Ir al contenido

Documat


Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity

  • Autores: Juncheng Wei, Olivier Rey
  • Localización: Journal of the European Mathematical Society, ISSN 1435-9855, Vol. 7, Nº 4, 2005, págs. 449-476
  • Idioma: inglés
  • DOI: 10.4171/jems/35
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that the critical nonlinear elliptic Neumann problem \[ \Delta u -\mu u + u^{7/3} = 0 \ \ \mbox{in} \ \Om, \ \ u >0 \ \mbox{in} \ \Om \ \mbox{and} \ \frac{ \partial u}{\partial \nu} = 0 \ \ \mbox{on} \ \partial \Om\] where $\Om$ is a bounded and smooth domain in $\R^5$, has arbitrarily many solutions, provided that $\mu>0$ is small enough. More precisely, for any positive integer $K$, there exists $\mu_K >0$ such that for $0 <\mu < \mu_K $, the above problem has a nontrivial solution which blows up at $K$ interior points in $\Omega$, as $\mu \to 0$. The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite dimensional reduced energy functional. No assumption on the symmetry, geometry nor topology of the domain is needed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno