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Abstract.  This paper deals with numerical functiods: [0, 1] x [0,1] — [0, 1] able to functionally
express operatorsy: [0, 1] x [0,1]Y — [0, 1]**Y defined agy — o)(x,y) = J(u(z),o(y)), and
verifying either Modus Ponens or Modus Tollens, or both. The concrete goal of the paper is to search for
continuous t-normq” and strong-negation functiod$ for which it is eitherT’(a, J(a, b)) < b (Modus
Ponens), of'(N(b), J(a,b)) < N(a) (Modus Tollens), or both, for alk,b in [0, 1] and a givenJ.
FunctionsJ are taken among those in the most usual families considered in Fuzzy Logic, namely, R-
implications, S-implications, Q-implications and Mamdani-Larsen implicatiEngassant, the cases of
conditional probability and material conditional’s probability are analyzed.

Sobre implicaciones MPT enla L 6gica Borrosa

Resumen.  Los operadores de implicami borrosos—: [0,1]* x [0,1]Y — [0,1]**Y se sue-

len expresar por medio de funciones rerivasJ : [0,1] x [0,1] — [0,1] de acuerdo con la igual-

dad (p — o)(z,y) = J(p(z),o(y)). El presente artulo estudia la verificaoii por parte de es-

tas funciones nuericas de las meta-reglas del Modus Ponens y Modus Tollens. En concreto, dada
una de estas funcionek el objetivo es determinar gui-normas continua® y qué funciones de ne-
gacin fuerte N verifican alguna (o ambas) de las desigualddbés, J(a,b)) < b (Modus Ponens)

y T(N(b), J(a,b)) < N(a) (Modus Tollens), para cualesquietigb en [0,1]. Las funcionesJ se

toman entre las pertenecientes a las familias mabitualmente utilizadas emgica Borrosa, esto es,
R-implicaciones, S-implicaciones, Q-implicaciones e implicaciones de Mamdani-Larsen.

1. Introduction

As it is well-known, the implication operatior: B x B — B in a Boolean AlgebréB, +,-," ) is usually
defined by means of the so-callediterial implication, given bya — b = a' + b for everya,b in B.
Nevertheless, the consideration that an implication is not only used to represent conditional statements of
the form “If a, thend”, but also, and mainly, to perform inferences, allows for a broader definition of this
kind of operations. Indeed, since the two main classical inference rulé&soakes Ponens (MP) andModus
Tollens (MT) (rules that allow, respectively, to perform forward and backward inferences), the following
definition can be established: an operatien B x B — B is animplication if for everya,b € B, itis
a-(a — b) < b(MPinequality) and’ - (a — b) < o' (MT inequality). Due to the special properties of
Boolean Algebras, and taking into account that in such structures the inequalit y is easily shown

to be equivalentte < z' + y for anyz,y, 2 € B, the two conditions of the above definition appear to be
equivalent, collapsing inte — b < a’ + b for anya, b € B. Therefore, despite the material implication is
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the greatest boolean implication, it is not the only one (concretely, [8] showed that there are, actually, seven
different classes of boolean implications).

The above discussion was restricted to the particular case of Boolean Algebras, but it can of course be
generalized to the case of more general lattidest, -) endowed with a negation operatorin this context,
the most general expression for a material implication is, perlapsh = a' - (b + b') + a - b. When the
negation is a complement (i.e., it verifies the lawsz’ = 0 andx + 2’ = 1 for anyz in L), the above
expression reduces to— b = a’ + a - b. If, in addition, an orthomodular lattice is taken, it can be proven
that the former expression is an implication in the sense that it verifies both the MP and the MT inequalities.
Nevertheless, contrary to the boolean case, these inequalities are, in general, no longer equivalent. It then
makes sense to establish the following definitions for an implication operation in a lattice structure:

Definition 1 Let (L, +, -) be a lattice endowed with a negation operator '. Anoperation —: L x L — L
will be called:

- a MP-implication whenever itisa - (a — b) < bfor everya,b € L.
- aMT-implication whenever itisb’ - (a — b) < o' for every a,b € L.
- a MPT-implication whenever it is both a MP and a MT-implication.

Note that, as it was proved before, lif is a Boolean Algebra then every MP-implication is a MT-
implication, and reciprocally.

The aim of this paper is to apply the above ideas to the context of Fuzzy Logics, thus suggesting a
revision of the concepts of fuzzy implication and fuzzy inference. Although the fulfillment of the Modus
Ponens or the Modus Tollens inequalities in Fuzzy Logics has been partially considered before (see for
example references [4], [9], [10] and [11]), this paper proposes a systematic study of both inequalities and
of their joint satisfaction. To such end, the paper is organized as follows: section 2 reviews the concepts
of implication and inference as they have traditionally been understood in Fuzzy Logics, and then proposes
the revision of the definition of fuzzy implication in the light of the approach that was just exposed. The
next sections (3 to 6) study how the traditional families of fuzzy implications fit into this new definition.
Finally, section 7 briefly analyzes the case of Probabilistic Logics.

2. Fuzzy Implications and Fuzzy Inference

We will deal with Standard Theories of Fuzzy Sets, where the conneciitegnd andor are represented,
respectively, by means of the well-known classestaing negation functions and continuousgriangular
norms (t-norms) andriangular conorms (t-conorms) (see for example [3] or [5]). In order to fix the notation
that will be used in this paper, we recall some basic well-known results on these operations:

e a strong negation is a functiaN,, : [0,1] — [0,1] defined asV, = ¢! o (1 — Id) o ¢, where
¢ : [0,1] — [0,1], called a generator a¥, is an order automorphism of the unit interval (i.e., an
strictly increasing function such tha{0) = 0 andy(1) = 1).

e continuous t-norms may be classified{ddin } U F(Prod) UF(W)UX,, whereProd(z,y) = z-y
is the product t-normi¥V (z,y) = Maxz(0,z + y — 1) is the Lukasiewicz t-norm; for any t-norff,
F(T') represents the s¢tl, : T, = ¢=' o T o (p x )}, whereyp is any order automorphism of
[0, 1], and, finally,X; is the family of ordinal sums. Remember that only t-norm&if\¥’) have zero
divisors, and thalV,,(z,y) = 0 is equivalent ty < N ().

e with a similar notation, the set of continuous t-conorms may be classified/as:} U F(Prod*) U
F(W*)UZ,, where nowProd* (z,y) = z+y—z-yandW*(z,y) = Min(1,z+y) are, respectively,
the Product and the Lukasiewicz t-conorms.
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In this paper, only those continuous t-norms and continuous t-conorms which are not ordinal sums will
be consider. Therefore, in the following, any reference to a continuous t-fiayma continuous t-conorm
S should be understood &8s€ {Min} U F(Prod) UF (W) andS € {Maz} U F(Prod*) U F(W*).

Regardingfuzzy implications functions, these are defined as operatiohs [0,1] x [0,1] — [0,1]
verifying some basic properties. In general, they are built by means of continuous t-norms, continuous t-
conorms and strong negations, and the most usual ones belong to the following four families (details on the
first three families, which generalize the classical material implication, may be found, for instance, in [3],
[4] or [5]; the fourth class, which includes operators commonly used in fuzzy control, is a generalization of
the boolean implication - y, and has been studied in [1]).

1. Residuated or R-implications, defined as/r(a, b) = sup{z € [0,1] : T'(a, z) < b}.
2. Srrong or S-implications, defined as/(a, b) = S(N(a), b).
3. Quantum Logic or Q-implications, defined as/(a,b) = S(N(a),T(a,b)).

4. Mamdani-Larsen or ML-implications, defined as/(a,b) = T'(¢1(a), 2(b)), wherey; is an order
automorphism oif0, 1] ande, : [0,1] — [0, 1] is a non-null contractive mapping (i.ex(z) < z
for all z € [0, 1]).

With respect tofuzzy inference, this is usually performed by means of the well-kno®eneralized
Modus Ponens andGeneralized Modus Tollens schemes, that generalize to the fuzzy world the two classical
inference rules. These inference schemes are described as follows:

Generalized Modus Ponens Generalized Modus Tollens
If z is P, theny is Q) If zis P, theny is @
xis P* y is notQ*
yis Q* x is notP*

In the above schemeg®, P* and@, Q* are fuzzy statements defined, respectively, on some universes
X andY’, and the goal is to computg* (respectively “notP*”) in such a way that the factsy“is Q*”
(respectively, & is not P*") can be considered as soundly inferred from the given premises. In order to
solve this problem, which was first addressed by Zadeh in [12], the following assumptions are made:

- the fuzzy statement8, P*, Q and@Q* are represented by means of fuzzy sets up- : X — [0, 1] and
Ko, o= Y — [0,1], and their negations are modelled using some strong negsition

- the fuzzy rule “Ifz is P, theny is " is interpreted in terms of a fuzzy relatidR : X x Y — [0, 1],
which is normally considered to be functionally expressiblé&és, y) = J(up(z), ug(y)), where
J :[0,1] x [0,1] — [0,1] is a fuzzy implication function;

- the conjunction of the premises is frequently performed by means of a continuous triangul&r.norm

With the former representations in mind, the two stated problems are solved using the s&oaled
positional Rules of Inference (CRI), that provide, respectively, the following results:

nQ=(y) = sup,ex T'(pp (@), J(up(z), po(y))) forallyiny
and

N(pp=(x)) = sup,cy T(N(pq-(y)), J (1p (z), no(y))) forall z in X.
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A fuzzy inference framework able to perform both forward and backward approximate reasoning in-
volves therefore the use of three fuzzy connectives: a fuzzy implicatianfuzzy conjunctiorf” and a
fuzzy negationV. Since there are several choices for each of them, the important question of how to select
them arises. This is a design problem that has been approached from several points of view (see for example
[2], [7]), but for which a general solution is still missing. To that respect, it seems clear that the choice of
the fuzzy implication cannot be made independently of the inference rules it is going to be used with. This
leads us to propose the following revision regarding the definition of fuzzy implication, which is established
accordingly with the general ideas on these operators that were discussed in the introduction:

Definition 2 Let T' be a continuoust-normand NV a strong negation. A function J : [0, 1] x [0, 1] — [0, 1]
will be called:

- aMP-implication for the t-normT" whenever itisT'(a, J(a,b)) < bfor anya,bin|0,1];
- aMT-implication for the couple (7', N') whenever itisT (N (b), J(a,b)) < N(a) for any a,bin [0, 1];

- a MPT-implication for the couple (7', N') whenever it is a MP-implication for 7" and a MT-implication
for (T, N).

Note that the use of MP, MT or MPT-implication functions is important in order to avoid one of the main
troubles encountered when using the CRI results, namely, the possibility of having fuzzy inference patterns
that do not coincide with the classical ones in the special cases itfete P (in the case of the generalized
Modus Ponens) of)* = @ (when using the generalized Modus Tollens). Indeed, if, for exandpie not
a MP-implication forT", there will be valuesiy, by € [0, 1] such thatl'(ag, J(ag,bp)) > by, and then
the inequalitysup,co,1)7'(a, J(a,b)) < b will not be guaranteed. In these cases, the CRI will produce
the undesirable situation in which, jfp- = pp, po- is not coincidental withug. The importance of
MT-implications can be shown in a similar way.

The nexttheorem establishes general characterizations for the concepts of MP, MT and MPT-implications:

Theorem 1 Let T be a continuous t-norm, N a strong negation, Jr : [0,1] x [0,1] — [0,1] the R-
implication associated to 7' and J. : [0, 1] x [0, 1] — [0, 1] the function defined by J.(a, b) = Jr (b, a) for
any a, b € [0, 1]. Thefollowing statements are true:

(1) Afunction J : [0, 1] x [0,1] — [0, 1] isa MP-implication for 7" if and only if J < Jr;
(2) Afunction J : [0, 1] x [0,1] — [0, 1] isaMT-implication for (7', N) if and onlyif J < J% o (N x N).

(3)Afunction J : [0,1] x [0, 1] — [0, 1] isaMPT-implicationfor (7', V) if and onlyif J < Min(Jz, J$ o
(N x N)).

PrRoOOF (1) is obvious since it is well-known th&t(a, J(a,b)) < b is equivalent toJ(a,b) <
Jr(a,b). This result is also used to obtain (2): indeed, according to the former equivalence, it follows that
T(N(b), J(a,b)) < N(a) is equivalentto/(a,b) < Jr(N(b), N(a)), andJr(N(b), N(a)) = J§ o (N x
N)(a,b), whereJ3(a,b) = Jr(b,a). N

Note that in the particular case whéfe= W, andN = N, the functions/; andJ4. o (N x N) are
the same. Indeed, it is easy to see that, (a, b) is equal toW (N, (a),b) for anya,b € [0,1] . On the
other side,J§, o (N, x N,)(a,b) = Jiy_(Ny(a), No(b)) = W (No(Ny (b)), Ny (a)) = Jw, (a,b). The
following result can therefore be stated:

Proposition 1  Let ¢ : [0,1] — [0, 1] be an order automorphismand J : [0,1] x [0,1] — [0, 1] agiven
function. The following statements are equivalent:

(i) J isa MP-implication for 1V,.
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(i) J isaMT-implication for (W, N,).
(i) J isa MPT-implication for (W,,, N,,).

On the other hand, the following necessary conditions for the verification of the MP inequality are very
simple but also very useful:

Proposition 2 Let T' be a continuoust-norm. If a function J : [0, 1] x [0,1] — [0, 1] isa MP-implication
for T', then the two following conditions are necessarily fulfilled:
(MP1) J(1,b) < bfor al b e [0,1]
(MP2)T'(a, J(a,0)) =0for all a € [0,1]
PrRoOOF  (MP1) and (MP2) are obtained by just taking, respectively, the valuesl andb = 0 in
the MP inequality. B
The nextresultis animmediate consequence of property (MP2), since, as it was recalled before, t-norms

in the family of Lukasiewicz are the only ones having zero divisors.

Corollary 1 Let T bea continuoust-normand J : [0, 1] x [0, 1] — [0, 1] a function such that J(a,0) # 0
for somea # 0. If J isaMP-implicationfor T', thenit isnecessarily T' = W, for some order automorphism
¢, and condition (MP2) may be written as J(a,0) < N, (a) for al a € [0, 1].

Similar considerations may be done for the MT inequality; the results obtained in this case are summa-
rized as follows (their proofs are, as in the previous case, immediate):

Proposition 3 Let 7" be a continuoust-normand N a strong negation. If a function J : [0,1] x [0,1] —
[0,1] isa MT-implication for (T', V'), then the two following conditions are necessarily fulfilled:

(MT1) J(a,0) < N(a) for al a € [0,1]

(MT2) T(N(b), J(1,b)) = 0for all b € [0, 1]
Corollary 2 Let T bea continuoust-normand .J : [0, 1] x [0, 1] — [0, 1] a function such that J(1, ) # 0
for someb # 1. If J isaMT-implication for (7', N), where N is any strong negation, then it is necessarily

T = W, for some order automorphism ¢, and condition (MT2) may be written as J(1,b0) < N,(N (b))
forall a € [0, 1].

The following sections make use of all these results in order to study when the four mentioned families
of traditional fuzzy implications are MP or MT implications, and, as a consequence, when these functions
are MPT-implications.

3. The case of R-implications

In this section we will consider two continuous t-norfi@ndT';, a strong negatiofV, and we will study
when the residuated implicatiofr, is a MP or a MT implication for the coupl@’, N). Let us first of all
recall the following characteristics of R-implications:

e The values of/r, for the three main families of continuous t-norms are the following:

1, ifa<b
b, otherwise

— Ty = W, Jr, (a,) = W5, (N, (a), )

- If Ty = Min, Jr,(a,b) = {

263



E. Trillas, C. Alsina and A. Pradera

1, if a <b

= If Ty = Prody,, Jr,(a,b) = { 1 (p1(b)/¢1(a)), otherwise

e Jr,(1,b) =bforanybin [0, 1].

e Regarding the valuér, (a, 0), the following distinction has to be made:
-if Ty = Min orTy = Prod,,, thenJy, (0,0) = 1 andJy, (a,0) = 0 for anya # 0;
-if Iy = W, , thenJy, (a,0) = Ny, (a) foranya € [0, 1].

e With the only condition ofl’; being a left-continuous t-norm, it is well known (see e.g. [10]) that
T (a, Jr,(a,b)) = Min(a,b) < b, which means thafy, will always be a MP-implication for any
t-normT such thafl’ < T3.

The next theorem provides a complete characterization of the class of R-implicdtiornshich are
MP-implications.

Theorem 2 Let T and T} betwo continuoust-norms. Then:
(&) If Ty = Min, then Jy, isa MP-implication for any t-norm 7.

(b) If Ty = W,,,, then Jp, isa MP-implication for 7" if and only if there exists an order automorphism
¢ :[0,1] = [0,1] suchthat " = W, N,, < N, and W (a,b) < W5(Ny,(Ny,(a)),b) for any
a,b € [0,1].

() If Ty = Prod,,, then Jr, isaMP-implication for T if and only if there exists an order automor phism
¢ : [0,1] — [0, 1] such that one of the two following situations holds:

(€)T =W, and 7 (91 (b) /1 (a)) < W3 (Ny(a),b) for anya,b € [0,1] suchthat a > b.
(€2)T = Prod, and o1 (p1(b)/p1(a)) < L (p(b)/p(a)) for anya,b € [0,1] suchthat a > b.

PROOFR

(@) Ty = Min is the greatest t-norm, and therefore for any other t-n@trt is T'(a, J 1, (a,b)) <
T (a, Jr,(a,b)) = Min(a,b) <b.

(b) It T, = W,,,, let us suppose thal;, is a MP-implication forI". Then, since, as it was mentioned be-
fore, itis Jr, (a,0) = Ny, (a), corollary 1 impliesI" = W, andN,, < N,. Now, the MP inequality,
which, due to theorem 1, is equivalentie, < Jr, becomesV (Ny, (a),b) < W (Ny(a),b), or,
equivalently W (a,b) < W5 (Ny(Ny, (a)),b).

(c) WhenT; = Prod,,, the MP inequality is true for any t-norffi whenever the values b € [0,1] are
taken such that < b: indeed, in these cases itis, (a,b) = 1 and, thereforel'(a, J1, (a,b)) = a <
b. Otherwise, the MP inequality becontBsa, ¢ * (1 (b)/¢1(a))) < b, and its verification depends
on the t-norml™:

-if T = Min, the inequality becomes < b whenever it isp1 (a)? < ¢(b), ande; (b) < ¢1(a) -
©1(b) otherwise. Both cases are false, and, therefore, residuated implications based on t-norms
such thafl} € F(Prod) will never be MP-implications fof” = Min.

-if T =W, orT = Prod,, it suffices to use the characterization of the MP inequality given in
theorem 1 to obtain the conditions stated in (c1) and (c2).

On the other hand, the results obtained when studying the MT inequality can be summarized as follows:
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Theorem 3 Let T and T} be two continuous t-norms and N a strong negation function. Then J, isa
MT-implication for (T, N) if and only if there exists an order automorphism¢ : [0, 1] — [0, 1] such that
= W,, N < N, and one of the following situations holds:

(a) T, = Min

(b)Ty = W, for someorder automorphismeps, Ny, < NandW (a,b) < WZ5(N (N, (a)), Ny (N (D))
for anya,b € [0,1].

(c) T\ = Prod,, for some order automorphisme; and ¢, * (1 (b)/¢1(a)) < W5 (N(a), Ny(N(b))) for
anya,b € [0,1) suchthata > b.

PROOF  If we suppose thaff;;, is a MT-implication for(7', N), then corollary 2 implies that the
conditions?” = W, and N < N, are mandatory. We now distinguish the family that the t-ndfm
belongs to:

(@) if Ty = Min, the MT inequalityl' (N (b), Jr, (a,b)) < ( ) is always true. Indeed, if it ia <
b, thenT' (N (b), Jr,(a,b)) = T(N(b),1) = N(b), andN(b) < N(a) is true. Otherwise, it is
TN (B), 1, (0,5) = T(N(B),b) = o} (Maa 0,0V >> p(b) — 1)) = 0, (since by hypothesis
itis NV < N,), and the MT inequality becomé&s< N(a).

(b) if Ty = W,,, itis Jr,(a,0) = N,,(a), and therefore, by condition (MT1) of proposition 3, it
is necessarilyN,, < N. Now, the MT inequality, which by theorem 1 is equivalentte, <
JSoNxN, may be written a8V’ > (N, (a),b) < W5 (N(a), N,(N(b))), or, performing a variable’s
change, a$V’; (a,b) < W (N(Ny,(a)), Np(N(b))).

(c)if Ty = Prod,,, whena < b the MT inequality is true, since in these cases {8V (b), Jr, (a,b)) =
T(N(b),1) = N(b) < N(a). Otherwise, by theorem 1, it is equivalenty¢q * (1 (b) /1 (a)) <
W (N(a), Np(N (D))

4. The case of S-implications

In this section we will consider a S-implication given.Ag:, b) = S(N;(a), b), and study the MP and MT
inequalities with respect to a coudl&, N). Some basic results regarding these implications operators are
the following:

e J(1,b) = bforanyb € [0,1].
e J(a,0) = Ny(a) foranya € [0,1].

e If the negationsV; and NV are chosen such thaf; = N, then the MP and MT inequalities are
equivalent. Indeed, if'(a, S(N(a),b)) < b holds for anya,b € [0, 1], the change of variables
a = N(B) andb = N(a) givesT(N(8),S(8,N(a))) < N(a) foranya, € [0,1], which is
the MT inequality. Analogously, frorff’'(N (b), S(N(a),b)) < N(a), and with the same change of
variables, the MP inequality is obtained.

The next theorem characterizes the class of S-implications that are MP-implications.

Theorem 4 Let .S be a continuoust-conorm, 7" a continuous t-norm and [V, a strong negation. Then the
Simplication J defined as J(a, b) = S(N1(a),b) isa MP-implication for 7" if and only if there exists an
order automorphisme : [0,1] — [0,1] suchthat 7' = W,,, N1 < N, and S(a,b) < W3 (N, (N1(a)),b)
for anya,b € [0, 1].
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PROOF  If we suppose thal is a MP-implication, the equality(a,0) = N, (a) implies, by corollary
1, thatT = W, andN; < N,. Now, the MP-inequality iV, (a, S(N1(a),b)) < b, or, equivalently,
Wy, (N1(a), S(a,b)) < b. The later is equivalent tdfaz[0, p(N(a)) + ¢(S(a,b)) — 1] < ¢(b), which
is true either if it isS(a,b) < Ny,(Ni(a)) orifitis S(a,b) < ¢~ (Min[l,p(b) + ¢(Ny,(N1(a)))]) =
W3 (Ny(Ni(a)),b). Since itis alwaysV, (N1 (a)) < W3(Ny(N1(a)),b), only the second inequality has
to be considered. W

Remark 1 Note that, in the characterization given in the last theorem, the condition N; < N, i.e,
Ni(a) < Ny(a) foranya € [0,1], impliesthata < N, (V1 (a)) for anya € [0, 1]. Therefore, in particular,
any t-conorm S such that S < W7 will verify the required conditions, because S(a,b) < W(a,b) <

W3 (Ny(Ni(a)),b) foranya, b € [0,1].
Regarding the MT-inequality, the following characterization is obtained:

Theorem 5 Let S be a continuous t-conorm, 7' a continuous t-norm and N, N; two strong negations.
Then the Siimplication J defined as J(a,b) = S(N1(a),b) is a MT-implication for the couple (T, N) if
and only if there exists an order automorphisme : [0,1] — [0,1] suchthat T = W, N; < N < N, and
S(a,b) < W3 (N(Ni(a)), Ny(N(b))) for anya,b € [0,1].

PrRoOF  If J is a MT-implication, then because of condition (MT1) of proposition 3 ivig < N,
and because of corollary 2 it 8 = W, andb < N,(N(b)), i.e., N < N,. Then, the MT inequality
is W, (N(b), S(N1(a),b)) < N(a), or, equivalentlyV,(N(b), S(a,b)) < N(Ni(a)). The later is true
eitherif itis S(a,b) < N,(N (b)) or S(a,b) < = (Min[l,p(N(Ni(a))) + ¢(N,(N(b)))]), and the last
expression may be written & (N (N1 (a)), No(N(b))). H

Remark 2 As it was the case for the MP inequality, we can remark that it is sufficient to choose an
Simplication such that S < W in order to guarantee the MT inequality for a t-norm 7" = W, and
a negation NV such that Ny < N < N,. Indeed, from N; < N itisa < N(Ni(a)), and from
N < Nywegethb < Ny(N(b)). Then, if S < Wy, itwill be S(a,b) < S(N(Ni(a)), Nyo(N (b)) <
W5(N (Ni(a)), Np(N (1))

5. The case of Q-implications

Concerning Q-implications of the forth(a, b) = S(N1(a), T1(a, b)), the following preliminary properties
are worth-mentioning:

e J(1,b) = bforanyb € [0, 1].
e J(a,0) = Ny(a) foranya € [0,1].

e From the fact that (N, (a), T3 (a,b)) < S(Ni(a),b) for all a,b € [0, 1], it follows that a sufficient
condition for a Q-implicatiorS (N1 (a), T1(a, b)) to be either a MP-implication or a MT-implication
for a couple(T', N) is that the corresponding S-implicatiéii N (a), b) verifies such inequalities for
any couplgT>, N) with T' < Ts.

The next two theorems establish, respectively, which Q-implications verify the MP and the MT inequal-
ities.

Theorem 6 Let S be a continuous t-conorm, 7,7’ two continuous t-norms and N; a strong negation.
Then the Q-implication J defined as J(a,b) = S(Ni(a),Ti(a,b)) is a MP-implication for T' if and
only if there exists an order automorphism ¢ : [0,1] — [0,1] suchthat ' = W, N; < N, and
S(a,T1(Ni(a),b)) < W5 (Ny(Ni(a)),b) for anya,b € [0, 1].
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PROOF  SinceJ(a,0) = Ni(a), corollary 1 states thaf = W, andN; < N,, are necessary fof
being a MP-implication. With such conditions, the MP inequality becoiega, S(N: (a), T1(a,b))) < b,
or, applying a change of variableB/, (N1 (a), S(a,T1(N1(a),b))) < b. This inequality will be true
whenever itisS(a, 71 (N1 (a), b)) < Ny(N1(a)) or whenS(a, T1 (N1 (a), b)) < W5 (Ny(Ni(a)),b). B

Theorem 7 Let S be a continuous t-conorm, 7'y, T' two continuous t-normsand N, N two strong nega-
tions. Then the Q-implication J defined as J(a,b) = S(Ni(a),T1(a,b)) is a MT-implication for the
couple (7', .5) if and only if there exists an order automorphism ¢ : [0,1] — [0,1] suchthat T = W,
N1 <N < Ny and S(a, T1(N1(a),b)) < W5(N(Ni(a)), Np(N(b))) for anya,b € [0,1].

PrRoOOFR  If J is a MT-implication, then condition (MT1) in proposition 3 providds < N, and
condition (MT2), via corollary 2, implies thal' = W, and N < N,. Then the MT inequality is
Wy, (N (D), S(a, T1(N1(a),b))) < N(N:(a)), and this is only true whenever it $(a, T1 (N1 (a), b)) <
Ny (N (b)) or S(a, T1(Ni(a), b)) < Wi (N(Ni(a)), No(N (). W

Remark 3 Asit was observed at the beginning of this section, the conditions under which a S-implication

isaMP or MT-implication are sufficient for the corresponding Q-implicationto bea MP or a MT-implication.
Therefore, according to remark 1, any Q-implication J(a, b) = S(N1(a), T1(a,b)) suchthat S < W will

be a MP-implication for ' = W, aslong as IN; is chosen such that N; < N,. Smilarly, following re-

mark 2, any such implication will be a MT-implication for the couple (1, N') by just adding the condition

N < N,.

6. The case of ML-implications

Mamdani-Larsen’s operators are those represented by a funcfitmal) = 71 (p1(a), v2(b)), whereT is
acontinuous t-normy; is an order automorphismang : [0, 1] — [0, 1] is a non-null contractive mapping,
i.e., it verifiespq(z) < z for anyz € [0,1] andps2(z) > 0 for somez # 0. Whenyp; = ¢, = Id and
T = Min,itis J(a,b) = Min(a,b), which is the so-called Mamdani’s implication; when = p; = Id
andT' = Prod, Larsen’s implication/(a, b) = a - b, is obtained.

For any ML-implicationJ, itis J(1,b) = ¢2(b) andJ(a,0) = 0 for all a,b € [0,1]. In addition, for
any t-normT’ it is

T(a, J(a,b)) = T(a, T1(¢1(a), p2(b))) < Ti(p1(a), p2(b)) < pa(b) < b,
and these inequalities provide the following result:

Theorem 8 Let T, T} be two t-norms, ¢; an order automorphismand ¢» : [0,1] — [0, 1] a non-null
contractive mapping. Then the ML-implication defined as J(a, b) = T'1 (¢1(a), p2(b)) isa MP-implication
for thet-norm 7.

Therefore, ML-implications are MP-implications for any t-nofifmand, in particular, fofl' = Min.
The next theorem states the conditions under which a ML-implication verifies the MT inequality.

Theorem 9 Let T, Ty betwo t-norms, ¢; an order automorphism, ¢, : [0, 1] — [0, 1] a hon-null contrac-
tive mapping and N a strong negation. Then the ML-implication defined as J(a,b) = T'1(v1(a), p2(b))
is a MT-implication (and a MPT-implication) for the couple (7, N) if and only if there exists an order
automorphisme : [0,1] — [0, 1] suchthat T = W, and p» < N, o N.

PROOF  Let us first suppose that is a MT-implication for (7', N). SinceJ(1,b) = ¢2(b) for
anyb € [0, 1] andy- is a non-null mapping, it is/(1,b) # 0 for someb. Then, according to corollary
2, itis necessarilyf" = W, for some automorphism, andy,(b) < N,(N(b)). On the other hand, it
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appears that these conditions are sufficientfdo be a MT-implication. Indeed, the MT inequality is
equivalent toM az (0, o(N (b)) + o(T41 (p1(a), p2(b))) — 1) < p(N(a)), which is always true, because
Ti(p1(a), p2(b)) < @2(b) < Ny(N ().

Note that, unfortunately, the above characterization is reached at a very high cost: when a ML-implication
verifies the MT-inequality, it is because the value of the left-hand side of this inequality is zero, and, there-
fore, the Modus Tollens inference rule will not provide any useful information.

Table 1 summarizes the results obtained, regarding both MP and MT characterizations, for the four
classes of fuzzy implications that have been studied. Table 2, which is the result of intersecting (taking the
minimum) the two columns of the first table, provides the necessary and sufficient conditions under which
the different fuzzy implications’ classes appear to be MPT-implications. Note that the conditions in this last
table are significantly simplified whenever the negafloiis taken asV,,, since in this particular case (see
Proposition 1) MP and MT inequalities are equivalent.

M P-implication for T' M T-implication for (7', N)

R-implication Jr, with

always
T1 = Min

T=W, N<N,

T =Wy, Npy < Ny, T'=W, Ny <N < Ny,

R-implications Jz, with W, (a,b) < W, (a,b) <
Ti=We W5 (Np (N, (), b)- W5 (N(Ng, (a)), N (N(0)))-
T =Ww,,

o1 H(p1(b)/p1(a)) <
R-implications We(No(a),b),a > b] T'=Wy N < N,
Jr, With OR o1 (p1(b)/p1(a)) <
T1 :PTOdlpl [T:PTOdVN W;(N(a)7N¢(N(b)))7a>b~
¢1 (p1(b)/p1(a)) <
¢~ Hp(b)/p(a)),a > b]
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S-implications
S(Ni(a),b)

T =W, N1 <N,,
S(a,b) <
W (Ny(Ni(a)),b).

T =W, N <N<N,,
S(a,b) <
Wi (N(N1(a)), No (N(b))).

Q-implications
S(Nl (a)) T (a) b))

T =W, N1 <N,,
S(a, T (N1 (a), b)) <
W3 (Ne (Ni(a)),b).

T =W, Ny <N<N,,
S(a)Tl(Nl(a))b)) <

We (N (Ni(a)), No(N(b)))-

ML-implications
Ti(p1(a), 2(b))

always

T =W,,p» < NyoN.

Table 1. Characterization of MP and MT-implications




Implication in Fuzzy Logic

M PT-implication for (7', N)

R-implication Jr, with T=W, N<N,
T = Min -
H H : . T:WV%NWl SNSNLP)
R-II’T\p'ICatIOI’]SJT1 with ng (a,b) < WL;(NW(Nvl (a)),b),
f=Wa W, (a,0) < W (N(Np, (@), No (N (5))):
H : : : T= WV’7 N S NAP:
Rmplications Jz, with #1110/ 01(@) < W (N, (a),b),0 > b,
1= Prod,, o7 (91(0) /01(a)) < W (N(a), Np(N(B))),a > b

T =W, N <N<N,,
S(a,b) < WS (Nyp(Ni(a)),b),
S(a,b) < WS (N(Ni(a)), No(N(D))).

S-implications
S(Ni(a),b)

Q-implications S(a, Ty (?Vlz(av)vi,)zv < %vjv(i ](Vﬁi (a)),b)
S(M(a), To(a,b) S(a, Ti (N1 (1), b)) < Wi (N(Ni(a)), Ny (N (5)))

ML-implications

T:W7 D <N ON.
T1 (1 (a), p2(b)) prP2= e

Table 2. Characterization of MPT-implications

7. A remark on Probabilistic Logics

There are two main branches in Probabilistic Logic: the Bayesian approach, in which one associates to the
rule “If a, thend” (for a,b in a Boolean Algebra) the probabili(b/a), provided it isp(a) > 0, and the
Nilsson’s model, where the assigned probability(g’ + b).

Concerning Nilsson’s logic, as it i8(a, 0) = p(a') and.J(1,b) = p(b), corollaries 1 and 2 show that the
only continuous t-norms that may be considered for the fulfillment of either the MP or the MT inequality
are those in the Lukasiewicz family. In particular, it is easy to check that the Lukasiewicz tHWiorenifies
the MP inequality:W (p(a), J(a,b)) = Maxz(0,p(a) + p(a’ + b) — 1) = Maz(0,p(b) — p(a’ - b)) =
p(b) — p(a’ - b) < p(b). In addition, Proposition 1 shows that in this case, takiig= 1 — Id, the
MT inequality is equivalent to the former one, and, consequently, Nilsson’s interpretation appears to be a
MPT-implication for the coupléWV, 1 — Id).

Regarding Bayesian’s approach, it is clear thiai, b) = p(b/a) verifies the MP inequality with" =
Prod, since itisp(a).p(b/a) = p(a - b) < p(b), and, as¥V < Prod, the same will happen féf = W.
Therefore, the Bayesian implication is a MP-implication for bdth= Prod andT" = W. Nevertheless,
since itisJ(1,b) = p(b), corollary 2 implies that, with conditional probabilities, the MT inequality cannot
be obtained withl" = Prod, since only t-norms belonging to the tukasiewicz family can be considered.
According to Proposition 1, this will be the case, in particular, for the tukasiewicz t-norm, provided the
negationl — Id is chosen. Therefore, the Bayesian’s interpretation will be, as in Nilsson’s model, a MPT-
implication for(W, 1 — Id).
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8. Conclusions

Looking at the tables that summarize the paper’s results, it can be observed that continuous t-norms in
the tukasiewicz family are ubiquitous among the solutions, mainly in the case of MT-implications, and,
fortiori, in that of MPT-implications. One of the problems with this kind of t-norms can be illustrated, for
example, with the following MP’s situation:

e < J(pp(x), po(y))
6 < pp(x)

Wy (e,0) < Wy(up(z), ne(y) < noly),

thatis, g (y) € [Wy (e, 6),1]. But whenW,, (e,6) = 0 (i.e.,(€) + () < 1), the above scheme provides
the non-informative conclusiopg(y) € [0,1]. Hence, it should beV, () < € to actually reach some
information onug (y).

Consequently, and at least in the case of Modus Tollens where t-ridigappear more frequently,
it could be convenient to return to the old ideas ([7], [6]) of Modus Ponens and Modus Tollens gener-
ating functions, that is, to function& : [0, 1] x [0,1] — [0,1] such that eithe®M (a, J(a,b)) < b or
M(N(b), J(a,b)) < N(a) for all a,b in [0, 1] verifying at leastd/(1,1) = 1 (to capture the crisp case).
The t-norms are only a particular case of these more general functions.
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