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P-adic Root Isolation

Thomas Sturm and Volker Weispfenning

Abstract. We present an implemented algorithmic method for counting and isolatingaalic roots

of univariate polynomialg over the rational numbers. The roots fofire uniquely described by p-adic
isolating balls, that can be refined to any desired precision; ghailic distances are also computed
precisely. The method is polynomial space in all input data including the pritdée also investigate the
uniformity of the method with respect to the coefficientsfaind the primeg. Our method thus provides
information analogous to that provided by well-established real methods as, e.g., Cauchy bounds and
Sturm sequences over the reals.

Separaci 6n de ra’ices P-adicas

Resumen. Presentamos un etddo algoitmico implementado para contar y aislar todas lase®”
p-adicas de polinomiog en una variable con coeficientes racionales. Lasesadef se describen
univocamente mediante bolasadicas que lasislan y que pueden ser refinadas hasta cualquier pre-
cision que se desee; sus distangiaadicas son tambii computadas con pre@si” El método posee
complejidad polinomial en todos los datos de entrada, idol&l primop. Tambgn investigamos la
uniformidad del netodo con respecto a los coeficientesfdg los nimeros primos. Nuestro netodo
suministra informaah argloga a la que suministranatwdos bien establecidos para lasn€ros reales,
como por ejemplo, las cotas de Cauchy y la suredié Sturm.

1. Introduction

The fieldR of real numbers and the fields, of p-adic numbers for a primgare similar in many respects:
Both are completions of the rational fie@with respect to some multiplicative norm; both have decidable
first-order theories, allow quantifier-elimination in suitable languages and have natural complete first-order
axiomatizations [2, 3, 10, 11, 6, 15, 21, 22, 23, 7]. For the rBalse crucial axioms are the Intermediate
Value Theorem for polynomials of arbitrary degree; for fhadicsQ, the crucial axioms are Hensel's
Lemma for polynomials of arbitrary degree [12, 16, 6, 15, 21, 22, 23]. In both fields each zero of a univariate
polynomial can be described uniquely: In the case of the iRa&igher by isolating intervals or via Thom’s
Lemma [5, 4]; in the case of theadicsQ, as Hensel zeros with given residue class [6, 7, 22, 23].

The most famous fundamental algorithmic result for the reals is Sturm’s Theorem [19, 4], which pro-
vides an explicit formula for counting the number of real zeros of a real univariate polynomial in a given
interval. Together with its generalizations by Sylvester and Habicht [4] it is the basis of most algorithmic
methods for real polynomials. In particular it allows an algorithmic construction of a system of pairwise
disjoint isolating intervals for the real zeros of a given polynonfia Q[X] and the sign-evaluation of a
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further polynomialy € Q[X] at all real zeros of . These algorithmic methods for the re&save been
implemented and optimized for many years in several computer algebra systems and packages.

By the way of contrast, the corresponding algorithmic methods for-dicsQ,, have remained largely
theoretical [2, 3, 10, 11, 6, 15, 21, 22, 23, 7]. A notable exception iRHE 0G package 0REDUCE,
which provides a quantifier elimination and decision method for first-order linear problems opesdies
[8, 9, 20]. The computer algebra system Magma contains an efficient numeddad root finder, which
computes approximations of theadic zeros of a univariate polynomial with roundeddic coefficients
to any prescribeg-adic precision; see [17] for the algorithm used there. Just like approximative numerical
zero finding algorithms in the reals this approach is not well-suited for our goals.

Even on the theoretical side, however, there appears to be no stringent analogue for the theorems of
Sturm and Sylvester on root counting and root localization with side conditions fprddéecs. While it is
clear from the general algorithmic quantifier elimination and decision methods that such an analogue must
exist, an explicit formulation, let alone an implementation, had been missing so far. An early theoretical
algorithm for determining, whether a multivariate polynomial has at leaspauic zero appears in [16].

In the present paper we fill this gap:

e We provide an algorithm for computing isolatipgadic balls for allp-adic zeros of a given polyno-

mial f € QX].

e We provide an algorithm for refining the isolatipgadic balls obtained by our algorithm above to
arbitrary precision.

e The output of our algorithms explicitly provides the distances between the diffefadit zeros of

f.

e From our presented algorithms one can straightforwardly derive an algorithm for computing the exact
number ofp-adic zeros off in a prescribegh-adic ball.

Thus we have complete analogues of the algorithmic method of Sturm fgr-aéldécs. Our algorithms
have been implemented by the first author REDUCE package namedlROOTS This package is available
for download and will be included in the next releaser&DUCE A number of explicit computational
examples illustrates the range of possible applications.

On the theoretical side, we provide explicit upper bounds on the asymptotic complexity of our algo-
rithms for large polynomial degrees and/or large prime&urthermore, we investigate the uniformity of
the algorithms with respect to variations of the primand/or variations in the coefficients of the input
polynomialsf andg.

For values of the prime that are large in comparison to the coefficients of the input polynomials
the situation is particularly easy and pleasant. Here we can formulate a very close analogue of Sturm’s
Theorem.

As a further analogue to real algebra [13], we prove a theorem that bounds the numtaetiokzeros
of f solely in terms of the number of monomials ffthe primep, and a certaip-adic value computed
from the coefficients of independently of the degree 6f

2. Possible Values of Zeros

Our initial idea is that the strict triangle inequality foeimposes surprisingly hard restrictions on the possi-
ble value of zeros. Lef € Q[X] be a nonzero polynomial

F=YaX" with a, #0.

=0
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Considerc € @, with ¢ # 0 and f(c) = 0. Thenv(}_}" ; a;¢’) = oo. Assume for a contradiction that
there is exactly one;c? of minimal value in this sum. Then we can conclude by the strict triangle inequality

n
v <Z aici> = v(a;c’) < 0.
i=0

So there must be at least two such summands. These informal considerations motivate the following defi-
nitions, which exploit them without talking aboct
A balancable pair for f is a pair(a; X7, a;, X*) of monomials off, wherej < k, a; # 0, ax, # 0, and

o) —vla)

This integer%_g(“k) is called thebalancing value of the balancable paii ; X7, a;, X*). A balancable
pair (a; X7, ap X*) is critical for f if

Ro(g) —gvlae) _ o 4 i 20a) = vla),
k—j ie{l,...,n} k—j
Its balancing value is then callectatical value for f.

Lemma 1 (Possible Values of Zeros)  Let f = ' ja; X% € QX] with f # 0. Let ¢ € Q, with
¢ # 0 suchthat f(c) = 0. Thenv(c) isacritical valuefor f.

PrOOF  To start with, we observe that froif{c) = 0, it follows thatv(f(c)) = co. Define

= {I{lin }v(a,vci) and M ={ie{0,...,n} | v(aic’) = p }.
1€l,...,n
We may conclude fronf # 0 andc # 0 thaty < oo. This implies in turn that ; # 0 for i € M. Next, we
have thatM | > 2, becausé/ = {i} for somei € {0,...,n} would by the strict triangle inequality yield
the contradiction ‘
oo =v(f(c)) = v(a;c’) = p < 0.
We can thus choosg k € M with j < k, and consider the paija; X7, a; X*). ¢From the equality
v(a;jc?) = p = v(ayck) we equivalently obtain

v(aj) —vlar) _
ki_k = U(C).

v(aj) + ju(c) = vlar) + kv(c) = vla;) —vlar) = (k = ju(c) =

Sinceuv(c) € Z, this shows in particular thdt ; X7, a;, X *) is a balancable pair. Assume for a contradiction
that(a; X7, a, X*) is not critical for f. Then there is € {0, ...,n} such that

olasc) = v(as) + iv(aj])C = ;{(aj) < kv(ajli:iv(ak) — v(ay) +j%_§(aj) = v(a;d) = p,

which contradicts the choice pf W

Notice that the number of critical values f@ris bounded by the number of critical balancable pairs,
which is in turn bounded by (n — 1) /2. Hence there are only finitely many possible values for zergs of
and a finite superset of these values can be computedffrom

For illustrating our notions by means of examples, we make various choices for the valugtiand
then consider the polynomial

f=81X*—6X +5.
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Forp = 2, the pair(5, —6.X) is balancable with balancing valuel. It is, however, not critical, because
v(5) = v(=6) — 1 > v(81) — 4. The pair(5,81X*) is balancable with balancing val@e This one is
critical, because(5) = v(81) < v(—6). The pair(—6X,81X *) is not balancable. The critical values for
f are—1 and0.

Forp = 3, all the pairg5, —6X), (5,81X %), and(—6.X, 81X *) are balancable with the same balancing
value—1. They are all critical, becausg5) = v(—6) — 1 = v(81) — 4. There is only one critical value for
f,whichis—1.

Forp = 5, the pair(5,—6X) is balancable with balancing valde This is a critical pair, because
v(5) = v(—6)+1 < v(81) +4. The pair(5,81X?) is not balancable. The p&ir6X, 81X ?) is balancable
with balancing valué. It is also critical, because(5) > v(—6) = v(81). The critical values forf arel
ando.

3. Normalization

In the previous section we have computed finitely many critical values, which are possible values of ze-
ros. We are now going to derive for each such valuend an associated critical pdii , X7, a, X*) a
transformed polynomiaf; ,, from the original polynomial. The idea is that roots of value zerdf ¢f,
correspond to roots of valueof f. In addition, we take care thdt; , € Z[X].

As in the previous section lgt = > a; X € Q[X] with f # 0. Let (a;X7,a,X*) be a critical
balancable pair fof. Then thej-k-normalization of f is defined as

kv(aj)—jv(ag) (i—k)v(aj)—(i—j)v(ag)

n
_ kuley log)=vtn)
fik=p k=g Zai (p ) Zazp ka

i=0

As an example chooge= 5 and reconsider our polynomigl = 81X * — 6X + 5 from the previous
section. We obtain

for =5"1(81(5X)* —6(5X) +5) =10125X* —6X +1 and fi4=f.

Lemma 2 (Zeros Under j-k-Normalization) Let f € Q[X] with f # 0. Let (a;X7,a,X*) bea
critical balancable pair for f. Then the following hold:

v(aj)—v(ag)
(i) For z € Q, wehave f; . (z) = 0 if and only if f(pi’e—i z) — 0.
. _ _ v(aj)—vlag)
(i) For z € Q, wehave(f;)'(z) = 0ifand onIy|ff’(p k=j z) =0.

PROOF.  To start with, observe that sin¢e; X7, a;, X*) is critical, we have’M < oo and thus
p_ kv(a.j’i:::v(a.k)
(i) By definition of f; ; we have
ke(ag)—jvlag) & v(aj)—v(ay) i
fa=p T Y )
=0
¢ From this together with our initial observation, the assertion in Part (i) follows immediately.

(if) Using the definition off; , as in Part (i) and the chain rule, the derivativefgj, is obtained as

, _ kv(aj)—jv(ag) v(aj)—v(ay) ! _kvaj)—juley) wlej)-vla) o v(aj)-vlap)
(fiw) =1{p R f(p R X) =p =T p R f(p R X)-
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By the definition of the balancable pdit; X7, ar X*) we havew € Z and thus certainly

J
v(aj)—v(ay)

p- Fd # 0. From this together with our initial observation, the assertion in Part (ii) follows
immediately. B

Lemma 3 (Properties of the j-k-Normalization) Let f = >  ja; X' € QX] with f # 0. Let
(a;X7,arX*) beacritical balancable pair for . Then the following hold:
(i) f;x issquare-freeif and only if f is square-free.
(i) All the coefficientsof f; ;, arep-adicintegers. f; € Zpy[X].
(iii) Both the j-th and k-th coefficient of f; ,, have value0.
(iv) If f € Z[X],then f; , € Z[X].
PROOF
(i) Thisis an immediate consequence of Lemma 2.

(ii) Making use of the fact thata; X7, a, X*) is critical for f, we obtain fori € {1,...,n} for the value
of thei-th coefficient

(i — k)ola;) — (i = j)v(ar)

v(a;) +

(i=k)v(aj)=(i=j)v(ay)
v(aip k=7 )

= (ofa) +i”(“ﬂ']>€— viar)y _ bulay) —joles)

> 0.

(iii) Forthe values of thg-th andk-th coefficients we obtain

U(ajp(j—k)u(aji:gj—j)u(ak)) ~ o) + (5 — k)v(ajlz:;j — jv(ag) — v(a;) — v(a;) = 0
and

U(akp(k—k)u(aji:gk—j)u(ak>) — o(ax) + (k — Ic)v(ajl)C : ;k — jv(ak) — v(ax) — v(ar) = 0,
respectively.

iv) Leti € {1,...,n}. Sincea; € Z, there ares} € Z andm € N such that; = a}p™ with p t a}. In
(3 (2 1
these terms, théth coefficient off; ,, can be rewritten as follows:
(i=k)v(a;)=(i=d)v(ay)

(i—k)v(aj)=(i—i)v(ag) (i—k)v(aj)—(i—i)v(ag)

ap w7 = ajp™p = = app™* =
According to Part (i) we have
i—k N (— 7 (i—k)v(a;)—(i—d)v(ag)
o (= B0lay) = (= fJolar) _ o eonte) oo
k=7
(i=k)v(aj)=(i=j)v(ag)
and thusap™ " LE “ecz. m
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4. Roots of Value Zero

When counting the differeptadic zeros of a univariate polynomial with integer coefficients we may restrict
our attention to the case, whefas square-free. Otherwise we pass frgrto the square-free part gfby
dividing f by the greatest common divisor gfand f'.

By the results of the previous section all non-zefadic roots off have criticalp-adic value. Moreover
for any fixed critical valuer = %_;’(“k) thep-adic roots off of valuer are in one-to-one correspon-
dence with the roots gf-adic value zero of normalizatiorfs, ;. of f with respect to critical balancable pairs
(a;X7,arX*) of valuev. The correspondence is effected by a simple multiplication by the corresponding
powerp” of the primep.

So from now on we study only zeros pfadic value zero of polynomials such as thg, with p-adic
integer rational coefficients of minimatadic value zero.

Giveng € Z,[X], our localization of alp-adic roots ofy with value zero is based on Theorem 1 below.
This theorem make use of Hensel's Lemma in a form introduced by the second author as Lemma 2.2 in
[22]. We restate this result here for the sake of a self-contained description:

Lemma 4 (Hensel's Lemma) Let f € Z,[X], leta € Q, withv(a) > 0, and let a € Z such that
v(f'(@)) <a and 2a <v(f(a)).

Thenthereis z € Q, withv(z) = 0 suchthat f(z) = 0andv(z —a) > a. O

Theorem 1 (Main Theorem) Letg € Z,[X], let§ € Z with3 > 0,andlet c € Q, withv(c) = 0.
(i) Letd € Q, suchthatv(c —d) > . Then

v(g(o)) <B iff v(g(d))< B,
and in the positive case we even have v (g(c)) = v(g(d)).
(i) Letz € Q, suchthatv(c —z) > 3, let g(z) = 0, and let v (g'(c)) < B orv(g'(z)) < B. Then
o(g'(©) =v(g'(x) <B and B<v(g(0) =v(g'()) +vle - 2).

(iii) Letv(g'(c)) < Band28 < v(g(c)). Then there exists oneand only one z € @, with v(z) = 0 such
that
g(z)=0 and wv(z—rc) >p.

PROOF Letg ="  a;X"witha, # 0. Then the Taylor expansion gfat pointz € Z , is of the form

i , (@)
g=g(z)+ Zbi(X —z) with b; = g Z'(Z

i=1

~—

Note that we havé% € Z,[X] and thusy(b;) > 0; in particularv (g'(z)) = v(by) > 0.

(i) Considering the Taylor expansion gfat pointd and evaluating this expansion at pairwe obtain

v(g(c) — g(d)) = (i g(i),!(d) (c— d)i> > _min (v (9@,(‘1)) +iv(e — d)) > 8.

t i!
Letv(g(c)) < B, and assume for a contradiction thety(d)) > 3. Then
v(g(c) — g(d)) = min(v(g(c)),v(9(d))) =v(g(c) < B,
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a contradiction. Analogously, it follows from(g(d)) < 3 thatv(g(c)) < B.

Consider now the positive case that botfy(c)) < 3 andv(g(d)) < 3. Assume for a contradiction
thatv(g(c)) # v(g(d)), wlog.v(g(c)) < v(g(d)). Then again

o(9(0) — 9(d)) = min(v(9(e)) v (9()) = v(g(e)) < B

(i) By Part (i) it follows from v(c — z) > 3 in combination withv (¢'(c)) < B orv(g'(z)) < B that
v(g'(c)) =v(g'(x)) < B-
On our assumption that(z) = 0 we obtain the following Taylor expansion gfat pointz evaluated

atc:
9(0) = g (=2 + (=2 Y bile =2 with b = g(ifz)-

We are going to estimate the values of the two summands: Brgiiz)) < 3 andv(c — z) > 3, we
straightforwardly obtain

v(g'(2)(c— 2)) = v(g'(2)) +v(c—2) < 2v(c — 2).

For the other summand we recall thgb;) > 0 and observe thei — 2)v(c —2) > (i —2)8 > 0,
wherei € {2,...,n}. We thus obtain

vl (c=2)2 bic—zi2>>2vc—z+ min (v(b;) + (1 — 2)v(c — 2)) > 2v(c — z).
(=2 mte 22 22e=)+ _gin (ol0) 46~ 2ple—2) 2 200 —2)
Hence by the strict triangle inequality

v(9(c)) =v(g'(2)(c—2)) =v(g'(2)) +v(c—2) > v(c—2) > .

(iii) The existence ot is guaranteed by Hensel's Lemma 4. As for the uniqueness; letQ, such that
g(z") = 0andv(z' —¢) > . Itfollows that also

v(z' —2) =v((z' —¢) = (2 — ¢)) > min(v(z' —¢),v(z —¢)) > B.
Using Part (ii) we obtain
oo =v(g(2") =v(g'(2)) +v(z' —2) < B +v(z' —2).
Hencev(z' —2) = o0,ie.2' =2. A
Similar to Hensel's Lemma above, Part (ii) of the following lemma is a citation from the literature,
namely from a textbook by Akritas [1].

Lemma 5 (Properties of the Discriminant Value) Let g € Z,[X] be square-free, and denote by
discr(g) the discriminant of g.

(i) 0 < w(discr(g)) < oo
(ii) discr(g) hasarepresentation in theformdiscr(g) = rg + sg' withr, s € Z,[X].
(iii) Letc € Q, with v(c) = 0 suchthat v(discr(g)) < v(g(c)). Then
v(g'(c)) < v(discr(g)).

This holds in particular if even 2v (discr(g)) < v(g(c)); notice that then ¢ and discr(g) satisfy the
requirementsin Hensel’s Lemma 4.
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(iv) Let z € Q, withv(z) = 0 suchthat v(g(z)) = 0. Then
v(g'(2)) < w(discr(g)) and 2v(discr(g)) < v(g(z)) = oo.

That is, every zero of g with value 0 satisfies the requirements in Hensel’s Lemma 4 for all choices
a > v(discr(g)).

PROOFR

(o< U(discr(g)) follows from the fact the discriminant, as a particular resultant, is a polynomial form
in the coefficients of. Sinceg is square-free, we havlscr(g) # 0 and thus (discr(g)) < 00.

(i) This has been proved as Theorem 5.2.4 in [1].
(iii) According to Part (ii) we have
v(discr(g)) = v(r(e)g(c) + s(c)g'(¢)) > min(v(r(c)) +v(g(e)), v(s(c)) +v(g'(©)))-
Sincev(r(c)) > 0,v(s(c)) >0, andv(g(c)) > v(discr(g)), we can conclude that

v(r(c)) +v(g(c)) > v(discr(g)) = v(s(c)) +v(g'(c)) > v(g'(¢)).

(iv) Thisis an immediate consequence of Part (il

Corollary 1 (to the Main Theorem) Let g € Z,[X] be square-free, let o = v(discr(g)), and let
c € Q, withv(c) = 0.
(i) Letz € Q, suchthat v(c — z) > a. Let g(z) = 0. Then

v(g'(c)) =v(d'(2)) < and a<w(g(c)) =v(g'(2)) +v(c—2).

(i) Let2a < v(g(c)). Thenthereexistsoneand only one z € Q, with v(z) = 0 such that
g(z)=0 and wv(z—c) > a.
PROOF
(i) By Lemma 5(iv), we have (¢'(z)) < . We can thus apply Theorem 1(ii).

(i) By Lemma 5(iii) we havey (¢'(z)) < o.. We can now apply Theorem 1(iii).m

4.1. Root Isolation
Let us say thaty, c; € Z, with v(c;) = v(cz) = 0 aref-closeif v(c; — ¢2) > S. This corresponds to

membershig:; — ¢; € Ig intheidealls = {z € Z, | v(z) > S }. Thusg-closeness is a congruence
relation onZ . In terms of thep-adic absolute valug-closeness states that — c.| < p~".
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4.1.1. Brute Force Algorithm

In terms of the definition above, Corollary 1 now guarantees the following £, with v(c) = 0:
(i) If cis2a-close to a root of, then we will observe that that(g(c)) > 2a.

(i) Whenever we make this observati()l@g(c)) > 2a, then we can be sure thats at least-close to a
root of g. Moreover this root is then the only one thatislose toc.

On the other hand, we can dg&i-close to each root with value zero g@tby trying one representative of
each nonzero congruence clasipy I»,, for the ideall,, = {z € Z, | v(z) > 2a }. This gives rise to
the following brute force algorithm:

Algorithm 1 (Brute Force Root Isolation)
Input g € Z,[X].
Output Afiniteset {(c1,),...,(ck, @)} CZ x Z suchthatfor j € {1,...,k}:

1. a>0,
2. v(cj) =0,
3. each¢; isa-closeto exactly oneroot z € Q, withv(z) = 0 of g.

Vice versa, eachroot z € Q, withv(z) = 0 of g isa-closeto ¢; for exactlyonej € {1,...,k}.

M ethod

1 procedure i sol at ebf 0(g)

2 a := v(discr(g))

3 R:=(

4 forie {1,...,p**" — 1} do

5 if v(i) = 0and v(g(i)) > 2 then

6 if not exists(i’, ) € R with v(i’ — i) > a then
7 R:=RU{(i,a)}

8 return R

o end O

Let us choosg = 2 and consider a callsol at ebf 0(g) with g = X ? —1. In Line 2 we obtainy = 2.
So in the for-loop in Line 4 we haveranging from1 to 31. The condition in Line 5 becomes true for
and15, where the latter is--close to—1. Later on, the condition in Line 5 becomes true alsolfoand3l,
both of which are duplicate hits that do not pass the test in Ling61 — 17) > « andv(—15 - 31) > a.

In fact, 17 is a-close tol, and31 is a-close to—1. The following lemma generalizes this observation
and thus clarifies the correctness of the test in Line 6:

Lemma6 Leta > 0,andletc, ¢, z € Zp. Letv(c—2) > a. Thenv(c' — z) > « if and only if
v(d —¢) > a.

PrROOF Letuv(c' — z) > a, and assume for a contradiction thét’ — ¢) < «. Then
vic—z2)=v(c' =2 = ( —¢)) =min{v(c' —2),v(d —¢)} <a
contradictingy(c — z) > «a. The converse follows analogouslyll

It is noteworthy that in our little example above, we hgve= 2X and thus (g’(l)) = 1. This shows
that the choice of for the Hensel conditions is relevant even for exact zeros.
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4.1.2. Smart Algorithm

We now turn to an alternative and much more sophisticated recursive algorithm, which exploits not only
our Corollary 1 but the more general underlying Main Theorem 1:

Algorithm 2 (Root Isolation)
Input g € Z,[X].
Output Afiniteset {(c1, 1), ..., (ck, Bk)} C Z x Z suchthat for j € {1,...,k}:

2. v(cj) =0,
3. eachc; is ;-closeto exactly oneroot z € Q, withv(z) = 0 of g.
Viceversa, eachroot z € Q, withv(z) = 0 of g is 3;-closeto ¢; for exactlyonej € {1,..., k}.
Method

procedure i sol at e0(g)
a := v(discr(g))
R:=10
forie {1,...,p—1}do
R:=RUisorefine(g,a,i,0)
return R
end

N~ o o 0~ w N R

s procedure i sorefine(g,a,i,f)

9 if v(g'(i)) < fthen

10 returni sorefinel(g,a,i,p)

11 S ::w

12 if 5 < athen

13 for k€ {0,...,p—1}do

1 S:=Suisorefine(g,a,i+kp’t, 3 +1)
15 return S

s end

1w procedure i sorefinel(g,«,i,f)

18 if not 3 < v(g(7)) then

19 return ()

2 if 28 < v(g(4)) then

2 return {(i, 8)}

2 S =

23 if 5 < athen

24 forke{l,...,p—1}do

2 S:=Suisorefinel(g,a,i+kp’®t,3+1)
2 return S

2 end O

The basic idea is that for checkirfycloseness it is sufficient to consideg. To catch the idea of the
algorithm it is most helpful to understand the refinements in terms of the upigdie expansion of € Z

o0
T = Zwkpk =:0.xoz122 ... Where z; € {0,...,p—1}.
k=0
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By the strict triangle inequality we have thatz) is the smallest indek such thatc, # 0. Accordingly,c;

is B-close tocs iff ¢1 — ¢z € Igiff (c1 —¢2)o =+ = (c1 — ¢2)3 = 0. Within the proceduresor ef i ne,
the argument has a finite representatidrig . . . ig, i.e.,i;, = 0 for all K > 3. Each recursive call in either
Line 15 or 26 constructs one possible next digit ; .

Corollary 2 Let 5, 8’ € Zwith0 < g < 3. Consider 0.z . ..xg, 0.z¢ ... T € Zp.
(i) Letz € Z,. Then 0.z ... z5 isf-closeto z iff 0.zg ...z is f-closeto z.
(i) For g € Z,[X] Wehavev(g’(O.:Uo .. azg)) <p if‘fU(g’(O.azo . ..CUB/)) < B.

PROOF  To start with, it is easy to see th@atzg ... x5 is f-close to0.zq ... xg:

B B’ B’
0zp...23 —0.xg... 23 = kapk — Zazkpk = - Z a:kpk =—-0.0...0zg41... 75
k=0 k=0 k=p+1

(i) This follows from the observation above and the fact thaioseness is an equivalence relation.

(if) By the observation above haw¢0.x¢...z3 —0.z¢ ...zg ) > . We can thus apply Theorem 1(i) to
0.z9...z8,0.x9...25,andg’. W

Algorithm 2 starts by recursively constructing & a depth-first manner all representativesZqy/ 5
whereg is increased towards. Concerning the test in Line 12 (and also later on in Line 23) notice that

B<a < 2(6+1) <2 < p*FtD < pPatl — p2BEHY < p2atl g

As soon as in Line 9 within sor ef i ne there is discovered that(g'(i)) < j, the recursion continues in

i sor efi nelinstead ofi sor ef i ne. At this point, we know on the one hand from Corollary 2(ii) that

this condition is going to hold as well for all refinements oft thus need not be checked anymore. On the
other hand, the validity of this condition allows us to possibly exploit our Main Theorem 1 in two ways:

1. If we discover in Line 18 within sor ef i nel that we havenot 5 < v (g(i)), then according to
Theorem 1(ii) there cannot be any root @fvith value0 that is -close to our considered By
Corollary 2(i) the same holds for all refinements of

2. If we discover in Line 20 within sor ef i nel that we have eve®s < v (g(i)), then according to
Theorem 1(iii) there exactly one root gfvith value0 that isg-close toi. Although we have possibly
not yet reached, there is no need for further refinement.

The reader might have noticed that we have not provided any results on the quality of the bound
a= v(discr(g)). In view of Algorithm 2 this is actually not relevant at all. The sole purpose bére is
to guarantee termination.

4.2. Refinement of the Isolation

The algorithms described in the previous section yield an analogue to a system of isolating intervals for
the zeros of real univariate polynomials. As in the real case any such system can be refined to a system of
arbitrarily good approximations of the roots:

Algorithm 3 (Root Refinement)
Input 1. g€ Z,[X],
2. (¢, B) € Q x Z obtained by Algorithm 1 or Algorithm 2,
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3.6 >p.

Output (¢, 8") € Q x Z withwv(c') = 0 such that ¢’ is 5'-closeto z.
Method

1 procedure r ef i ne0(g, (¢, 5),8")

2 if not 8 < v(g(c)) then

3 return L

4 if 8> p'and 28" < v(g(c)) then

5 return (c, )

6 for k€ {0,...,p—1}do

7 w:=refinel(g,(c+kp’tt,3+1),5)

8 if w# L then

9 return w

o end O
5. Lifting

We are now going to combine our algorithms for roots with value zero that we have developed in the previ-
ous section with our results on possible values of zeros and corresponding normalizations from Section 2
and Section 3 respectively.

We extend our notion gf-closeness, which we have introduced in Sectidn # numbers of arbitrary
value: Lety € Z. Thend;, d» € Q, arey-closeif v(d; — dz) > 7. In terms of thep-adic absolute
value,y-closeness states thadi — d2| < p~". Notice thaty-closeness is an equivalence relation but not a
congruence relation. For convenience we agree that every numkecliese to itself.

Algorithm 4 (Root Isolation)
Input f e Q[X] with f # 0.

Output Afiniteset {(di,m),...,(dkx, )} C Q x Z such that for each j € {1,...,k} we havethat d;
is v;-close to exactly oneroot z € Q, of f. Vice versa, eachroot z € @, of f is~;-closeto d; for
exactlyonej € {1,...,k}.

Method
1 procedure i sol at e(f)
2 f := the square-free part gf
3 if £(0) =0then
4 S":={(0,00)}
5 f=r/X
6 else
7 SI = @
8 if f € Qthen
0 return S’

C := a set containing one critical balancable pair for each critical valug for
for (a;X7,a,X*) € C do
r = (v(a;) —vlar))/(k — )
fj k= thej-k-normalization off
S :=isol at e0(f;)
for (c,) € S do
S":= 5" U{(ptc, B+ K)}

=
15}

i
=

i
N

i
w

-
IS

.
o

=
=Y
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17 return S’
s end

Remark A corresponding brute-force variant can be obtained by replacing the call to /i sol at e0 in
Line 14 by a corresponding call to i sol at ebf 0. Inthe sequel, we are going to refer to thisvariant
asi sol atebf. O

Let us conside’ = i sol at e(f) and ignore the trivial cases which lead to returning in Line 9. In view
of our previous results it is straightforward that there is a one-to-one correspondence between the roots of
f and the pairs ir6’. It remains to verify the assertions gnacloseness made in the specification of the
algorithm.

Let (d,y) € S'. Then there igc, ) with v(c) = 0 such that is 5-close to a root of somef; x, i.e,
v(c —z) > B. Itis easy to see that(d) = v — 5. Accordingly,d = p”~"¢, and by Lemma 2 we have that
p? Pz is aroot off. It follows that

v(d—pP2) = v’ Pe—pPz) =y - Btuv(c—2)>7.

Letp”~#2' be another root of with valuey— 3, and assume for a contradiction théd —p~=°2") > ~.
It follows that
v<u(d-pTF) =v@pFe—pTP) =y = Bt u(c—2)

and thusu(c — z') > (3, a contradiction to the specification of the Algorithrsol oat e. Next, letp®z" be
another root off with v(p®z") =6 > v — 3. Then

v(d=p°z") = o e —p’") =0 Fe) =y = B <.
Let finally p°z'"" be another root of with v(p®z""") = e < v — 3. Then

e 1

v(d—p ") = v(p”fﬁc —p ") =v(p ") =e <.

We have shown that eachwith (d,v) € S’ is y-close to exactly one root of. By the above-
mentioned one-to-one correspondence it follows that vice versa each rgdsof-close to exactly one
d with (d,v) € S'.

Algorithm 5 (Root Refinement)
Input 1. f e QX],
2. (d,v) € Q x Z, obtained by Algorithm 4,
39 >
Output (d',7") € Q x Z withwv(d") = v(d) suchthat d' isy-closeto z.
Method

procedure refine(f,(d,v),v")
(aj, X7, a, X*) := a critical balancable pair fof with critical valuev(d)
fj k= thej-k-normalization off

1

2

3

4 ¢ :=d/p"¥

5 B:=v—v(d)

6 B =" —v(d)

© (B =refine0(fi (e, 8), )
o d = pv(d)cl

9 return (d’,v")

o end O
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The existence of the pair in Line 2 is guaranteed by Lemma 1. Denpte p—*(9z; then we have by
Lemma 2(i) that this is a root off; . From they-closeness(d — z) > v it follows thatc computed in
Line 4 is 5-close toz,, wheres is computed in Line 5:

v(e —zp) = v(p_”(d)d —p_”(d)z) =uv(d—z) —v(d) >v—v(d) =p.

Siney' > v, we know in Line 6 thafs’ > (3. By the specification of Algorithm J ef i ne0) we obtain in
Line 7 some’ that is3’-close tozy. So we obtain for oud’ of Line 8 that

o(d —z) = oD — p'Dz) = v(c — 2) +v(d) > B +v(d) =7

6. The Distance of Roots

The output of Algorithm 4i(sol at e) provides most precise information on the distance betweeraalic
roots of the input polynomiaf:

Lemma 7 (Exact Distance of Roots) Let f € Q[X], and let (d,v), (d',7') € isol ate(f). Let
z € Qp and 2’ € Q, bethe roots of f that are approximated by (d,y) and (d',~"), respectively. Then
v(iz—=2") =v(d-d).

PROOF By the specification of Algorithm 4i (sol at e), we knowv(d) = v(z) andv(d — z) > « and,
correspondinglyy(d') = v(z') andv(d’ — 2') > +'. Let wlog.v(d) < v(d’) and thusv(z) < v(z’).

Consider the casg(d) = v(d') and thus)(z) = v(z’). Letwlog.y < +/, and assume for a contradiction
thatv(d — d') > v. Then

v(d—2")=v((d—d)+(d —2")) >min{o(d—d),v(d -2} >~.

This contradicts the specification of Algorithm 4, by whiels the only root off that isy-close tod. So
we now know thav(d — d') < . This implies in turn

v(z—2")=v((d -2+ (d—-d)—(d—2)) =min{o(d —2"),v(d—d'),v(d—2)} = v(d—d).

Consider now the complementary case ta@) < v(d') and thus(z) < v(z’). Then it follows as well
that
v(z —2') = min{v(z),v(z") } = v(z) = v(d) = min{v(d),v(d)} =v(d—d). W

7. The Maximal Number of Roots

As an easy consequence of our root counting algorithm we get a universal upper bound for the maximal

number ofp-adic zeros of polynomials i, [X] that doesiot depend on the degree:
Corollary 3 (Number of Different Roots) Let f = >0, a; X" € Q[X]. Letm < n+ 1bethe

number of non-zero monomialsin f. Let o be the maximum of all v (discr(f;y,)) for all critical balancable
pairs (a; X7, a,X*) of f. Then

m(m — 1
{0, | /2 =0 < M= Doy
PrROOE The number of balancable pairs pfis bounded byw. For fixed critical balancable pair

(a; X7, ar, X*) the number op-adic zeros off ;. is by our Algorithm 1 bounded by the number of residue
classes of Z modulop® ™! with the additional property that(i) = 0. Since the number of residue classes
4 modulop®*! with v(j) > 0 is p®, it follows that the number of residue classexf Z modulop®*! with
v(i) = 0is exactlyp®™ —p*. W
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This result is reminiscent of corresponding bounds for real zeros withiRetvgomial framework by
Khovanskii [13].

A corresponding theorem for fixed prinpenvas proved in [14] and generalized to the multivariate case
in [18]. Note that our bound is a more general result, becauseuitiferm in p. In particular, we have
shown that for fixed polynomigt the number of roots is polynomial jn

8. Uniformity

There are two types of uniformity of our algorithms to consider:
1. uniformity in the primep for fixed polynomialf,
2. uniformity in the polynomiaf for fixed primep.

As for the first type of uniformity the following immediate consequence of our algorithms is essentially
well-known:

Corollary 4 For fixed square-free polynomial f € Q[X] let P; be the set of all primes p such that all
coefficients of f as well as the discriminant of f have value zero with respect to v,. Then P, consists of
almost all primes, and for all p € P; the following hold:

(i) Foreachi € {1,...,p— 1} withuv(f(i)) > 0 thereisexactly one zero z of f withv(i — z) > 0. For
eachi € {1,...,p— 1} withv(f(i)) = 0 thereisno zero z of f withv(i — z) > 0.

(i) Thezerosof f arein one-to-onecorrespondencewiththeintegersi € {1,...,p—1} withv (f(z’)) > 0.

(iif) Thefollowing direct analogue of Surm’'s Theoremfor real zeros holds: The number of p-adic zeros of

f equals
[{ie{l,....,p—1}|ov(f(i)) >0}. O

For the second type of uniformity we fix the prinpeand vary the coefficients of the polynomigl
obtaining a new polynomigl* in such a way that our results on theadic zeros off do not change. When
stepping fromf to f* we have to ensure the following:

1. (a3X7,a;X*) is a critical balancable pair ¢f* if and only if (a; X7, a;, X*) is a critical balancable
pair of f.

2. For eacly-k-normalization the value of the discriminant does not change:
v(discr(f;"k)) = v(discr(fjx))-
3. Leta = v(discr(fj1)) = v(discr(f,)). Foralli € {1,...,p** — 1} we must have
200 < w(fi (@) i 20 <o(fir(i))-

In order to satisfy all these conditions we consider the equivalence relatigrier natural numberg
introduced by the second author in [23]. They are defined as follows:

a* ~ga iff wv(@*)=wv(a) and v(a* —a)>pF+v(a).

Note that equivalence is preserved when both sides are multiplied by the same npraderaumber.

Let a be the maximum of alb (discr(f;)) for all critical balancable pairga; X7, a, X*) of f. If we
fix the equivalence classes of all coefficientsfoind of the discriminant of modulo~ »,, then all the
conditions required above are indeed satisfied.
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9. Complexity

We want to compute upper bounds for the asymptotic complexity of our algorithms for locatjngditt
zeros of a univariate rational polynomjal= > a; X’ € Q[X] of degree:. For this purpose we review
the single steps of the algorithms:

Possible Values of Zerosand Normalization The computation of each critical balancable pair, its critical
value and its normalization involves only arithmetical operations on the coefficierftaiod onp-
powersp?, where~ is a linear combination of values of coefficients fof All these p-powers are
divisors of powers of coefficients gf with exponents bounded by the degreefofSo if the input
polynomialf is given in dense representation, then the operations are performed in polynomial time.
Moreover the total number of critical balancable pairs is bounde@iﬁyﬁ. So the computation of
all normalizationsf;;, of f is performed in polynomial time.

Rootsof ValueZero Let us first consider the Brute Force Algorithm 1. For each given normalization
g := fjx we compute the zeros gfof value zero by testing representatives {1, ...,p?**! — 1},
wherea = v(discr(g)). Sincediscr(g) is a polynomial in the coefficients gf andp® is a divisor
of discr(g), it follows thatp?*+! = p . (p®)? is computed in polynomial time from the coefficients
of g, and hence also in polynomial time from the coefficienty oMoreovera is bounded by the
binary size ofdiscr(g). Nevertheless, the number of representativesstest is exponential in the
input size. Each single test involves an evaluation @f (i)) and ofv(g(i)) and hence is performed
in polynomial time. This yields exponential time in the bit sizegyoNote that{1,...,p?* — 1} can
be straightforwardly enumerated such that the algorithm requires only polynomial space.

We now turn to the more sophisticated isolation Algorithm 2. It recursively constructs d toée
height2a + 1 and out-degrep. This is done in a depth-first manner by storing at each time only
a single branch of’. The space required for this is polynomial in the sizeygpt, anda. It is
hence polynomial in the size of the input polynomyfalln particular the whole testing procedure is
performed in space polynomial jfi In particular, the space is independenpof his independence

is due to the same phenomenon that yields the uniformiby for p that do not divide all coefficients

of f and all discriminantdiscr( f;) all p-adic values required during the computations are zero.

Lifting The overall number of complex roots and thus thap-@fdic roots is bounded by the degne®f
f. Hence, in analogy to the discussion of the normalization above, the lifting step for all roots of all
fjx is in polynomial time.

Consequently the complete localization ofahdic zeros off can be performed in space polynomial
in the bit size off represented as dense polynomial.

10. Implementation and Computation Examples

The methods described throughout this paper are implementegimace! packageeRoOTE. All ex-
amples discussed throughout this section have been computed with this package using 128 MB RAM on a
2 GHz Pentium 4 machine running Linux.

10.1. Roots of Unity

We consider polynomialg(™) = X" — 1 forn € N. These polynomials are square-free. Forany N the
pair (—1, X™) is balancable with balancing valGeand the()—n—normalizationfo(fjl) is equal to the original
polynomial f (™).

linformation on the computer algebra systeeDUCEcan be fount aht t p: / / www. zi b. de/ Synbol i k/ r educe/ .
2The package is available for downloadhdtt p: / / ww. f i . uni - passau. de/ “r educe/ proot s/ .
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We first consider a series where we chopséd seth = p — 1. There are then exactlydifferent zeros
of (™. For alln € N we obtaina = v (discr(f(™)) = 0. There are thus only residue classes modylo
to be considered. As a consequence we cannot expeicsthleat e variant of our Algorithm 4 to perform
better than the brute-force variarg ol at ebf .

i sol atebf isolate

n p a p*tli-i result time (ms) time (ms)
1 2 0 1 {(1,0)} <10 < 10
102 103 0O 102 {(1,0),...,(102,0)} 10 <10
1008 1009 0 1008 {(1,0),...,(1008,0)} 770 1310
2002 2003 O 2002 {(1,0),...,(2002,0)} 5400 9690
3000 3001 0 3000 {(1,0),...,(3000,0)} 16000 28430
4000 4001 O 4000 {(1,0),...,(4000,0)} 38600 69990

In fact, we observe that the brute-force variant is approximately twice as fast. That is because it does not
plug the candidate numberinto the derivativey’ but only intog.

We next consider a slightly different series, where wenset p. Except forn = p = 2 there is only
one root then, which i3. In this series we obtain nonzero discriminant values v (discr(f(”))) =n.
We can now see that thesol at e variant of Algorithm 4 is extremely superior over the brute-force variant
i sol at ebf:

i sol at ebf i solate

n D a pratl 1 result time (ms) result time (ms)
2 2 2 31 {(1,2),(15,2)} <10 {(1,1),(3,1)} <10
3 3 3 2186 {(1,3)} <10 {(1,1)} <10
5 5 5 48828124 {(1,5)} 107180 {(1,1)} <10
T 7T T 4747561509942 - - {(1,1)} <10
103 103 103 103207 — 1 - - {(1,1)} 1200
211 211 211 211423 — 1 - — {(1,1)} 20560
307 307 307 307515 — 1 - - {(1,1)} 87840
401 401 401 401803 — 1 - - {(1,1)} 257030

A rough guess for the running time ofol at ebf for n = 7 would be, extrapolating from = 5,
(4747561509942 /48828124) - 107180 ms, which is about20 days.

10.2. Non-Radical Roots

The polynomialX® — 4X + 2 has Galois grougs. Hence its zeros cannot be expressed by radicals. For
p = 2, the only balancable pair {2, —4 X ) with balancing value-1, but this is not critical. Let now > 2.

All the pairs(2, —4X), (2, X?), (—4X, X?) are critical with critical valu@. It follows that our polynomial

X® —4X + 2is then equal to it9-1-normalization, and we obtain = v (discr(X® — 4X + 2)) = 0.
Again,i sol at e has no advantage oviesol at ebf , and again we observe the factin speed:
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i sol atebf isolate

p a potl_1 result time (ms)  time (ms)
2 - - [} < 10 < 10
3 0 2 0 < 10 <10
5 0 4 {(4,0)} <10 <10
7 0 6 0 <10 < 10
11 0 10 {(9,0)} <10 < 10
13 0 12 {(2,0),(5,0)} <10 <10
103 O 102 0 < 10 <10
1009 0 1008 {(43,0), (577,0)} <10 <10
10007 O 10006 {(6872,0)} 20 40
100003 O 100002 {(2222,0)} 240 420
1000003 O 1000002  {(101947,0), (140688, 0), (424568, 0)} 2510 4640
10000019 0 10000018 {(3465137,0), (5835443,0)} 26060 47760

10.3. lllustrating Example Revisited

We revisit our example polynomigl= 81X *—6X +5 from Section 2and Section 3 Forp = 2 we have to
considerfy 4 = f, forp = 3we havefy; = X*—2X+5,and forp = 5 we havefy; = 10125X*—-6X +1
andf174 = f

i sol at ebf i sol ate
D a p?ott —1 result time (ms) result time (ms)
2 4 511 {(233,4)] <10 {0} <10
3 0 2 0 < 10 0 <10
5 9,0 19073486328124,4 - — {(5,1),(1,0)} <10

10.4. Refinement

We consider the rodtl, 1) for p = 2 in the previous example. We can refine this within 60 ms to
(468627512217804946044457975990260741605673544011980279640041, 100),

within 4580 ms to precisiof00, and within 35080 ms to precisidi00.

11. Conclusions

We have presented algorithmic methods for isolating-altlic zeros of a given univariate polynomial. The
isolating balls can be refined to any desired precision. This makes root counting and the determination
of the p-adic distances between all roots straightforward. We have thus a perfect exqaldiit analogue

to Sturm’s results for the reals. We have analyzed various aspects of uniformity and complexity of our
methods. All our methods discussed here are implemente&&pa cE packageeROOTSwWhich is freely
available. We have demonstrated the application range of this package by means of various computation
examples and benchmark series.
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