optimal Control of Quasilinear Elliptic Equations with non Differentiable... 233

Proof.

Given i, jell,..., N} it is immediate to verify that

dat d
L (xm=ex e InDd, + SE (v e )

!

iy

1l

(2.1)

Therefore, we have that

94 (v, MECOAXRY) I >0 (resp. C(QX(RY\[0}) il £=0) and
n;
Y dat T gy
S 2N B gt e D ERE S e+ ) T2
ij=1 an, a& |T]‘

]
L.et us suppose that 6—"0 (x. e+ |nl) = 0. Hence.
Y

N dat
2 LlembgZelet [aDIEPZ N (h+et n))e-2 €]

=t dn;

thanks to lemma 2.1.

. d . . .
Otherwise, if aé {x. e+ 7)) <0, using the Cauchy — Schwarz inequality
A)
and (1.4), we get

-

Y du) d )
S Hemee= (¢(.\-,c+|n|)+—"f—(.\-.e+|nmn|)|f|-z
ol odn; ds

t

df
= (e DIERZ A kb e i) €2 A e [l el

Belore proving second inequality of lemma. let us note that from (1.4) and
lemma 2.1, it follows

d af
7"0-(.\'. s)s| = ‘a_)(.\-. S =@ )| ST ADE 9" 2V e O Yy (0.4 59)
Y A .

Now. combining this expression with formula (2, 1), we deduce

i

N gt d _
Y || SN [lotx et oDl + Il | S (v e inh| | =
T dn dy
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ZNs(htetin|)y? where As=N(2A+4)

Last inequality of lemma lollows directly from (1.5). =

Lemma 2.3. Ler wy suppose (1.2)—(1.4), (1.6) and (1.7). Then, there
exist positive constants A, and A; depending onfy on N, a, A; and A; such
that

(LIl 02 —n']P  ila=2

N
a) Y {at () — @ N — ) = A,
i ' Y ( [q—n|" =2

h) ,i. @t )| < A (k) )
Furthermore,

¢) (fix.s}=—d{x.s))(s—5)=0

d) L (x, sH =181/ (1s])

fore=d, for all xeX), all s, SR and all 1. € RV,

Proof
For a) and b). see lemma | of Tolksdor{'[13]. Conditions ¢) and d) follow

immediately from the hypotheses. m

Lemma 2.4. [er us suppose (1.2), (1.4) and H{x,0)=0. Assume o=<2.
Then, for eache=1( we have

a) | (e (I —a (x OV V) dvz
A AP R AN el LA o

170
Maorcover, there exist positive constants Ny and Ay, depending onlv on N,
a, N and N such that

S Ay Inir— X
h) 2= * ’
|

=

Aclnle—1Iqh

Jor c=60, for all YO and all ne Ry,
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Proof

a) It is a simple consequence of Lemma 2.3-a) and Hélder’s inequality
applied with p=2/a and p'=2/(2—a):

f [Ty — Tyfody <
i3

J_a) 2

w 2 {
= (f |Vy — 90121+ |Vy| + |V_l”§)"’_2dx) (f (14 |9y + V) dx
n 0

b) 1t is enough to take into account Lemma 2.3-a) again, hypothesis
{1.7) and to distinguish the cases || =1 and |n|<l.=

Now, we are ready to derive existence and uniqueness of solution for the
Dirichlet problems. First, for each £>0, tet us introduce the perturbed
diffcrential operator

A, v=—div(a(x, Vo)t (x, )= —divipe(x, e+ |V H 8 (x 1)

and the correponding Dirichlet problems
A.v=v in O
(2.2)
v=0 on I
Utilizing previous temmas 2.2 — 2.4, we can apply the result of Rakotoson
[10] to deduce that, given ve&[L2(Q)), there exists a unique y.(v)E
W ()M L= (€1) solution of (2.2) for each >0 (resp. there exists a unique
VoE W ()M L=(€1) solution of (1.8), fore=0)
In the following result, we show continuous dependence with respect to
the data for this type of equations,
Lemma 2.5, [et us suppose (1.2)—(1.4), (1.6)—([.7) and (1.9). Given
=0, fet v, € W (1) be the solution of
A v=w in )
[ y=0 onT
and. for each meMN, let v Whe () satisfy
[AL.)':u,,, in (}

=10 on I
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with Ay=A. Assume that v, — v weakiv in L-((Y) as m— +oe.

Then, 127 — v, in W (Q) as m— + oo,

Proof

First, let us remark that v, — v in W='-#(0), because L3 ()T W=1-8(L})
with compact imbedding (Adams [1]).

From the relations satislied by v, and ). it follows that

f ( (x, VY — gl v N O — 1) d.\'-I-f (@ (x, V') —
0 {r
@ {x. Vo (Wl =V dx = (v, — v, 30 — 1)

Suppose &« = 2. Applying a) and c) of lemma 2.3. we get
Al *v.“c”{;yun?— v — vl s v — vl e

Finally. using the equivatent norm in W2 (2} (see [1]) and the hypotheses.
we obtuin

Fil
.l £

— 1 in o WYY

In the case ao<C2, argumentation is similar using lemma 2.4-u). »

3. EXISTENCE OF SOLUTION AND OPTIMALITY
CONDITIONS

We begin showing existence of solutions of problem (#£,) defined in
(11— L1y
Theorem 3.1. [fer us suppose (1.2}—(1.4), (1.6)—(1.7) and (1.9}
Assume that
Fither K is bounded in L2(Q) or p>0,

Then. there exists (ar least) one solution of (P,).
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Proof
Let {er, ), e CH be a minimizing sequence and {v,],-x the sequence of
associated states. By the hypothesis, there exists T W and a subsequence

(again denoted by {1,}) such that

w,—u weakly in L2(£})

H is a convex and closed subset of L2(Q}). Therefore, W is weakly closed
in L2(€2) and me K.

let ¥ be the associated state of . From lemma 2.5, we obtain that
Yy =¥ in WII]'”(“)

The lower semicontinuity of J in the weak topology of £2({}) and the
imbedding W/} (£1) C [2({}), completes the proof.w

Optimality conditions for problem (P,) can be formulated as follows:

Theorem 3.2. et us suppose (1.2)— (1.7} and (1.9) with k0 if a>> 2.
Assame that W is a bownded subset of L)), Let i1 be a solution of (P,). T
the associated state and Q,={xeQ: |Vv(xj}| >0} Then, ithere cxists
pEH| Q) (resp. Wh(Q) if «<2) such that

{—a’iv fo (v, VPNV (x,T)=01 in {}
(3.1)
=0 on I
. de v7-Vvi |
— ., | VT — == VP +
div ((‘P(-\- A vl CR AR o= Iz
d
+ 2 =Ty, iy (3.2
ds
f (pt+ptiv—a) dx=0  WeH (3.3)
0
where | denotes the identity matrix Nx N and Vy-V¥! denotes the NX N
ar a7
matrix with coefficients S-S I=i j=N
dx; dy;

U f

Proof of this theorem requires a rather long development and it will be
carry out in Sections 4 and 3.
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Remarks

1} Remember that if «>2 and A =0. it follows from the hypothescs that
be CM(Q1x[0,+22)) with —g%(.\u 0)=0 and we apply the results of [3.5].
2} In the ease << 2 and A =0, we can obtain some additional information
dabout the adjoint state 73;
Vi(x)=0 ae v e N,
See the end of section 5 lor the proof.

3) Introduction of set (1, was suggested by the work [6] of A. Friedman.

4. AN APPROXIMATING FAMILY OF PROBLEMS (F;

Let @ be a solution of (P,} (see theorem 3.1). In order to derive the
optimality system [or @, we introduce the following lamily of control
problems:

Minimize J, (v)
(£

re

where the cost functionat is given by
- _1_ v — 1 2 el L B_ 2 L T2
J.(v)= Zf“ lre(vi—ryl2dx 2];!\1/] dx+ zf“w 7|2 dy

and 1, (») 1s the solution ol (2.2),

Following result can be proved arguing as in theorem 3.1, with the atd of
lemma 2.5.

Theorem 4.1.  Let us suppose (1.2)—(1.4), (1.6}—(1.7) and (1.9). Then,
Jor each €20, there exists (at least) one solution of (1%).

Belore deriving the optimality conditions for { £%£). we need to define some
[unctional spaces,

Given y& W (Q). let My (€)) be the space completed of D (£)) respect to
the norm

H-‘HH{;"(u):(ﬁ,(l -+ |V_|'|)"‘3!V:F(!.\-)! :
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It may be casily verified that A§'(Q) is a Hilbert space with the inner
product

(ziz) = (14 |Vy])=39z, Uz d
{1
Moreover. we have
Wi () C Hy (O C Hy () il a=2
HyQYC HE () S WH () [ a<?
with continuous imbeddings.

More general spaces of this type have been studied by Murthy and
Stampacchia [9]. Coffman es ¢/ [4] and Trudinger [15].

Since operator A, satisflies the hypotheses of [3, 5] (see lemma 2.2), we
deduce the following results which are analogue to [5. theorems 3.2 and 3.7].

Theorem 4.2.  Let uy suppose (1.2)—(1.4), (1.6)—(1.7) and one of the
Jollowing conditions:

Paz2. a> N2 i) a2 and N=1

For each €0, let u, be a solution of (F¥) and y,€ Wi (Q) the associated
state. Then there exisis a unique p.e Hiy "o (L)) such that

—div (¢t (x, VN T (x, r)=u, in
[ 4.

r.=0 onl

v d .
— div (a“ (.\“,V_l'C)V])c)+ Ve rdpe=ro—r,  in 0
dan ds

(4.2)

pe=10 on I’
f(pu-i-puu-%-uc—ﬂ)(v—uﬂ)d.\’EO Yve¥ 4.3

0

Theorem 4.3. Let us suppose (1.2)— (1.4}, (1.6)—(1.7) and one of the
Sfollowing conditions:

D I<a<2and N=2 ii)—‘g—<a<2 and N=3
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For each €20, lei u, be a solution of (%) and v.€ W} (Q) the associated
state. Then there exists p. € W e (Q) satisfving (4.1)— (4.3) and

dir
ds

L. adt
f! , Vl)cf_i (x, V1) Ip.dx+ f“

o (x. v pldx SL (vo— V) pedx (4.4

Remarks

[) There exists a unique solution in Hg ' (Q) ol problem (4.2): it is
enough to consider the bilinear form defined in Hg™' (1) by

+ dat ) difr
- oY — -~ _ B - [t b
B(.'[,;z)fj;z V..1 7 (v, V_;C) thdx-l-fn 3 (x. 1)z, 22 dx

and to apply the Lax-Milgram theorem.

2) In theorem 4.3 (case <2 and NZ>>1), we can only prove that p,
belongs to W () and satisfies the equation in the distribution sense. In
general we can not guarantee the uniqueness of p,. In relation with this

question see Serrin fi1},
Before stating in what sense the problem (P,) is approximated by the
problems (£;) we nced to prove two previous lemmas:
Lemma 4.4.  Let us suppose (1.2)—(1.4). (1.6)—(1.7) and (1.9). For cach
e 0, let (v (ve). v.) belong to (W ()M L= () x L2() and satisfy
—div (@ (x, V() Ty (x p.(v))=v, in Q
(4.5

vlr,) =0 onl

Let us assume that v, )= Is bounded in 12(Q). then there exists C>1)
such that

v (ol it oy Ve @l =iy = C for all e 0

Proof

The boundedness ol [y, (v)}o=o INWF*(Q) is a simple consequence of
lemmas 2.3 and 2.4,
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We will prove that [y, {v.)}.~e 15 bounded i L™ (£}).
First. given r >0, we consider
Y =max e (v —r 0} and A (1) ={xcfd vl )=
We have (v )& Wy ({1) and
0 ifxe A r)
Vir(v)(v)= l . (4.6)
V_l'L_"(LrL.) (x) ifxed,. )
for almost every x in (1.

Using Holder’s inequality and lemma 2.3 or lemma 2.4, we deduce from
(4.5} and (4.6) that

I3 G — 7 (AP BT, Ml o nim )
< C(IT37 M1 — 1957 11 ) =
S_[‘E(”(P (x e+ |90 (DI (p)]* ddx +J:lu(r) B 2 (2 )) 2 () i =
= o (x et 1T )) Ve () U G det [ e v () oy () ol =

:L v 1 (v} dx :Lum ve v () dy = el 2o 137 W 20n0m
J
Thus, by the continuity of the imbedding W () C I# (), with u= /i}g
—a
(il <Ny or u2>2a(ifa=N), scc Adams { 1], and the hypothesis, we get

a—|
IIJ;."(VY)IIu-(',-"{m(II.!;"(VU)II e = A (1) ")S Cillyr eIl 2,00 =

< C m(/li.(f'))' -1 ““."J(Vc)“ fﬂtllt“,“f; Cy m(A,_.(r))l 21 F”.‘:.(Vc)“ ”,'ll.,.(m

and hence,
I} (l’c)H[.'Y,;(l-lL(rn S (A (i) e 4.7

Now. let s> r>0: then A, ()T A, () and morcover

(s—r) n{AN = = D b = ||‘I'L_"(UL-]||1,#(.::.“)1 (4.8}
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From (4.7) and (4.8) it follows

AL
(Y_‘-—I 2 Ju)

miA ()= n{A.(r))

(s—r)*

Finally, applying lemma 4.1 of Stampacchia [12] to the function
G (y=mr (A1) Tor 120, and noting that thanks to (1.9)

M _L_L)
(.r—f(2 w)=

it follows the existence of a constant Cs<{+ 2 independent of & such that
Ve V= ae ve(),

In the same way, taking v () = min {r, (v,) -+ r, 0}, we derive the existence
ol (> —= such that 1. (p{x)= C, ae. vE{} tor every 2> 0.

Lemma 4.5. Let uy suppose (1.2)—(1.4). (1.6)—(1.7) and (1.9). Assume
that v.—w weakly in L2(Q) as ¢ — 0. Then, v (v, )— v, in WES () as e—0.

Proof

I, e

From previous lemma we derive that [y, (v )l~e ts bounded i Wy " {{2).
Thus. there exist a subsequence (again denoted {y,.(v.) ).~y ) and 1€ Wi ()
such that

Vel — v weakly in W)
FFurthermore, 1y, (v} is the solution of (2.2) with v = v, and then we have
J;! @lx. e+ |V (v} Vr (v )V dx +f!! gix, v (v N dx ZL v b cdx {4.9)
for all e W he (). .
For proving that y =1, it is sufficient to pass to the limit in (4.9) as e — 0.
In virtue of b), d) of lemma 2.3 and lemma 4.4 we have

fl lo(x. e+ [Fr (n) ) D (v B dy = f( (k+e4 |Pr (v ) dy< G,
{ 1

ﬁ T x s NPy S G
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Therefore, we may infer that there exist a subsequence {denoted in the
same way) and x €(LB({}))" such that

o(x, e+ |V (v ) Ve (ve) — x  weakly in (LA ()Y
g (x v (v)) — ¢ (. p) weakly in L ()
Let us introduce the element L of W='-8(]) defined by the formula
L@)=[ xVedx
0
Letting etend to 0 in (4.9) we deduce
L(¢) :f”(u— W (x, ¥)) ¢ dx (4.10)

for all g€ W} * (). Moreover, by (4.10) and the strong convergence of v, (v,)
to yin £2(0) and L2(())

limsup ([ @ (x et T v |95 (v 2 dlx) =
e 1)

=tlimsup ([ vere(vdx [ ¥ ) v (v dx )=

= f! (=gl )y d= L)

Since the operator : W () — W-1-8((}) defined by

(Vr.w)=[ o 1) Iy D dx

satisfies M-property (Lions [8, pp. 171-187]) and ¥ (v)— L weakly in
W8, it is verified that

f; 0%, (V) Uy V6 dx+ f; Yxgdy= f! Luddx  Voe Wb

Hence, y=y, and then
ve(v)— 1, weakly in Wl ()

Finally, from the above results and lemma 2.3, we conclude in the case
=2 that

]in}:sup ‘\b ”v.“u ('uc) - v.“u” {;.“Hll =
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iansup [ @0+ 15 (D Ve ()~ (5, o5 T )T V5 (0) =T, dx =
c
= llrgsup J;l Ve (.I'.a; (vu) - .“u) dx _-[;1 W (X' Ve (Vs)) (.]‘.u (VL') - .“H) dy=10.

In the case o <2, the argument is the same, utilizing lemma 2.4,

Hence. v, (v,) — v, strongly in W;o(Q). as e—0.u

Theorem 4.6. Ler us suppose (1.2)—(1.4), (1.6)—(1.7) and (1.9). Let u,
he a solution of (F;). Set ¥ =v; and vo=y (u) Then, we have

u,—m in L2(0) (4.11)
Ve T in W) (4.12)
() — S (1) (4.13)
as e — 0.
Proof

Applying previous lemma to v, =% Ve2>>0. we deduce
V() =T in WD
Since me K. it follows that for all >0
‘2 et =T 22y = (1) S AT = C (4.14)

Thus, ful.~g 18 bounded in L2(0)}) and selecting a subsequence, if
necessary, we may infer that there exists v 3 such that

o — o weakly in £2(0)
Using once more lemma 4.5, we obtain
o=, in WY
From (4.14) and the lower semicontinuity of J.. we get

! 2 P 2 | — Coo
5 sy — vall 720, F ) Neell 200, 5 Hu—u\lig,mi’-hm}}n[ S =
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< limsup J, () <tim L@ = | (5= l20 + 5
e £ 2 5

5 1172l 2y =/ (T)
Since % is solution of {P,), we know that J (@)= J(u). thus =% and
Jlu)—J(@ ase—0

Moreover, 1, converges strongly towards %, because

| IRTI 2 I ! 2 P 2
S Timsup =l Shimsup (£ = 51w vl = § Nl )=

P 2 L 5
:E(Hully_g[m — limin{ ([ ]750, ):0.-
5. PROOF OF THEOREM 3.2

In the preceding section, given T a solution of (£,), we have obtained the
optimality conditions for the solutions of the perturbed problems. Hereafter,
our purposc is to pass to the limit in conditions (4,13 —(4.3) with the aid of the
last results. We will distinguish two cases:
5.1. Casea=2and k#0

Let {p)m0C HY = () C Hy(£)) be given as in theorem 4.2,

Applying (4.2) Lo p,, we derive

. dut ' dyr
; Ip! -O,W (x, Vi)V, dx +J;1.(f('\.' rapidx =L {v.— v pedx
By lemma 2.2, (1.6) and H&lder’s incquality, we have

-‘\.t"\'"_zj;! [Vp | dy= -'\3];](!\' +e+ |V Vel dy = Collp 2y (51
In particular. since &7 0, it follows from (5.1) that {p,}.~ is @ bounded
sequence in M) and there exist a subsequence (again denoted p,) and an

element Fe H5(()) such that
Pe— 7 weakly in H(€) (5.2)

It is immediate to obtain (3.3) taking into account (4.11) and passing 1o
the limit in (4.3) as ¢ — (.
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It remains to verify that 7 satisfies equation (3.2):

Since we WC (1) and thanks to lemma 2.2, we can apply a Tolksdor{’s
result {13] and deduce that the optimal state ¥ belongs to Ch# (1) for some
0<u<l. Therefore, Qy=fxc ) |V7F(x})| >0} is an open set of RY,

Let ¢ D({}y) and let us denote sop ¢= 0" C ). Our purpose is to pass to
the limit as ¢ — 0 in the following expression

. ot . dur
Vo7 (Vi V. dat o7 e v pud dx= Jo—radds(5.3)

Utilizing again the Tolksdorf’s result [13], it follows the existence of
constants Cy and C; depending only on N, a, Ay, Ag, (0, 1), Jltig]] p=y and
I ¥ell 1= n such that

|v."'r (Y)l = C| Yyel)
(Ve () — D (2} S Clx— x| ¥x, x'ely

By hypotheses, # is bounded in 17({}). Furthermore, we know that
3]l 1=, is uniformly bounded by a constant independent of ¢ (see lemma
4.4). Then, we can apply Ascoli — Arzelé theorem to deduce the existence of
a subseguence (denoted in the same way) such that

Tv (x)— V7 (x) uniformly in (¥’ (5.4)
By other hand. in virtue of lemma 2.2 and taking e<(0. 1) we obtain that

H dat Ak Het VRS As(h E L Ot Vrey

W (.\'. V_ru)

Tuking into account {1.6) and lemma 4.4, it follows that

I-i—lf {(x.or)

Sfvelli=0)=C Yxel Ve>0

Thanks to the hypothesis (1.3), lemma 2.2, convergence (5.4}, (4.12) and
the Dominated Convergence Theorem, we deduce that as ¢ —0

a_!'b PR _.a__sﬁ 3 1 r
s (v, ) O (x, ") mn L)
da-

(x. Y1) 9d" VF) in (L) e
el AR n (Vv ()
for all | <o,

Now, we can pass to the limit in (5.3) with the aid of (5.2) and {(4.12}. »
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5.2, Case a<<2

Let i, C WHe(£)) be given as in theorem 4.2 (if A= 1) or theorem 4.3 (if
NZ=>1).

Using the same argument as in the proof of lemma 2.4—a) and the
" conclusion of lemma 4.4, we get

|Vp. |2
19Dy < C(f!t T dx) (5.5)

Combining lemma 2.2—a), (1.6), (5.5) and taking into account that I is
solution of (4.2) if =1 or using (4.4) if N> 1, we deduce

pellf, «m,fCQ(prL — (w ) VP, d\+f 2. (a2 d\)

=G _L e — v pedx = Coll v — vl 120 2]l Iy

Remind that Wie ()Y C L2(0) thanks to (1.9).

Thus, {p.Je~y is bounded in W} “{{)) and it is possible to choose a
subsequence ¢{n) — 0 such that

Pem— P Weakly in W\‘I}"({n (56)

for some p& Wy ().
Rest of the theorem follows exactly as in the previous prool.m

We conclude this section proving the following additional property about
7 in the case @¢<2 and k=

Vi{x)=0 a.e vy, (5.7)
Let K be a compact subset of (0\(},. Then, we know that
Vi (x)—-Vr(x)=0 uniformly in K
Given 6 >0, there exists 2> 0 such that

(e |V {x)| <8 Ve<le YiyeR
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Now. thanks to (5.5}, we deduce

iVp|?
N (et

Lé [ 1w rdx= Ay G
.

and we canrconciude that
Voo — VP weakly in (L2 (K
Hence, we have

f[V,T)Pd.\’éliminffhIV,')L.(,,,P:/.\‘EEC‘;é V>0
; nint |

which implies VF{x) =0 a.e. ve K.
Since N\{), can be written as a countable union of compact sets (except
a set of measure zero). assertion {5.7) holds.
~ 6. REGULARITY OF THE OPTIMAL CONTROL
In this last section, we deduce some qualitative properties about optimal
controls. using the optimality conditions.
Theorem 6.1.  Les us suppose that p is strictly positive in (1.11) and
R={rvel?(N):m=v(x)=Ma.e xel}
HY(L)) e =2
with —ee<<m< M<+oe, Then, TE
Wioyy il o < 2
Proof

. . . . P .
Inequality {3.3) characterizes @ as the projection of — % on H. Hence, it
follows that

T(x)= max { n1, min {—— % pix). M H a.¢. veld
We conclude the proof noting that function f: R — R defined by

fis)=maxtm minis, M}
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is uniformly Lipschitz, using lemma 28.1 of Treves [14, pg. 2617 and the lact

H) () ifa=2

that pe ..

whe) ifa<2

Remarks

1) If 0 [m. M], moreover we obtain that 7. =0.
2) Il p=0, it follows from (3.3) that
H(x)e[m, M] i Zix)=0

(x}j=m if prx}>0
w{x)=.M it (x)<0

When F(x)70 a.c. x<{), we have that & is «bang-bangy,

In the conditions of theorem 6.1 and if N=1, the Hélder continuity of @

in {}is a consequence of the Sobolev imbedding theorem. In general (N> 1),
assuming that y,€ L°(Q,) with p’>N/2, we can apply Theorem 14.1 of
Ladyzhenskaya-Ural'tseva [7, p. 201] and deduce that p is Hélder continuous
in ) (and then @ too), see [3, 5].
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