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P-adic Root Isolation

Thomas Sturm and Volker Weispfenning

Abstract. We present an implemented algorithmic method for counting and isolating all�-adic roots
of univariate polynomials� over the rational numbers. The roots of� are uniquely described by p-adic
isolating balls, that can be refined to any desired precision; their�-adic distances are also computed
precisely. The method is polynomial space in all input data including the prime�. We also investigate the
uniformity of the method with respect to the coefficients of� and the primes�. Our method thus provides
information analogous to that provided by well-established real methods as, e.g., Cauchy bounds and
Sturm sequences over the reals.

Separaci ón de ra ı́ces P- ádicas

Resumen. Presentamos un m´etodo algor´ıtmico implementado para contar y aislar todas las ra´ıces
�-ádicas de polinomios� en una variable con coeficientes racionales. Las ra´ıces de� se describen
unı́vocamente mediante bolas�-ádicas que las a´ıslan y que pueden ser refinadas hasta cualquier pre-
cisión que se desee; sus distancias�-ádicas son tambi´en computadas con precisi´on. El método posee
complejidad polinomial en todos los datos de entrada, inclu´ıdo el primo�. También investigamos la
uniformidad del m´etodo con respecto a los coeficientes de� y los números primos�. Nuestro m´etodo
suministra informaci´on análoga a la que suministran m´etodos bien establecidos para los n´umeros reales,
como por ejemplo, las cotas de Cauchy y la sucesi´on de Sturm.

1. Introduction

The field� of real numbers and the fields� � of �-adic numbers for a prime� are similar in many respects:
Both are completions of the rational field� with respect to some multiplicative norm; both have decidable
first-order theories, allow quantifier-elimination in suitable languages and have natural complete first-order
axiomatizations [2, 3, 10, 11, 6, 15, 21, 22, 23, 7]. For the reals� the crucial axioms are the Intermediate
Value Theorem for polynomials of arbitrary degree; for the�-adics� � the crucial axioms are Hensel’s
Lemma for polynomials of arbitrary degree [12, 16, 6, 15, 21, 22, 23]. In both fields each zero of a univariate
polynomial can be described uniquely: In the case of the reals� either by isolating intervals or via Thom’s
Lemma [5, 4]; in the case of the�-adics� � as Hensel zeros with given residue class [6, 7, 22, 23].

The most famous fundamental algorithmic result for the reals is Sturm’s Theorem [19, 4], which pro-
vides an explicit formula for counting the number of real zeros of a real univariate polynomial in a given
interval. Together with its generalizations by Sylvester and Habicht [4] it is the basis of most algorithmic
methods for real polynomials. In particular it allows an algorithmic construction of a system of pairwise
disjoint isolating intervals for the real zeros of a given polynomial� � ��� � and the sign-evaluation of a
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further polynomial� � ��� � at all real zeros of� . These algorithmic methods for the reals� have been
implemented and optimized for many years in several computer algebra systems and packages.

By the way of contrast, the corresponding algorithmic methods for the�-adics� � have remained largely
theoretical [2, 3, 10, 11, 6, 15, 21, 22, 23, 7]. A notable exception is theREDLOG package ofREDUCE,
which provides a quantifier elimination and decision method for first-order linear problems over the�-adics
[8, 9, 20]. The computer algebra system Magma contains an efficient numerical�-adic root finder, which
computes approximations of the�-adic zeros of a univariate polynomial with rounded�-adic coefficients
to any prescribed�-adic precision; see [17] for the algorithm used there. Just like approximative numerical
zero finding algorithms in the reals this approach is not well-suited for our goals.

Even on the theoretical side, however, there appears to be no stringent analogue for the theorems of
Sturm and Sylvester on root counting and root localization with side conditions for the�-adics. While it is
clear from the general algorithmic quantifier elimination and decision methods that such an analogue must
exist, an explicit formulation, let alone an implementation, had been missing so far. An early theoretical
algorithm for determining, whether a multivariate polynomial has at least one�-adic zero appears in [16].

In the present paper we fill this gap:

� We provide an algorithm for computing isolating�-adic balls for all�-adic zeros of a given polyno-
mial � � ��� �.

� We provide an algorithm for refining the isolating�-adic balls obtained by our algorithm above to
arbitrary precision.

� The output of our algorithms explicitly provides the distances between the different�-adic zeros of
� .

� From our presented algorithms one can straightforwardly derive an algorithm for computing the exact
number of�-adic zeros of� in a prescribed�-adic ball.

Thus we have complete analogues of the algorithmic method of Sturm for the�-adics. Our algorithms
have been implemented by the first author in aREDUCEpackage namedPROOTS. This package is available
for download and will be included in the next release ofREDUCE. A number of explicit computational
examples illustrates the range of possible applications.

On the theoretical side, we provide explicit upper bounds on the asymptotic complexity of our algo-
rithms for large polynomial degrees and/or large primes�. Furthermore, we investigate the uniformity of
the algorithms with respect to variations of the prime� and/or variations in the coefficients of the input
polynomials� and�.

For values of the prime� that are large in comparison to the coefficients of the input polynomials
the situation is particularly easy and pleasant. Here we can formulate a very close analogue of Sturm’s
Theorem.

As a further analogue to real algebra [13], we prove a theorem that bounds the number of�-adic zeros
of � solely in terms of the number of monomials of� , the prime�, and a certain�-adic value computed
from the coefficients of� independently of the degree of� .

2. Possible Values of Zeros

Our initial idea is that the strict triangle inequality for� imposes surprisingly hard restrictions on the possi-
ble value of zeros. Let� � ��� � be a nonzero polynomial

� �

��
���

���
� with �� �� ��
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Consider� � �� with � �� � and���� � �. Then�
���

��� ���
�
�
� �. Assume for a contradiction that

there is exactly one���� of minimal value in this sum. Then we can conclude by the strict triangle inequality

�

� ��
���

���
�

�
� �����

�� ���

So there must be at least two such summands. These informal considerations motivate the following defi-
nitions, which exploit them without talking about�.

A balancable pair for � is a pair����� 	 ���
�� of monomials of� , where
 � �, �� �� �, �� �� �, and

������ �����

� � 

� ��

This integer���� �������
��� is called thebalancing value of the balancable pair�� ��� 	 ���

��. A balancable

pair ����� 	 ���
�� is critical for � if

������� 
�����

� � 

� ���

�����������
����� 	 �

������ �����

� � 

�

Its balancing value is then called acritical value for � .

Lemma 1 (Possible Values of Zeros) Let � �
��

��� ���
� � ��� � with � �� �. Let � � �� with

� �� � such that ���� � �. Then ���� is a critical value for � .

PROOF. To start with, we observe that from���� � �, it follows that������� ��. Define


 � ���
�����������

�����
�� and � �

�
� � ��	 � � � 	 ��

�� ������� � 

�
�

We may conclude from� �� � and� �� � that
 ��. This implies in turn that� � �� � for � �� . Next, we
have that�� � � 
, because� � ��� for some� � ��	 � � � 	 �� would by the strict triangle inequality yield
the contradiction

� � ������� � �����
�� � 
 ���

We can thus choose
, � � � with 
 � �, and consider the pair����� 	 ���
��. ¿From the equality

�����
�� � 
 � �����

�� we equivalently obtain

����� 	 
���� � ����� 	 ����� 	
 ������ ����� � �� � 
����� 	

������ �����

� � 

� �����

Since���� � �, this shows in particular that����� 	 ���
�� is a balancable pair. Assume for a contradiction

that����� 	 ���
�� is not critical for� . Then there is� � ��	 � � � 	 �� such that

�����
�� � ����� 	 �

������ �����

� � 

�

������� 
�����

� � 

� ����� 	 


������ �����

� � 

� �����

�� � 
	

which contradicts the choice of
. �

Notice that the number of critical values for� is bounded by the number of critical balancable pairs,
which is in turn bounded by���� ���
. Hence there are only finitely many possible values for zeros of� ,
and a finite superset of these values can be computed from� .

For illustrating our notions by means of examples, we make various choices for the valuation� �, and
then consider the polynomial

� � ���� � 
� 	 ��

241



T. Sturm and V. Weispfenning

For� � 
, the pair��	�
�� is balancable with balancing value��. It is, however, not critical, because
���� � ���
� � � � ����� � �. The pair��	 ����� is balancable with balancing value�. This one is
critical, because���� � ����� � ���
�. The pair��
�	 ��� �� is not balancable. The critical values for
� are�� and�.

For� � �, all the pairs��	�
��, ��	 �����, and��
�	 ����� are balancable with the same balancing
value��. They are all critical, because���� � ���
�� � � ������ �. There is only one critical value for
� , which is��.

For � � �, the pair��	�
�� is balancable with balancing value�. This is a critical pair, because
���� � ���
�	� � �����	�. The pair��	 ����� is not balancable. The pair��
�	 ��� �� is balancable
with balancing value�. It is also critical, because���� � ���
� � �����. The critical values for� are�
and�.

3. Normalization

In the previous section we have computed finitely many critical values, which are possible values of ze-
ros. We are now going to derive for each such value� and an associated critical pair�� ��

� 	 ���
�� a

transformed polynomial���� from the original polynomial. The idea is that roots of value zero of� ���

correspond to roots of value� of � . In addition, we take care that� ��� � ���� �.
As in the previous section let� �

��

��� ���
� � ��� � with � �� �. Let ����� 	 ���

�� be a critical
balancable pair for� . Then the
-�-normalization of � is defined as

���� � ��
����� ������� �

���

��
���

��

	
�
���� ������ �

��� �

�

�
��
���

���
��������� ����������� �

��� � ��

As an example choose� � � and reconsider our polynomial� � ��� � � 
� 	 � from the previous
section. We obtain

���� � ���
�
������� � 
���� 	 �

�
� ���
���� 
� 	 � and ���� � ��

Lemma 2 (Zeros Under 
-�-Normalization) Let � � ��� � with � �� �. Let ����
� 	 ���

�� be a
critical balancable pair for � . Then the following hold:

(i) For � � �� we have ������� � � if and only if �
	
�
���� ������ �

��� �


� �.

(ii) For � � �� we have ������
���� � � if and only if � �

	
�
���� ������ �

��� �


� �.

PROOF. To start with, observe that since����� 	 ���
�� is critical, we have����� ��������

��� � � and thus

��
����� ������� �

��� �� �.

(i) By definition of���� we have

���� � ��
����� ������� �

���

��
���

��

	
�
���� ������ �

��� �

�
�

¿From this together with our initial observation, the assertion in Part (i) follows immediately.

(ii) Using the definition of���� as in Part (i) and the chain rule, the derivative of� ��� is obtained as

������
� �

�
��

����� ������� �

��� �
	
�
���� ������ �

��� �

��

� ��
����� ������� �

��� �
���� ������ �

��� � �
	
�
���� ������ �

��� �


�
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By the definition of the balancable pair����� 	 ���
�� we have�����������

��� � � and thus certainly

�
���� ������ �

��� �� �. From this together with our initial observation, the assertion in Part (ii) follows
immediately. �

Lemma 3 (Properties of the 
-�-Normalization) Let � �
��

��� ���
� � ��� � with � �� �. Let

����
� 	 ���

�� be a critical balancable pair for � . Then the following hold:

(i) ���� is square-free if and only if � is square-free.

(ii) All the coefficients of ���� are �-adic integers: ���� � ���� �.

(iii) Both the 
-th and �-th coefficient of ���� have value �.

(iv) If � � ��� �, then ���� � ��� �.

PROOF.

(i) This is an immediate consequence of Lemma 2.

(ii) Making use of the fact that����� 	 ���
�� is critical for� , we obtain for� � ��	 � � � 	 �� for the value

of the�-th coefficient

�
	
���

��������� ����������� �

���



� ����� 	

��� �������� ��� 
������

� � 


�
	
����� 	 �

������ �����

� � 




�

������� 
�����

� � 

� ��

(iii) For the values of the
-th and�-th coefficients we obtain

�
	
���

��������� ����������� �

���



� ����� 	

�
 � �������� �
 � 
������

� � 

� ������ ����� � �

and

�
	
���

��������� ����������� �

���



� ����� 	

�� � �������� �� � 
������

� � 

� ������ ����� � �	

respectively.

(iv) Let � � ��	 � � � 	 ��. Since�� � �, there are��� � � and� � � such that�� � ����
	 with � � ���. In

these terms, the�-th coefficient of���� can be rewritten as follows:

���
��������� ����������� �

��� � ����
	�

��������� ����������� �

��� � ����
	�

��������� ����������� �

��� �

According to Part (i) we have

�	
��� �������� ��� 
������

� � 

� �

	
���

��������� ����������� �

���



� �

and thus����
	�

��������� ����������� �

��� � �. �
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4. Roots of Value Zero

When counting the different�-adic zeros of a univariate polynomial with integer coefficients we may restrict
our attention to the case, where� is square-free. Otherwise we pass from� to the square-free part of� by
dividing � by the greatest common divisor of� and� �.

By the results of the previous section all non-zero�-adic roots of� have critical�-adic value. Moreover
for any fixed critical value� �

���� �������
��� , the�-adic roots of� of value� are in one-to-one correspon-

dence with the roots of�-adic value zero of normalizations� ��� of � with respect to critical balancable pairs
����

� 	 ���
�� of value�. The correspondence is effected by a simple multiplication by the corresponding

power�
 of the prime�.
So from now on we study only zeros of�-adic value zero of polynomials such as the� ��� with �-adic

integer rational coefficients of minimal�-adic value zero.
Given� � ���� �, our localization of all�-adic roots of� with value zero is based on Theorem 1 below.

This theorem make use of Hensel’s Lemma in a form introduced by the second author as Lemma 2.2 in
[22]. We restate this result here for the sake of a self-contained description:

Lemma 4 (Hensel’s Lemma) Let � � ���� �, let � � �� with ���� � �, and let � � � such that

�
�
� ����

�
� � and 
� � �

�
����

�
�

Then there is � � �� with ���� � � such that ���� � � and ��� � �� � �. �

Theorem 1 (Main Theorem) Let � � ���� �, let � � �with � � �, and let � � �� with ���� � �.

(i) Let � � �� such that ���� �� � �. Then

�
�
����

�
� � iff �

�
����

�
� �	

and in the positive case we even have �
�
����

�
� �

�
����

�
.

(ii) Let � � �� such that ���� �� � �, let ���� � �, and let �
�
�����

�
� � or �

�
�����

�
� �. Then

�
�
�����

�
� �

�
�����

�
� � and � � �

�
����

�
� �

�
�����

�
	 ���� ���

(iii) Let �
�
�����

�
� � and 
� � �

�
����

�
. Then there exists one and only one � � � � with ���� � � such

that
���� � � and ��� � �� � ��

PROOF. Let � �
��

��� ���
� with �� �� �. Then the Taylor expansion of� at point� � �� is of the form

� � ���� 	

��
���

���� � ��� with �� �
�������

��
�

Note that we have�
������
�� � ���� � and thus����� � �; in particular�

�
�����

�
� ����� � �.

(i) Considering the Taylor expansion of� at point� and evaluating this expansion at point� we obtain

�
�
����� ����

�
� �

�
��
���

�������

��
��� ���

�
� ���

�����������

�
�

�
�������

��

�
	 ����� ��

�
� ��

Let �
�
����

�
� �, and assume for a contradiction that�

�
����

�
� �. Then

�
�
����� ����

�
� ���

�
�
�
����

�
	 �
�
����

��
� �

�
����

�
� �	
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a contradiction. Analogously, it follows from�
�
����

�
� � that�

�
����

�
� �.

Consider now the positive case that both�
�
����

�
� � and�

�
����

�
� �. Assume for a contradiction

that�
�
����

�
�� �

�
����

�
, wlog.�

�
����

�
� �

�
����

�
. Then again

�
�
����� ����

�
� ���

�
�
�
����

�
	 �
�
����

��
� �

�
����

�
� ��

(ii) By Part (i) it follows from ��� � �� � � in combination with�
�
�����

�
� � or �

�
�����

�
� � that

�
�
�����

�
� �

�
�����

�
� �.

On our assumption that���� � � we obtain the following Taylor expansion of� at point� evaluated
at �:

���� � �������� �� 	 ��� ���
��
���

����� ����� with �� �
�������

��
�

We are going to estimate the values of the two summands: From�
�
�����

�
� � and���� �� � �, we

straightforwardly obtain

�
�
�������� ��

�
� �

�
�����

�
	 ���� �� � 
���� ���

For the other summand we recall that����� � � and observe that�� � 
���� � �� � �� � 
�� � �,
where� � �
	 � � � 	 ��. We thus obtain

�

�
��� ���

��
���

����� �����
�
� 
���� �� 	 ���

�����������

�
����� 	 ��� 
����� ��

�
� 
���� ���

Hence by the strict triangle inequality

�
�
����

�
� �

�
�������� ��

�
� �

�
�����

�
	 ���� �� � ���� �� � ��

(iii) The existence of� is guaranteed by Hensel’s Lemma 4. As for the uniqueness, let� � � �� such that
����� � � and���� � �� � �. It follows that also

���� � �� � �
�
��� � ��� �� � ��

�
� ���

�
���� � ��	 ��� � ��

�
� ��

Using Part (ii) we obtain

� � �
�
�����

�
� �

�
�����

�
	 ���� � �� � � 	 ���� � ���

Hence���� � �� ��, i.e.�� � �. �

Similar to Hensel’s Lemma above, Part (ii) of the following lemma is a citation from the literature,
namely from a textbook by Akritas [1].

Lemma 5 (Properties of the Discriminant Value) Let � � ���� � be square-free, and denote by
�������� the discriminant of �.

(i) � � �
�
��������

�
��

(ii) �������� has a representation in the form �������� � �� 	 �� � with �, � � ���� �.

(iii) Let � � �� with ���� � � such that �
�
��������

�
� �

�
����

�
. Then

�
�
�����

�
� �

�
��������

�
�

This holds in particular if even 
�
�
��������

�
� �

�
����

�
; notice that then � and �������� satisfy the

requirements in Hensel’s Lemma 4.

245



T. Sturm and V. Weispfenning

(iv) Let � � �� with ���� � � such that �
�
����

�
� �. Then

�
�
�����

�
� �

�
��������

�
and 
�

�
��������

�
� �

�
����

�
���

That is, every zero of � with value � satisfies the requirements in Hensel’s Lemma 4 for all choices
� � �

�
��������

�
.

PROOF.

(i) � � �
�
��������

�
follows from the fact the discriminant, as a particular resultant, is a polynomial form

in the coefficients of�. Since� is square-free, we have�������� �� � and thus�
�
��������

�
��.

(ii) This has been proved as Theorem 5.2.4 in [1].

(iii) According to Part (ii) we have

�
�
��������

�
� �

�
�������� 	 ���������

�
� ���

�
�
�
����

�
	 �

�
����

�
	 �
�
����

�
	 �

�
�����

��
�

Since�
�
����

�
� �, �

�
����

�
� �, and�

�
����

�
� �

�
��������

�
, we can conclude that

�
�
����

�
	 �

�
����

�
� �

�
��������

�
� �

�
����

�
	 �

�
�����

�
� �

�
�����

�
�

(iv) This is an immediate consequence of Part (iii).�

Corollary 1 (to the Main Theorem) Let � � ���� � be square-free, let � � �
�
��������

�
, and let

� � �� with ���� � �.

(i) Let � � �� such that ���� �� � �. Let ���� � �. Then

�
�
�����

�
� �

�
�����

�
� � and � � �

�
����

�
� �

�
�����

�
	 ���� ���

(ii) Let 
� � �
�
����

�
. Then there exists one and only one � � � � with ���� � � such that

���� � � and ��� � �� � ��

PROOF.

(i) By Lemma 5(iv), we have�
�
�����

�
� �. We can thus apply Theorem 1(ii).

(ii) By Lemma 5(iii) we have�
�
�����

�
� �. We can now apply Theorem 1(iii).�

4.1. Root Isolation

Let us say that��, �� � �� with ����� � ����� � � are�-close if ���� � ��� � �. This corresponds to
membership�� � �� � �
 in the ideal�
 � �� � �� � ���� � � �. Thus�-closeness is a congruence
relation on��. In terms of the�-adic absolute value�-closeness states that��� � ��� � ��
 .
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4.1.1. Brute Force Algorithm

In terms of the definition above, Corollary 1 now guarantees the following for� � � � with ���� � �:

(i) If � is 
�-close to a root of�, then we will observe that that�
�
����

�
� 
�.

(ii) Whenever we make this observation�
�
����

�
� 
�, then we can be sure that� is at least�-close to a

root of�. Moreover this root is then the only one that is�-close to�.

On the other hand, we can get
�-close to each root with value zero of� by trying one representative of
each nonzero congruence class in������ for the ideal��� � �� � �� � ���� � 
� �. This gives rise to
the following brute force algorithm:

Algorithm 1 (Brute Force Root Isolation)

Input � � ���� �.

Output A finite set ����	 ��	 � � � 	 ���	 ��� � �
� such that for 
 � ��	 � � � 	 ��:

1. � � �,

2. ����� � �,

3. each �� is �-close to exactly one root � � �� with ���� � � of �.

Vice versa, each root � � �� with ���� � � of � is �-close to �� for exactly one 
 � ��	 � � � 	 ��.

Method

1 procedure isolatebf0���
2 � �� �����������
3 � �� �
4 for � � ��	 � � � 	 ����� � �� do
5 if ���� � � and �

�
����

�
� 
� then

6 if not exists���	 �� � � with ���� � �� � � then
7 � �� � � ���	 ���
8888 return �
9 end �

Let us choose� � 
 and consider a callisolatebf0��� with � � � ���. In Line 2 we obtain� � 
.
So in the for-loop in Line 4 we have� ranging from� to ��. The condition in Line 5 becomes true for�
and��, where the latter is�-close to��. Later on, the condition in Line 5 becomes true also for�� and��,
both of which are duplicate hits that do not pass the test in Line 6:����� ��� � � and������ ��� � �.

In fact,�� is �-close to�, and�� is �-close to��. The following lemma generalizes this observation
and thus clarifies the correctness of the test in Line 6:

Lemma 6 Let � � �, and let �, ��, � � ��. Let ��� � �� � �. Then ���� � �� � � if and only if
���� � �� � �.

PROOF. Let ���� � �� � �, and assume for a contradiction that��� � � �� � �. Then

���� �� � �
�
�� � � � ��� � ��

�
� ���

�
���� � ��	 ���� � ��

�
� �

contradicting���� �� � �. The converse follows analogously.�

It is noteworthy that in our little example above, we have� � � 
� and thus�
�
�����

�
� �. This shows

that the choice of� for the Hensel conditions is relevant even for exact zeros.
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4.1.2. Smart Algorithm

We now turn to an alternative and much more sophisticated recursive algorithm, which exploits not only
our Corollary 1 but the more general underlying Main Theorem 1:

Algorithm 2 (Root Isolation)

Input � � ���� �.

Output A finite set ����	 ���	 � � � 	 ���	 ���� � �
� such that for 
 � ��	 � � � 	 ��:

1. �� � �,

2. ����� � �,

3. each �� is ��-close to exactly one root � � �� with ���� � � of �.

Vice versa, each root � � �� with ���� � � of � is ��-close to �� for exactly one 
 � ��	 � � � 	 ��.

Method

1 procedure isolate0���
2 � �� �����������
3 � �� �
4 for � � ��	 � � � 	 �� �� do
5 � �� � � isorefine��	 �	 �	 ��
66 return �
7 end

8 procedure isorefine��	 �	 �	 ��
9 if �������� � � then

10 return isorefine1��	 �	 �	 ��
1111 � �� �
12 if � � � then
13 for � � ��	 � � � 	 �� �� do
14 � �� � � isorefine��	 �	 �	 ��
��	 � 	 ��
151515 return �
16 end

17 procedure isorefine1��	 �	 �	 ��
18 if not � � ������� then
19 return �
2020 if 
� � ������� then
21 return ���	 ���
2222 � �� �
23 if � � � then
24 for � � ��	 � � � 	 �� �� do
25 � �� � � isorefine1��	 �	 �	 ��
��	 � 	 ��
262626 return �
27 end �

The basic idea is that for checking�-closeness it is sufficient to consider�
 . To catch the idea of the
algorithm it is most helpful to understand the refinements in terms of the unique�-adic expansion of� � � �:

� �

��
���

���
� �� �������� � � � where �� � ��	 � � � 	 �� ���
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By the strict triangle inequality we have that���� is the smallest index� such that�� �� �. Accordingly,��
is �-close to�� iff ��� �� � �
 iff ���� ���� � � � � � ���� ���
 � �. Within the procedureisorefine,
the argument� has a finite representation���� � � � �
, i.e.,�� � � for all � � �. Each recursive call in either
Line 15 or 26 constructs one possible next digit�
��.

Corollary 2 Let �, �� � �with � � � � ��. Consider ���� � � � �
 , ���� � � � �
� � ��.

(i) Let � � ��. Then ���� � � � �
 is �-close to � iff ���� � � � �
� is �-close to �.

(ii) For � � ���� � we have �
�
������� � � � �
�

�
� � iff �

�
������� � � � �
��

�
� �.

PROOF. To start with, it is easy to see that���� � � � �
 is �-close to���� � � � �
� :

���� � � � �
 � ���� � � � �
� �


�
���

���
� �


��
���

���
� � �


��
��
��

���
� � ���� � � ���
�� � � � �
� �

(i) This follows from the observation above and the fact that�-closeness is an equivalence relation.

(ii) By the observation above have������ � � � �
 � ���� � � � �
�� � �. We can thus apply Theorem 1(i) to
���� � � � �
 , ���� � � � �
� , and��. �

Algorithm 2 starts by recursively constructing in a a depth-first manner all representatives for� ���
where� is increased towards�. Concerning the test in Line 12 (and also later on in Line 23) notice that

� � � 	
 
�� 	 �� � 
� 	
 ���
��� � ����� 	
 ���
��� � ����� � ��

As soon as in Line 9 withinisorefine there is discovered that�
�
�����

�
� �, the recursion continues in

isorefine1 instead ofisorefine. At this point, we know on the one hand from Corollary 2(ii) that
this condition is going to hold as well for all refinements of�. It thus need not be checked anymore. On the
other hand, the validity of this condition allows us to possibly exploit our Main Theorem 1 in two ways:

1. If we discover in Line 18 withinisorefine1 that we havenot � � �
�
����

�
, then according to

Theorem 1(ii) there cannot be any root of� with value� that is�-close to our considered�. By
Corollary 2(i) the same holds for all refinements of�.

2. If we discover in Line 20 withinisorefine1 that we have even
� � �
�
����

�
, then according to

Theorem 1(iii) there exactly one root of� with value� that is�-close to�. Although we have possibly
not yet reached�, there is no need for further refinement.

The reader might have noticed that we have not provided any results on the quality of the bound
� � �

�
��������

�
. In view of Algorithm 2 this is actually not relevant at all. The sole purpose of� here is

to guarantee termination.

4.2. Refinement of the Isolation

The algorithms described in the previous section yield an analogue to a system of isolating intervals for
the zeros of real univariate polynomials. As in the real case any such system can be refined to a system of
arbitrarily good approximations of the roots:

Algorithm 3 (Root Refinement)

Input 1. � � ���� �,

2. ��	 �� � � 
� obtained by Algorithm 1 or Algorithm 2,
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3. �� � �.

Output ���	 ��� � � 
�with ����� � � such that �� is ��-close to �.

Method

1 procedure refine0��	 ��	 ��	 ���
2 if not � � ������� then
3 return�
44 if � � ��and 
�� � ������� then
5 return ��	 ��
66 for � � ��	 � � � 	 �� �� do
7 � �� refine0��	 ��	 ��
��	 � 	 ��	 ���
8 if � �� � then
9 return �

101010 end �

5. Lifting

We are now going to combine our algorithms for roots with value zero that we have developed in the previ-
ous section with our results on possible values of zeros and corresponding normalizations from Section 2.
and Section 3., respectively.

We extend our notion of�-closeness, which we have introduced in Section 4.1., to numbers of arbitrary
value: Let � �. Then��, �� � �� are -close if ���� � ��� �  . In terms of the�-adic absolute
value, -closeness states that��� � ��� � ��� . Notice that -closeness is an equivalence relation but not a
congruence relation. For convenience we agree that every number is�-close to itself.

Algorithm 4 (Root Isolation)

Input � � ��� � with � �� �.

Output A finite set ����	  ��	 � � � 	 ���	  ��� � � 
 � such that for each 
 � ��	 � � � 	 �� we have that ��
is  �-close to exactly one root � � �� of � . Vice versa, each root � � �� of � is  �-close to �� for
exactly one 
 � ��	 � � � 	 ��.

Method

1 procedure isolate���
2 � �� the square-free part of�
3 if ���� � � then
4 �� �� ���	���
5 � �� ���
6 else
7 �� �� �
88 if � � � then
9 return ��

1010 ! �� a set containing one critical balancable pair for each critical value for�
11 for ����

� 	 ���
�� � ! do

12 " �� ������� ��������� � 
�
13 ���� �� the
-�-normalization of�
14 � �� isolate0������
15 for ��	 �� � � do
16 �� �� �� � �����	 � 	 "��
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171717 return ��

18 end

Remark A corresponding brute-force variant can be obtained by replacing the call to isolate0 in
Line 14 by a corresponding call to isolatebf0. In the sequel, we are going to refer to this variant
as isolatebf. �

Let us consider� � � isolate��� and ignore the trivial cases which lead to returning in Line 9. In view
of our previous results it is straightforward that there is a one-to-one correspondence between the roots of
� and the pairs in� �. It remains to verify the assertions on -closeness made in the specification of the
algorithm.

Let ��	  � � ��. Then there is��	 �� with ���� � � such that� is �-close to a root� of some����, i.e,
���� �� � �. It is easy to see that���� �  � �. Accordingly,� � ���
�, and by Lemma 2 we have that
���
� is a root of� . It follows that

���� ���
�� � �����
�� ���
�� �  � � 	 ���� �� �  �

Let���
�� be another root of� with value ��, and assume for a contradiction that����� ��
��� �  .
It follows that

 � ���� ���
��� � �����
�� ���
��� �  � � 	 ���� ���

and thus���� � �� � �, a contradiction to the specification of the Algorithmisoloate. Next, let� Æ��� be
another root of� with ���Æ���� � Æ �  � �. Then

���� �Æ���� � �����
�� �Æ���� � �����
�� �  � � �  �

Let finally ������ be another root of� with ��������� � # �  � �. Then

���� ������� � �����
�� ������� � ��������� � # �  �

We have shown that each� with ��	  � � � � is  -close to exactly one root of� . By the above-
mentioned one-to-one correspondence it follows that vice versa each root of� is  -close to exactly one
� with ��	  � � ��.

Algorithm 5 (Root Refinement)

Input 1. � � ��� �,

2. ��	  � � � 
�, obtained by Algorithm 4,

3.  � �  .

Output ���	  �� � � 
�with ����� � ���� such that �� is  -close to �.

Method

1 procedure refine��	 ��	  �	  ��
2 ��� 	 �

� 	 ���
�� �� a critical balancable pair for� with critical value����

3 ���� �� the
-�-normalization of�
4 � �� �������

5 � ��  � ����
6 �� ��  � � ����
7 ���	 ��� �� refine0�����	 ��	 ��	 ���
8 �� �� �������

9 return ���	  ��
10 end �
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The existence of the pair in Line 2 is guaranteed by Lemma 1. Denote� � � �������; then we have by
Lemma 2(i) that this�� is a root of����. From the -closeness��� � �� �  it follows that� computed in
Line 4 is�-close to��, where� is computed in Line 5:

���� ��� � �
�
�������� �������

�
� ���� ��� ���� �  � ���� � ��

Sine � �  , we know in Line 6 that� � � �. By the specification of Algorithm 3 (refine0) we obtain in
Line 7 some�� that is��-close to��. So we obtain for our�� of Line 8 that

���� � �� � �
�
������� � �������

�
� ���� � ��� 	 ���� � �� 	 ���� �  ��

6. The Distance of Roots

The output of Algorithm 4 (isolate) provides most precise information on the distance between all�-adic
roots of the input polynomial� :

Lemma 7 (Exact Distance of Roots) Let � � ��� �, and let ��	  �, ���	  �� � isolate���. Let
� � �� and �� � �� be the roots of � that are approximated by ��	  � and �� �	  ��, respectively. Then
��� � ��� � ���� ���.

PROOF. By the specification of Algorithm 4 (isolate), we know���� � ���� and��� � �� �  and,
correspondingly,����� � ����� and���� � ��� �  �. Let wlog.���� � ����� and thus���� � ��� ��.

Consider the case���� � ����� and thus���� � ��� ��. Let wlog. �  �, and assume for a contradiction
that���� ��� �  . Then

���� ��� � �
�
��� ��� 	 ��� � ���

�
� ���

�
���� ���	 ���� � ���

�
�  �

This contradicts the specification of Algorithm 4, by which� is the only root of� that is -close to�. So
we now know that���� ��� �  . This implies in turn

��� � ��� � �
�
��� � ��� 	 ��� ���� ��� ��

�
� ���

�
���� � ���	 ���� ���	 ���� ��

�
� ���� ����

Consider now the complementary case that���� � ��� �� and thus���� � ��� ��. Then it follows as well
that

��� � ��� � ���
�
����	 �����

�
� ���� � ���� � ���

�
����	 �����

�
� ���� ���� �

7. The Maximal Number of Roots

As an easy consequence of our root counting algorithm we get a universal upper bound for the maximal
number of�-adic zeros of polynomials in� � �� � that doesnot depend on the degree:

Corollary 3 (Number of Different Roots) Let � �
��

��� ���
� � �� �� �. Let � � � 	 � be the

number of non-zero monomials in � . Let � be the maximum of all �
�
����������

�
for all critical balancable

pairs ����� 	 ���
�� of � . Then

��� � � �� � ���� � � �
�� � ���� ��



����� � ����

PROOF. The number of balancable pairs of� is bounded by	�	���
� . For fixed critical balancable pair

����
� 	 ���

�� the number of�-adic zeros of��� is by our Algorithm 1 bounded by the number of residue
classes� of �modulo���� with the additional property that���� � �. Since the number of residue classes

 modulo���� with ��
� � � is ��, it follows that the number of residue classes� of �modulo���� with
���� � � is exactly���� � ��. �
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This result is reminiscent of corresponding bounds for real zeros within theFewnomial framework by
Khovanskii [13].

A corresponding theorem for fixed prime� was proved in [14] and generalized to the multivariate case
in [18]. Note that our bound is a more general result, because it isuniform in �. In particular, we have
shown that for fixed polynomial� the number of roots is polynomial in�.

8. Uniformity

There are two types of uniformity of our algorithms to consider:

1. uniformity in the prime� for fixed polynomial� ,

2. uniformity in the polynomial� for fixed prime�.

As for the first type of uniformity the following immediate consequence of our algorithms is essentially
well-known:

Corollary 4 For fixed square-free polynomial � � ��� � let $� be the set of all primes � such that all
coefficients of � as well as the discriminant of � have value zero with respect to ��. Then $� consists of
almost all primes, and for all � � $� the following hold:

(i) For each � � ��	 � � � 	 �� �� with �
�
����

�
� � there is exactly one zero � of � with ���� �� � �. For

each � � ��	 � � � 	 �� �� with �
�
����

�
� � there is no zero � of � with ���� �� � �.

(ii) The zeros of � are in one-to-one correspondence with the integers � � ��	 � � � 	 ����with �
�
����

�
� �.

(iii) The following direct analogue of Sturm’s Theorem for real zeros holds: The number of �-adic zeros of
� equals ��� � � ��	 � � � 	 �� �� � ������� � � �

��� �

For the second type of uniformity we fix the prime� and vary the coefficients of the polynomial�
obtaining a new polynomial� � in such a way that our results on the�-adic zeros of� do not change. When
stepping from� to � � we have to ensure the following:

1. �����
� 	 ����

�� is a critical balancable pair of� � if and only if ����� 	 ���
�� is a critical balancable

pair of� .

2. For each
-�-normalization the value of the discriminant does not change:

�
�
������������

�
� �

�
�����������

�
�

3. Let� � �
�
�����������

�
� �

�
������������

�
. For all � � ��	 � � � 	 ��� � �� we must have


� � �
�
��������

�
iff 
� � �

�
�������

�
�

In order to satisfy all these conditions we consider the equivalence relations� 
 for natural numbers�
introduced by the second author in [23]. They are defined as follows:

�� �
 � iff ����� � ���� and ���� � �� � � 	 �����

Note that equivalence is preserved when both sides are multiplied by the same non-zero�-adic number.
Let � be the maximum of all�

�
����������

�
for all critical balancable pairs����� 	 ���

�� of � . If we
fix the equivalence classes of all coefficients of� and of the discriminant of� modulo� ��, then all the
conditions required above are indeed satisfied.
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9. Complexity

We want to compute upper bounds for the asymptotic complexity of our algorithms for locating all�-adic
zeros of a univariate rational polynomial� �

��

��� ���
� � ��� � of degree�. For this purpose we review

the single steps of the algorithms:

Possible Values of Zeros and Normalization The computation of each critical balancable pair, its critical
value and its normalization involves only arithmetical operations on the coefficients of� and on�-
powers�� , where is a linear combination of values of coefficients of� . All these�-powers are
divisors of powers of coefficients of� with exponents bounded by the degree of� . So if the input
polynomial� is given in dense representation, then the operations are performed in polynomial time.
Moreover the total number of critical balancable pairs is bounded by������

� . So the computation of
all normalizations��� of � is performed in polynomial time.

Roots of Value Zero Let us first consider the Brute Force Algorithm 1: For each given normalization
� �� ��� we compute the zeros of� of value zero by testing representatives� � ��	 � � � 	 � ���� � ��,
where� � �

�
��������

�
. Since�������� is a polynomial in the coefficients of�, and�� is a divisor

of ��������, it follows that����� � � � ����� is computed in polynomial time from the coefficients
of �, and hence also in polynomial time from the coefficients of� . Moreover� is bounded by the
binary size of��������. Nevertheless, the number of representatives� to test is exponential in the
input size. Each single test involves an evaluation of�

�
�����

�
and of�

�
����

�
and hence is performed

in polynomial time. This yields exponential time in the bit size of�. Note that��	 � � � 	 � �� � �� can
be straightforwardly enumerated such that the algorithm requires only polynomial space.

We now turn to the more sophisticated isolation Algorithm 2. It recursively constructs a tree% of
height
� 	 � and out-degree�. This is done in a depth-first manner by storing at each time only
a single branch of% . The space required for this is polynomial in the size of�, �, and�. It is
hence polynomial in the size of the input polynomial� . In particular the whole testing procedure is
performed in space polynomial in� . In particular, the space is independent of�. This independence
is due to the same phenomenon that yields the uniformity in�: for � that do not divide all coefficients
of � and all discriminants���������� all �-adic values required during the computations are zero.

Lifting The overall number of complex roots and thus that of�-adic roots is bounded by the degree� of
� . Hence, in analogy to the discussion of the normalization above, the lifting step for all roots of all
���� is in polynomial time.

Consequently the complete localization of all�-adic zeros of� can be performed in space polynomial
in the bit size of� represented as dense polynomial.

10. Implementation and Computation Examples

The methods described throughout this paper are implemented in aREDUCE1 packagePROOTS2. All ex-
amples discussed throughout this section have been computed with this package using 128 MB RAM on a
2 GHz Pentium 4 machine running Linux.

10.1. Roots of Unity

We consider polynomials� ��� � ���� for � � �. These polynomials are square-free. For any� � � the
pair ���	 ��� is balancable with balancing value�, and the�-�-normalization� ���

��� is equal to the original

polynomial� ���.
1Information on the computer algebra systemREDUCEcan be fount athttp://www.zib.de/Symbolik/reduce/.
2The package is available for download athttp://www.fmi.uni-passau.de/˜reduce/proots/.
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We first consider a series where we choose� and set� � ���. There are then exactly� different zeros
of � ���. For all� � � we obtain� � �

�
������� ����

�
� �. There are thus only residue classes modulo��

to be considered. As a consequence we cannot expect theisolate variant of our Algorithm 4 to perform
better than the brute-force variantisolatebf.

isolatebf isolate
� � � ����� � � result time (ms) time (ms)
� 
 � � ���	 ��� � �� � ��

��
 ��� � ��
 ���	 ��	 � � � 	 ���
	 ��� �� � ��
���� ���� � ���� ���	 ��	 � � � 	 �����	 ��� ��� ����

��
 
��� � 
��
 ���	 ��	 � � � 	 �
��
	 ��� ���� �
��
���� ���� � ���� ���	 ��	 � � � 	 �����	 ��� �
��� 
����
���� ���� � ���� ���	 ��	 � � � 	 �����	 ��� ��
�� 
����

In fact, we observe that the brute-force variant is approximately twice as fast. That is because it does not
plug the candidate numbers� into the derivative� � but only into�.

We next consider a slightly different series, where we set� � �. Except for� � � � 
 there is only
one root then, which is�. In this series we obtain nonzero discriminant values� � �

�
������� ����

�
� �.

We can now see that theisolate variant of Algorithm 4 is extremely superior over the brute-force variant
isolatebf:

isolatebf isolate
� � � ����� � � result time (ms) result time (ms)

 
 
 �� ���	 
�	 ���	 
�� � �� ���	 ��	 ��	 ��� � ��
� � � 
��
 ���	 ��� � �� ���	 ��� � ��
� � � ���
��
� ���	 ��� ������ ���	 ��� � ��
� � � �����
������
 – – ���	 ��� � ��

��� ��� ��� �����	 � � – – ���	 ��� �
��

�� 
�� 
�� 
����
 � � – – ���	 ��� 
��
�
��� ��� ��� ������ � � – – ���	 ��� �����
��� ��� ��� ���
�
 � � – – ���	 ��� 
�����

A rough guess for the running time ofisolatebf for � � � would be, extrapolating from� � �,
������
������
����
��
�� � ������ ms, which is about�
� days.

10.2. Non-Radical Roots

The polynomial� � � �� 	 
 has Galois group��. Hence its zeros cannot be expressed by radicals. For
� � 
, the only balancable pair is�
	���� with balancing value��, but this is not critical. Let now� � 
.
All the pairs�
	����, �
	 ���, ����	��� are critical with critical value�. It follows that our polynomial
�� � �� 	 
 is then equal to its�-�-normalization, and we obtain� � �

�
�������� � �� 	 
�

�
� �.

Again,isolate has no advantage overisolatebf, and again we observe the factor
 in speed:
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isolatebf isolate
� � ����� � � result time (ms) time (ms)

 – – � � �� � ��
� � 
 � � �� � ��
� � � ���	 ��� � �� � ��
� � 
 � � �� � ��

�� � �� ���	 ��� � �� � ��
�� � �
 ��
	 ��	 ��	 ��� � �� � ��

��� � ��
 � � �� � ��
���� � ���� ����	 ��	 ����	 ��� � �� � ��

����� � ����
 ��
��
	 ��� 
� ��
������ � �����
 ��



	 ��� 
�� �
�

������� � ������
 ��������	 ��	 ����
��	 ��	 ��
��
�	 ��� 
��� �
��
�������� � �������� ����
����	 ��	 ��������	 ��� 

�
� ���
�

10.3. Illustrating Example Revisited

We revisit our example polynomial� � ��� ��
�	� from Section 2. and Section 3.. For� � 
 we have to
consider���� � � , for � � � we have���� � ���
�	�, and for� � � we have���� � ���
����
�	�
and���� � � .

isolatebf isolate
� � ����� � � result time (ms) result time (ms)

 � ��� ��
��	 ��� � �� ���	 ��� � ��
� � 
 � � �� � � ��
� �, � �������
�
��
�,� – – ���	 ��	 ��	 ��� � ��

10.4. Refinement

We consider the root��	 �� for � � 
 in the previous example. We can refine this within 60 ms to

��
�

���

�������
������������

����
��
�����������
��
�����	 ����	

within 4580 ms to precision���, and within 35080 ms to precision����.

11. Conclusions

We have presented algorithmic methods for isolating all�-adic zeros of a given univariate polynomial. The
isolating balls can be refined to any desired precision. This makes root counting and the determination
of the�-adic distances between all roots straightforward. We have thus a perfect explicit�-adic analogue
to Sturm’s results for the reals. We have analyzed various aspects of uniformity and complexity of our
methods. All our methods discussed here are implemented in aREDUCEpackagePROOTSwhich is freely
available. We have demonstrated the application range of this package by means of various computation
examples and benchmark series.
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