
RAC�� �
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 98 (1), 2004, pp. 153–180
Ciencias de la Computaci´on / Computational Sciences

Induction and Decision Procedures

Deepak Kapur, J ürgen Giesl and Mahadevan Subramaniam

Abstract. Mechanization of inductive reasoning is an exciting research area in artificial intelligence
and automated reasoning with many challenges. An overview of our work on mechanizing inductive
reasoning based on the cover set method for generating induction schemes from terminating recursive
function definitions and using decision procedures is presented. This paper particularly focuses on the
recent work on integrating induction into decision procedures without compromising their automation.

Inducci ón y procedimientos de decisi ón

Resumen. Dentro del campo de la inteligencia artificial y del razonamiento autom´atico, la mecaniza-
ción del razonamiento inductivo es un ´area de investigaci´on apasionante que se enfrenta a muchos retos.
Se presenta una visi´on global del trabajo de los autores sobre la mecanizaci´on del razonamiento inductivo
basado en el m´etodo de recubrimiento de conjuntos para la generaci´on de esquemas de inducci´on a partir
de definiciones de funciones recursivas con terminaci´on que usa procedimientos de decisi´on. Este art´ıculo
se centra sobre todo en el trabajo reciente que se ha realizado con respecto a la integraci´on de la inducci´on
en los procedimientos de decisi´on sin comprometer su automatizaci´on.

1. Introduction

Over the past 30 years or so, there has been a great deal of interest in developing heuristics and tech-
niques for mechanizing reasoning by induction, partly because proofs by induction must be carried out in
many application areas including software and hardware verification, specification analysis, common-sense
reasoning, and other aspects of artificial intelligence and mathematics. Many induction theorem provers
have been developed including NQTHM [4], RRL [24], CLAM [7], ACL2 [6], INKA [1], and SPIKE [3].
Despite significant progress made in research on mechanization of inductive reasoning, using induction
theorem provers for proofs of properties of recursive and iterative programs expressed in a functional style
often requires significant manual intervention. A user can spend considerable time on proof attempts which
fail due to the inherent incompleteness in inference systems for inductive reasoning (provers fail even for
many valid conjectures). This is especially daunting to an application expert trying to use an induction
prover for obvious conjectures.

There has recently been a surge of interest in the role of decision procedures in tools for reasoning about
computations, especially because of the success of BDD-based tools and model checkers in hardware and
protocol verification, static and type analyzes, byte-code verification, and proof-carrying codes. Most such
push-button systems use a combination of decision procedures for theories such as Presburger arithmetic,
propositional satisfiability, and data structures including bit vectors, arrays, and lists. Extending these

Presentado por Luis M. Laita.
Recibido: January 26, 2004.Aceptado: October 13, 2004.
Palabras clave / Keywords: Induction, Decision Procedures, Automated Theorem Proving.
Mathematics Subject Classifications: 3B35, 68Q42, 68Q60, 68T15.
c� 2004 Real Academia de Ciencias, Espa˜na.

153

D. Kapur, J. Giesl and M. Subramaniam

tools by the capability to perform induction proofs would be very desirable, since induction is frequently
needed to reason about structured and parameterized circuits (e.g.,�-bit adders or multipliers), the timing
behavior of circuits with feedback loops, and code using loops and/or recursion over recursively defined
data structures. Because of the above-mentioned challenges in automating induction proofs, such tools
lack, however, support for inductive reasoning.

This paper attempts to provide an overview of our work on mechanizing inductive reasoning using term
rewriting techniques in the framework of our theorem proverRewrite Rule Laboratory (RRL). A particular
focus is our recent work on integrating induction into decision procedures so as to enhance the reasoning
power of decision procedures. Below, we start with a brief history.

In his Ph.D. thesis in 1988, Kapur’s former student Hantao Zhang proposed a method for mechanizing
induction based on the concept of acover set built from a definition of a function given using terminating
rewrite rules [29]. This method was implemented inRRL [24]; it turned out to be quite successful and
effective in proving nontrivial theorems about lists and numbers. Particularly, we managed to prove most of
the theorems proved in [4], some of them automatically, and almost all of them with fewer interventions and
guidance by the user than reported in [4]. Subsequently, Xumin Nie implemented a decision procedure for
quantifier-free Presburger arithmetic intoRRL and integrated it with the contextual rewriting mechanisms
of RRL [14, 16]. This extension turned out to be particularly useful in automatic verification of number
theoretic properties of generic parameterized descriptions of arithmetic hardware circuits including ripple-
carry adder, carry-save adder, carry-lookahead adder, Wallace tree and related multipliers, and SRT division
(see [18, 20, 21] for details). Many of the proofs could be done completely automatically usingRRL. In
particular, the theorem prover was able to generate intermediate lemmas needed for proofs.

In the early 1990’s, Kapur and Subramaniam initiated a research program in mechanization of inductive
reasoning in which decision procedures are to play a critical role [17]. The main idea in this work was to
use decision procedures instead of syntactic (simple) unification over the empty theory, to generate cover
sets, induction schemes, merge induction schemes, and speculate generalization lemmas. In the late 1990s,
Kapur and Subramaniam proposed a way to extend decision procedures by integrating induction schemes,
so as to be able to decide a priori the class of formulas where inductive validity can be verified or disproved.
In this way, the language of these decision procedures is extended by recursively defined function symbols.
Using these ideas, Giesl, Kapur, and Subramaniam identified a wide class of conjectures which can be
decided automatically using the cover set method [11, 12, 22]. This partly explains whyRRL has been so
successful in automatically deciding many conjectures. We are however still a long way from characterizing
the class of conjectures automatically decidable byRRL.

In this paper, we introduce key concepts and discuss results obtained; an interested reader should consult
[11, 12, 17, 22, 28] for further details.

1.1. Organization

In the next subsection, an informal overview of the cover set method is presented using an example that
students in an introductory course on discrete mathematics are typically asked to do when they are taught
proofs by mathematical induction. This is followed by another example where the use of semantic in-
formation (with the help of a decision procedure for numbers) is illustrated. Section 2 gives preliminary
background: how function definitions are given, axiomatization of recursive data structures including num-
bers is reviewed, inductive validity is defined. Section 3 defines the concept of a cover set; it is shown how
induction schemes are generated from a cover set both in the most general case as well as in specific cases;
soundness and completeness of an induction scheme are reviewed and a method for checking the complete-
ness of a cover set is presented. It is also shown how incomplete induction schemes can be useful in doing
proofs. This is followed by a discussion of merging induction schemes, which often becomes necessary
while attempting proofs by induction.

The second part of the paper is on extending decision procedures with induction schemes. In Section 4,
a class of equational conjectures in which defined function symbols occur is identified so that their validity
can be decided using the cover set method and decision procedures. Section 5 is on identifying a class of

154

Induction and Decision Procedures

quantifier-free formulas which can be decided automatically. Their atomic formulas are a subclass of the
above equational conjectures expressed only using defined symbols on one side and constructor terms on
the other side. Section 6 discusses how a decision procedure can be used to automatically generate lemmas
and to improve upon generalization heuristics.

1.2. An Informal Overview of Issues in Mechanizing Induction

Assume that functions�� �, and exponentiation are defined on the data type of natural numbers, generated
by its free constructors�� � as follows:

�� � � �� �� ���� � ���� ���
� � � � �� � � ���� � �� � �� � ��

�� � ����� ����� � �� � ��

¿From these definitions which can be easily shown to be terminating when considered as rewrite rules from
left to right, we wish to prove:

���� � �� � �� �

It is easy to see that the above conjecture cannot be established by simplification using the rules. Let
us see what is involved in attempting its proof using induction; the example will reveal many issues in
mechanizing proofs by induction.

The first issue is the choice of a variable(s) to perform induction; there are three candidates:�� �� �. A
related issue is that of a possible induction scheme on natural numbers which must be used. By analyzing
the definitions of function symbols in the conjecture, it becomes clear that a proof attempt is less likely to
get stuck if (i) the variables on which recursion is being performed are used as the induction variables and
(ii) further, an induction scheme based on recursion analysis of function definitions is used. Particularly,
resulting subgoals in a proof attempt can be simplified using the definitions, possibly leading to formulas
on which induction hypotheses can be used.

Based on such definitional analysis,� is ruled out as a possible candidate for performing induction.
Among the remaining variables� and�, which are appearing as inductive arguments of exponentiation,�
appears to be the most promising since it is the inductive argument on both side of the conjecture.

With respect to the choice of an induction scheme to be used for�, the definitions of exponentiation and
� in which � is the inductive argument are given in the same way.1 Thus, the induction scheme suggested
by�, which is the principle of mathematical induction, can be used.

We attempt a proof by induction using� as the induction variable. The base case, in which� is �, gives
the following subgoal:���� � �� � ��� which simplifies using the definitions to:�� � �� ��� The proof
of this new lemma can be attempted again by induction. Or, one can be speculative, suggesting that perhaps
a more general lemma obtained by generalizing�� to � may be valid. If that is indeed the case, then the
less general subgoal obviously follows, and the more general lemma can be useful in other proof attempts
as well (otherwise, it is always possible to attempt the less general goal).

Let us try to attempt a proof of� � � � �� In this case, there is no choice;� is the only variable. The
induction scheme suggested by the definition of� is employed, and the proof (both the base case and the
induction step case) goes through easily. This also finishes the proof of the base case of the main conjecture.

In the induction step case, the conclusion after substituting����� for � is:

�������� � �� � �������

with ����� � �� � ��� as the induction hypothesis. The conclusion can be simplified using the definitions
to: ����� �� � �� � ���� ���� Now the induction hypothesis is applicable to the left-hand side of the above
subgoal, giving rise to:��� � ���� � � � �� � ���� � ��� Once again, it is possible to speculate and observe

1If that was not the case, it would become necessary to reconcile different induction schemes suggested by different definitions
possibly by merging them; this is discussed later in the paper.

155

D. Kapur, J. Giesl and M. Subramaniam

that perhaps a more general version of the formula can be attempted from which the formula follows. The
generalized conjecture is:

�� � �� � � � � � �� � ���

which is a property about�. Again, this property cannot be proved by simplification, but induction must be
used. Based on definitional analysis,�� � are candidates for induction, and since� appears on both sides
of the conjecture as the inductive argument of�, it is picked for performing induction using the induction
scheme suggested by�.

The base case, in which� becomes�, follows by applying the definition. The induction step case
gives rise to: �� � �� � ����� � � � �� � ������� with the hypothesis:�� � �� � �� � � � �� � ����
Simplifying the induction subgoal using the definition and applying the induction hypothesis results in:
�� � �� � ���� � �� � �� � � � ��� � ��� � ��� Once again, a generalization of this conjecture can be
attempted, which is the distributivity of� over�.

�� � 	� � �� � �� � � � �	 � ���

Based on the analysis discussed above, its proof is attempted by induction using� as the induction
variable with the induction scheme suggested by� and�, the principle of mathematical induction. The
base case is easy to prove. In the induction step case, the subgoal is:���	����������� � ���	��������
with the induction hypothesis:�� �	� � �� � ��� � � � �	� ���� Attempting a proof of the subgoal leads,
after yet another generalization, to a conjecture about the associativity of�, which can be easily established
using induction.

Once the associativity of� is proved, the proof of the distributivity conjecture is complete, which also
completes the proof of the associativity of�. This then completes the proof of the original conjecture. (This
is exactly how the automatic proof generated byRRL proceeds.)

The above proof is a typical induction proof attempt which succeeded. It reveals a number of issues that
need to be considered when proofs by induction are mechanized. We briefly review some of them below:

1. Which variable in a conjecture should be selected for performing induction? Associated with this
choice is determining an induction scheme to be used. In this example, the choice of an induction
scheme was not difficult, but there are cases where such a choice is not easy. Designing an appropriate
induction scheme for attempting a proof is perhaps one of the most challenging tasks in automating
induction proofs.

2. What techniques can be used for generalizing intermediate subgoals to identify stronger lemmas
which are likely to be more useful and easier to prove? Further, if simple heuristics, such as general-
izing a commonly occurring subterm to a variable, are employed, can conditions be identified under
which the generalization is likely to be valid if the original conjecture is valid? Ideally, we would like
to perform asafe generalization such that if the generalized conjecture is found to be not valid, the
original conjecture can be declared to be not valid also.

3. When can a proof by induction be done automatically without any help by the user?

4. How to ensure progress during a proof attempt when subgoals are generated from the original goal
while following a particular line of reasoning, and when should an alternate approach be attempted
instead? Related to this issue is the number of generalizations attempted and the number of interme-
diate lemmas tried before giving up a particular line of reasoning.

5. When should one give up? How can the information gathered in a proof attempt be utilized for
subsequent proof attempts of the conjecture or of the modified and related conjecture if the conjecture
is not valid? How can a conjecture be patched?

The paper will attempt to address some of these issues focusing on 3.

156

Induction and Decision Procedures

1.3. Using Semantic Information in Attempting Proofs by Induction

Consider the following definition of the divisibility predicate on natural numbers; the predicate
 on num-
bers has the usual meaning and its definition is omitted.

���������� �� � ���� ���������� �� � 	
��� if �
 � � � �� ��
���������� �� �� � ���������� �� if �
 �� ��

The above definition is not given using� and�. It illustrates how semantic information about a data structure
is used for attempting proofs. A possible conjecture to prove is:

���������� � � �� � ���� if ���������� �� � � � ��

The reader would notice that attempts to prove the above conjecture by induction on� or� or both�� � using
the principle of structural mathematical induction on natural numbers will get stuck. The above definition
of ������� is not given using� and�. However, for such a proof attempt, it would become necessary to prove
properties of������� expressed using� and�.

The definition of������� suggests an induction scheme different from the principle of structural math-
ematical induction. A few things must be observed first, however. Unlike the definitions in the previous
subsection, for which it was easy to prove that each function is completely defined and terminating (since
each definition follows the primitive recursive scheme), the above definition is nontrivial. As will be shown
later, a formula can be constructed from the above definition which specifies its coverage:

��� � ��� � ��� � � � � � �� � �� � � � � � � � �
 � � � �� ���

�� � � � � � �� � � �
 �� ����

This formula is expressed using function and predicate symbols from Presburger arithmetic and can be
decided by a decision procedure for this theory. The formula is not valid as there are values of�� �, partic-
ularly when� � �� � � ����� for which the above rules do not define�������; it is defined only if the first
argument is non-zero or both the arguments are0. Thus, any conjecture involving������� must satisfy this
condition on the arguments. Since������� is not completely defined, the induction scheme suggested by the
above definition can be used only to prove conjectures under a condition as shown below.

Since in the definition of�������, both the arguments are changing, variables� and� are the induction
variables in the above conjecture. There are two base cases corresponding to the first two rewrite rules:
(i) � � � and� � �, and (ii) � � � and� � � where (�
 � � � �� �). The induction step case is
generated from the third rewrite rule in which a recursive call is made to������� on the right-hand side. For
the induction hypothesis, the substitution for induction variables is� � �� � � �, whereas the substitution
for the conclusion is� � �� � � �� � where�
 �� �.

The first base case leads to:���������� �� �� if ���������� ���� � �� which simplifies to true using the
definition of�. The second base case is���������� � � �� if ���������� �� � �� � �� � ��
 �� � � �� ��
which trivially simplifies totrue since���������� �� in the condition simplifies to	
��� under the condition
�
 � � � �� �. The induction step case is:

���������� ��� �� � ��� ��� if ���������� �� �� � � � � � ��
 �� ���

with the induction hypothesis being:���������� � � �� if ���������� �� � � � �� Using the properties of

, the associativity and commutativity properties of� and the definition of�������, the conclusion above
reduces to:���������� ���� if ���������� ���� � �� the induction hypothesis. So the conjecture is proved.

The reader would have noticed how using the well-founded ordering suggested by the definition of
������� leads to an induction hypothesis which is useful in proving the conjecture. Also observe a close
connection between the rewrite rules defining������� and the induction scheme generated for�� �, the
arguments to������� in the conjecture. The cover set method discussed below formalizes these ideas. Also,
the reader would have noticed the role of a decision procedure for Presburger arithmetic in determining
whether������� is completely defined and in simplifying subgoals. This will be further elaborated in later
sections.

157

D. Kapur, J. Giesl and M. Subramaniam

2. Preliminaries and Background

We use many-sorted first-order logic with equality (�) as the framework for discussing proofs. For a
signature� and an infinite set of variables� , let 	������ ��� and	������� denote, respectively, the set
of (well-typed)terms and the set ofground terms (terms without variables) over� . Below, by� �, we mean
a�-tuple of pairwise different variables��� � � � � ��, where� depends upon the context; similarly,�� stands
for a�-tuple of terms��� � � � � ��.

A position is a sequence of positive integers used to refer to a subterm in a term. An equation will be
considered as a term with� as the binary predicate. A conditional equation will be considered as a term with
� as the binary predicate whose second argument is a term with the outermost function symbol “if” consid-
ered as a binary function. In the above conjecture about�������, for instance, the position of���������� �� is
2.2.1 as the conjecture is viewed as an abbreviation for���������� �� �� � �
��� if ���������� ��� � � ���

2.1. Decidable Theories Capturing the Semantics of Data Structures

To incorporate the semantics of data structures on which recursive function definitions are given, let	 stand
for a theory associated with a recursive data structure. A theory	 is given by a finite signature� � and
a set of axioms��� over the signature�� . The theory	 is defined to be the set of all closed formulas
� over�� such that���
� � (then� is calledvalid). Here, “
�” is the usual (semantic) first-order
consequence relation. We often omit leading universal quantifiers and we write� � �
 as a shorthand for
���
� � � � � � �
. A term built from variables and�� is called a	 -term.

We mostly use two theories in this paper for illustration: The theory of free constructors	� and Pres-
burger arithmetic	��. The theory of free constructors	� has a finite set of free constructors in��� .
Axioms���� for thetheory 	� of free constructors are:

������ � � � � ��� � ������ � � � � ��� for all �� �� � ��� where� �� ��

����� ��� ��������� ��� ���� ����� � ��� � ����� for all � � ����
	����

���� � � � � �� � � ����� � � � � ���

� ����� � � ���� � � ���� � � � � � �� � � �� � � �� � �� for all sequences��� ���� ��, �
 � ���

Note that the last type of axioms usually results in infinitely many formulas. Here, “. . . ” in the argu-
ments of�
 stands for pairwise different variables.

For natural numbers, for example, the constructors are� and� (successor), which are free; that means
that (i)� is assumed to stand for a number different from a number represented by����, and (ii) if ���� and
���� denote the same number, then� and� also denote the same number. Moreover, (iii) every number is
either0 or of the form����, and (iv)����� is different from� for all �
 �.

There is yet another way to characterize the theory of natural numbers usingPresburger Arithmetic,
which is richer. We use the following definition for thetheory 	��: ���� � ��� ���� and����� consists
of the following formulas:

��� �� � � � �� �� � �� � ��� � � ��
�� � � � � � �� � � �� � � � � �
�� � � � � � � � �� � � � � �

For
 � 	��������� ��� with ��
� � ���� � � � � ���, there exist�
 � �� such that
 ���� �� � �� �
�� � � � �� �� � ��. Here, “� � �” denotes the term�� � � �� � (� times) and “��” denotes�� � � �� � (��
times). We often writeflattened terms (i.e., without parentheses) since “�” is associative and commutative.
For� ���� �� � �� � �� � � � �� �� � �� and
 as above, we have� ����
 iff �� � ��� � � � � �� � ��.

The theory	�� is an example where constructors are not free, i.e., there are nontrivial equalities be-
tween constructor terms. Similarly, for integers, the constructors�, �, and
 (predecessor) are not free since
� � ��
���� �
������. If constructors are not free, then relations over constructor symbols are usually
assumed to be expressed using equations.

158

Induction and Decision Procedures

2.2. Recursive Function Definitions

A function definition is assumed to be given using a finite set of terminating rewrite rules. To be precise, we
useterm rewrite systems (TRSs) over a signature� � �� as our programming language [2] and require
that all left-hand sides of rules have the form����� for a tuple of terms�� from	������� ��� and� �� �� .
Let�� � � ��� denote the set ofdefined symbols. For a defined function� , � � denotes the rewrite rules
defining� .

To perform evaluations with the TRS� and the underlying theory	 , we use rewriting modulo a theory,
where��
� must be decidable (e.g., this holds if	 -equivalence classes of terms are finite and com-
putable). We have���
�
 iff there are�� and
� with � �� �� ��
� ��
.

Unless stated otherwise, we restrict ourselves to terminating, confluent, and sufficiently complete TRSs
�, where� is terminating iff ��
� is well founded, it isconfluent iff ��
� is confluent, and it is
sufficiently complete iff for all (well-typed) ground terms
 � 	������� there exists a� � 	������� �
such that
 ��

�
� � (i.e., � is anormal form of
, written as
��
�).2 When regarding��
�
� and��
� ,

we usually do not distinguish between terms that are equal w.r.t.�� .

Definition 1 (Inductive Positions) For � � ��, a position � with � � � � �������� is non-inductive
if for all � -rules ����� � � � � ��� � ����
��� � � � �

�
��� � � � � ��
�� � � � � �

�
��� where � is a context without any

occurrence of � , we have �
 � � ,
�
 � �
, and �
 �� ��������

�
� � for all � �� � and � � � � �. Otherwise,

the position is inductive.

In the above definitions of�� �, and exponentiation, the second argument is an inductive position,
whereas in�������, both arguments are inductive positions. Many induction provers, includingRRL, use
terminating recursive function definitions to generate induction schemes for attempting induction proofs
[4, 28, 7, 1].

2.3. Inductive Validity

Instead ofvalidity, we are usually interested ininductive validity.

Definition 2 (Inductive Validity) A universal formula ��� � is inductively valid in the theory 	 (de-
noted ���
�
�� �) iff ���
� �� for all ground substitutions �, i.e., � substitutes all variables of � by
ground terms of 	������� �.

In general, validity implies inductive validity, but not vice versa. We restrict ourselves to theories like
	� and	�� which are decidable and inductively complete (i.e., inductive validity of an equation� � � ��
(over ��) also implies its validity, cf. e.g. [9]). Then inductive validity of� � � �� can be checked by a
decision procedure for	 . Of course, validity and inductive validity do no longer coincide if we introduce
additional function symbols defined by rewrite rules.

The rules in� are considered as equational axioms extending the underlying theory	 . This results in
a new theory with the signature� and the axioms��� � �� � �
 � � � � ��. To ease readability, we
write��� �� instead of��� ��� � �
 �� � � ��. It turns out that this extension isconservative, i.e.,
it does not change inductive validity of equations over�� .

Theorem 1 [12] For all ��� �� � 	������� ���, ���
�
�� �� � �� iff ��� � �
�
�� �� � ��.

3. Cover Sets and Generation of Induction Schemes

The cover set method for mechanizing induction uses terminating function definitions for generating an
induction scheme for a data structure. Induction is performed using a well-founded rewrite relation induced

2We do however allow recursive function definitions which are not sufficiently complete; for instance, the definition of�������

above is not complete.

159

D. Kapur, J. Giesl and M. Subramaniam

by the terminating rewrite rules. Two different functions defined differently on the same data structure can
give rise to different induction schema.

The left-hand sides of rewrite rules in a definition of� are used to generate different subgoals of an
inductive proof of a conjecture in which� occurs. Variables in a conjecture corresponding to the inductive
positions in the definition of� are the induction variables which are instantiated by arguments in the left-
hand sides at inductive positions. For generating induction hypotheses, any (and all) smaller instantiation(s)
in the rewrite relation can be used. One convenient way to generate smaller instantiations for induction
hypothesis(es) is to use recursive calls in the right-hand side of the rewrite rules in the definition of� .

Definition 3 (Cover Set) Let � � ��. Its cover setis �� � ����� �
��� � � � �

�
���
 ���

�� � ����
���� � � � �
��
���� � ��. Similarly, if the rules defining � are conditional rewrite rules, then �� � ����� �
��� � � � �

�
���

���� �� � � � � ��� ���
 ���
��� ����
���� � � � � ��

�
��� if ��� � � � � � � ��� � � ��.

In the above, the second component of a tuple in� � is empty if there are no recursive calls to� in the
right-hand side of a rule; similarly, the third component of a tuple is empty if the rule is unconditional;
��� stands for the set of all literals in the (conjunctive) condition of a conditional rewrite rule. In case a
function definition is given using unconditional rewrite rules, its cover set will consist of 2-tuples obtained
by dropping the condition.

The cover set based on the definitions of�, �, and exponentiation is�� � �� � ��� � ����� ������
���� ������ ���� �����; similarly,��������: ����� �������� ���� ����� ��
 �� � �� ���� ���� ����� ���� ����
��
 �� �����

3.1. Generating a Basic Induction Scheme from a Cover Set

An induction scheme consists of a finite sets of tuples, in which each tuple has

1. a substitution�	 for induction variables which is used to generate the conclusion and the associated
condition��� 	 when the substitution is applicable, as well as

2. a finite (possibly empty) set���� � � � � ��� of substitutions used to generate induction hypotheses,
each associated with a condition���
 (� � � � �) when the substitution is applicable, such that

3. each substitution�
 is smaller in a well-founded reduction ordering than the substitution� 	.

Each such tuple generates a subgoal of an induction proof attempt. Def. 4 describes how an induction
scheme can be generated from a cover set�� of � . Here,��� � ��� stands for the substitution��� �
��� � � � � �� � ���.

Definition 4 (Basic Induction Scheme) Given a conjecture in which ����� appears as a subterm, the
induction scheme is a finite set of tuples generated as follows: for each cover set triple ����� �
��� � � � �

�
���

���� �� � �� , there is a tuple ���	� ��� 	�� ���
� ���
�
 � � � � ��� in the induction scheme, where
�	 � ��� � ���, ��� 	 � ��� � �
 � ��� �
��, and ���
 � ��� .3

The substitution�	 and each of the substitutions�
 are linked through the variables shared among the
left-hand side and the recursive calls on the right-hand side of the rule from which the cover set tuple is
derived.

3Sometimes it is helpful to include in the induction scheme, the position of the subterm����� in the conjecture as well as its
replacement both for the conclusion as well as each of the induction hypotheses; see [17] for more details.

160

Induction and Decision Procedures

3.2. Induction Schemes from Nonbasic Subterms of a Conjecture

Sometimes an induction scheme corresponding to a nonbasic subterm (i.e., different from��� ��) in a con-
jecture has to be generated. This could be because either there is no basic subterm in the conjecture, vari-
ables in the conjecture on which induction must be performed to get a proof, appear only as arguments in
a nonbasic subterm, or the induction scheme generated from a basic subterm does not produce a proof. We
give below an algorithm for generating an induction scheme for a nonbasic subterm��� �� from the cover
set�� of � . Assume below that variables in a conjecture (including��� ��) are disjoint from variables used
in �� .

An induction scheme generated for����� using the cover set�� is a finite set of tuples generated as
follows. Here,�� � �� stands for�� � �� � � � � � �� � ��. For each tuple����� �
��� � � � �

�
��� ���� �� �

�� , we include the tuple���	� ��� 	�� ���
� ���
�
 � � � � ��� in the induction scheme, where

1. �	 is a most general unifier of�� � �� in 	 under the constraint��� , possibly generating a feasibility
constraint�	 on variables in�� under which�	 is applied;��� 	 � �	���� � � �	;

2. each�
 is a most general unifier of�� � �	�

�

 � in 	 under the feasibility constraint�	 from the

previous step, also generating a feasibility constraint�
, and���
 � �
���� � � �
.

3. In case of multiple most general unifiers, each must be considered.

Consider the following definition of the greatest common divisor (���).

�� ������ �� � �� 	� ������ ��� ��

� ����� � �� ��� ������ �� if �� � � �� �� ������ �� ��� ������ �� if �� � � ��

We obtain the cover set���� � ����� �������� ���� �������� ��� � �� ��� ���� ���� �� � � � ����
���� � � ��� ���� ���� �� � � � ����; the conditions are included in the recursive rules to ensure termi-
nation of rewriting.

The induction scheme for the conjecture����! �!� �� � � (where� stands for� � �) is generated
as follows. The base cases are obtained from the first two tuples in the cover set. First, (i)�! � ! �
�� � � �� are unified w.r.t.	��, giving the substitution�! � �� � � ��; the corresponding subgoal is
������ �� �� � �; (ii) �!�! � �� � � �� has no solution, so no base case is generated.

The induction step case from the third tuple in the cover set is generated as follows. For the conclusion,
we solve�!�! � ���� � � �� under the constraint��� � � giving the substitution�!� ���� ��
�� �� 	���. Here,	�� again stands for���. For the induction hypothesis,�!�! � 	��� � � �� is solved
to get the substitution�!� ��. Thus the subgoal generated is:�������� �� � �� ������������ �� �
�.

Similarly, the induction step case from the fourth tuple of the cover set is obtained as follows:�!�! �
�� � � � � �� is solved under the constraint� � � � � giving the substitution�! � �� � � �� � � ��
for the conclusion. The unification problem�!�! � �� � � �� has no solution; so there is no induction
hypothesis for this case. Thus the subgoal generated is:����� � �� �� � �. Many other examples of how
induction schemes are generated from nonbasic terms are included in [17].

Using the above generated induction scheme, the conjecture can be easily proved as each subgoal is
trivial to establish. In contrast, such conjectures are usually proved with other theorem provers using hints
and other tricks (see for instance, proofs of such properties in [4, 5]).

3.3. Completeness of Cover Sets and Induction Schemes

An induction scheme used for attempting a proof by induction must be bothsound andcomplete. The
completeness and soundness of an induction scheme are directly linked to the properties of the underlying
cover set from which it is obtained. The soundness is guaranteed if the induction scheme (in particular
induction hypotheses) is generated from a terminating function definition: recursive calls in the right-hand

161

D. Kapur, J. Giesl and M. Subramaniam

side in a function definition are guaranteed to be smaller than the left-hand side of each rule in some well-
founded reduction ordering used to prove the termination of the function definition. The reduction ordering
must also preserve equivalence�� w.r.t.	 .

To ensure the completeness of an induction scheme, the cover set of a function� used to generate it
must provide acomplete cover for the domain of� . In other words,� � must be completely defined, i.e.,
for all ��� � � � � �� � 	������� � there must be a� � 	������� � such that����� � � � � ��� �� �.

Theorem 2 An induction scheme generated from a term ����� � � � � ��� using the cover set �� is complete
and sound if �� is complete.

3.3.1. A Formula Characterizing the Coverage by a Function Definition

Below, the method using a decision procedure for a theory (� or 	��) proposed in [13] to check for
completeness of a function definition is reviewed.

For each rewrite rule in the definition�� of � , a formula can be constructed specifying the subset of the
domain of� covered by the rewrite rule. The subset of the domain covered by� � is then the disjunction of
the formulas corresponding to each rewrite rule. Let� �� � � � � �� be new variables denoting the arguments
of � . Corresponding to the left-hand side, say� � ����� of each rule “� � � if ��� ”, we construct the
domain formula ��� ��� � �� � ��� �� where�� are the variables appearing in��. The above formula
is true for those values of�� for which substitutions for�� can be found such that�� � �� and��� is
satisfied. Let�� stand for the disjunction of the domain formulas of all rules in the definition� � . If �� is
valid in 	 , then�� is complete.

For the definition of exponentiation, for example, the above method produces the domain formula:

���� �� ��� � �� � � � �� � �� � �� � � � �������

over the theory of free constructors� and �. This formula is clearly valid, implying that the definition
of exponentiation and the associated cover set are complete. Similarly, it can be shown that the formula
corresponding to the coverage of the definition of��� is valid in	��.

¿From the definition of�������, � is:

�� ��� � � � �� � �� � ��� � ��� � � � �� � � � �
 � � � �� ��

� ��� � ��� � � � �� � �� � � �
 �� ���

The above formula can be shown to be not valid, implying that the definition of������� is incomplete:
������� is defined only if�� � ����� � �� � � and not defined if�� � � � �� � �����. This equivalent
quantifier-free formula can be obtained using a quantifier elimination procedure [9] on�.

In [15], algorithms for checking completeness of constructor-based definitions expressed as terminating
rewrite rules are discussed; constructors are assumed either to be free (with no relations) or relations on
constructor terms are specified as a convergent rewrite system.

3.3.2. Incomplete Cover Sets and Associated Induction Schemes

If a cover set is incomplete, unsound conclusions can be made unless one is careful in using an induction
scheme generated from it. For example, it is shown above that the cover set based on the definition of
������� is incomplete. Using an induction scheme generated from it, it is possible to conclude that

���������� � � �� if ���������� ���

even though the terms in the above formula are not defined for all values of� and�.
Given a conjecture�, a proof of�� � � is attempted if the induction scheme generated from the

cover set of� is used, where�� characterizes the subdomain covered by the definition of� . If � � � �
is equivalent to�, a proof of� is being attempted as the example below illustrates.

162

Induction and Decision Procedures

Since������� is defined only if� � � � � � �, the above conjecture may only be formulated under this
condition. Thus,

���������� � � �� if ���������� �� � �� � � � � � ��

is a theorem. Similarly,

���������� �� � �������������� ������ if �� � � � � � ��

can be proved using induction; this conjecture is the same as

���������� �� � �������������� �������

since the condition in the conditional formula is true.

3.4. Merging of Induction Schemes

Induction schemes suggested by different subterms of a given conjecture can in general share induction
variables amongst each other. An inductive proof attempt of the conjecture based on one of these schemes
only is not likely to succeed in such cases. The following example illustrates this. Consider the conjecture

�
�����	� if �
����� �� � �
����� 	��

where�
�� is defined onfinite lists with free constructors��� and����:

�� �
������� ���� � ���� � 	� �
������� �������� ���� � 	
��� �

� �
����������� ���� ����� 	
��� �
�� �
����������� ���� �������� ���� � ��� � ��� � �
������ ����

The induction schemes suggested by�
����� ��, �
����� 	�, and�
�����	� are three possible candidates
for attempting a proof of the above conjecture by induction. The schemes are similar; they differ in the
induction variables.

Attempting a proof of the above conjecture using the scheme generated from�
����� �� would result
in the induction step case with the conclusion,

�
����������� ���� 	� if �
����������� ���� �������� ���� � �
����������� ���� 	��

and the hypothesis,�
������ 	� if �
������ ��� � �
������ 	�� The conclusion simplifies using the last
rule in the definition of�
�� to,

�
����������� ���� 	� if ��� � ��� � �
������ ��� � �
����������� ���� 	��

The hypothesis does not match the conclusion and the proof attempt by induction fails.4 The failure is due
to 	 not being instantiated in�
�����	� and�
����� 	�. Similarly, a proof attempt based on the other
two schemes would also get stuck at a similar subgoal since one of� or � would remain uninstantiated.

This situation can be remedied if the induction schemes due to�
����� �� and�
����� 	� are merged;
this amounts to performing simultaneous induction on all the three variables of the conjecture. For the
above example, each of�� �� 	 is instantiated to be one of���� ������
� �
�. Further, merging of schemes
also eliminates the need to arbitrarily choose from amongst competing schemes.

In general, if two subterms
� � ���� �� and
� � "��� �� in a given conjecture where both the argu-
ments of�� " are inductive positions, share a common variable,�, then attempting a proof of the conjecture
by induction based only on the scheme suggested by
 � would generate
�� � �	����� ��� � ���	���� �	����
and
�� � �	�"��� ��� � "��� �	���� in the conclusion of an induction step case which cannot be simplified

4A proof of the above simplified subgoal can be successfully attempted by induction again possibly using an induction scheme
generated from the non-basic term�������	����� ���� ��.

163

D. Kapur, J. Giesl and M. Subramaniam

to match the induction hypothesis. The same will be true if the induction scheme suggested by
 � is used.
Instead, the induction schemes from
��
� need to be merged.

Given a substitution���	� ��� 	�� ����� � ��� ����� from one induction scheme and another substitution
��#	� ���

�
	�� ��#�� � ���

�
��
��� from another induction scheme for a conjecture, if they share a variable, then

the substitutions for the variable in�	 and#	 are reconciled by unification. LetÆ be a most general unifier
of �	��� and#	���, where� is a shared variable. Then the merged substitution is obtained by applyingÆ on
both the substitutions and merging them in an obvious way, as well as taking a conjunction of the instan-
tiated conditions. In case of more than one mgu, each mgu gives a case for the merged induction scheme.
If two induction schemes are merged, the result can sometimes be an induction scheme equivalent to one
of the original schemes except for additional induction hypotheses which are often useful in completing a
proof attempt that may otherwise get stuck. For examples and details, we refer to [17].

4. Automatically Deciding Equations by Induction

In the late 1990s, Kapur and Subramaniam proposed integrating induction into decision procedures with-
out compromising automation [22]. Particularly, we are interested in identifying structural conditions on
recursive function definitions such that a large family of conjectures expressed using such function sym-
bols can be decided automatically using the cover set induction method (of course with the aid of decision
procedures). In a series of papers [11, 12, 22], Kapur, Giesl, and Subramaniam have proposed syntactic
conditions on recursive function definitions as well as on conjectures which guarantee that inductive valid-
ity of these conjectures is decidable. Another motivation for this line of research has been to characterize
the class of formulas our theorem proverRRL can decide automatically (without any user guidance). In
this and the next section, we give an overview of the results. For simplicity, it is assumed that all function
definitions are given using terminating unconditional rewrite rules; consequently, the associated cover sets
and induction schemes will not have any��� component in the tuples.

4.1. � -based Function Definitions and Compatible Definitions

In [22], we introduced the concept of a	 -based function definition: in the rewrite rules defining a function
symbol� , (i) all arguments to� are	 -terms and (ii) the right-hand side becomes a	 -term after subterms
of the form��
��, if any, are abstracted using new variables.

Definition 5 (-based Definition) A function symbol � � � has a 	 -baseddefinition iff � � ��

or if all rules � � � � � have the form ����� � ����
���� � � � � ��

�
���, where ���
��� � � � �

�
� are from

	������� ��� and � is a context over �� .

For instance, the definition of� in Section 1.2 is	�-based with�� � as the set of free constructors; the
definitions of� and exponentiation are however not	�-based since� and� occur, respectively, in the
right-hand sides of these definitions.

The definitions of��� and������� are	��-based. In general, definitions like those of��� and�������,
which involve conditions are declared	 -based if the function symbols in the conditions belong to� � [22].

4.2. Compatibility among Function Definitions

Now we introduce the concept ofcompatible function definitions: Compatibility ensures that when a term
built from a compatible sequence of function symbols is instantiated and normalized, the result is a	 -term.
Informally, the definition of" is compatible with the definition of� if for every rule of� , thecontext created
by the rule on its right-hand side can be simplified by the definition of".

Formally, the definition of a function" is compatible with the definition of� on argument� if in
any term"�� � � � ��� � ��� � � ��, where� is on the�-th argument of", every context created by rewriting
� will move outside the term by rewriting". So if � has a rule����� � ����
���� � � � � ��

�
���, then

164

Induction and Decision Procedures

rewriting � can create the context�. Hence, if induction on� is performed within a term of the form
"�� � � ��� � �� � � ��, then in the induction conclusion, the resulting term"�� � � ����� � � �� can be rewritten to
a term�� "�� � � ��
�
�� � � ��� � � � � "�� � � ��

�

�
� � � �� �. Here, the induction hypotheses"�� � � ��
�
 � � � �� occur

within a context�. Consider the following definitions:

������� � �� ������� � ��

�����	���� � 	���� �����	���� � ��

�����	�	����� � �������� �����	�	����� � 	����������

������ � 	���� �
���� � ��

����	���� �
������ �
������� �
��	���� � 	�	��
�������
�����	���� � �� ������ �� � ��

������� �� � 	���������� ����	���� �� � ��

�����	��� ��� � 	���������� ����	���� 	���� � 	������� ����
�
������ � �� �������� �� � ��

�
�����	��� ��� � 	��
������ �������	��� ��� �� � ���	��� ������ ����

The function� is compatible with��� on the second argument;� is compatible with��� and��� on
the second argument also. The function�
�	 is compatible with����; however,���� is not compatible
with �
�	. However,���� is compatible with itself but�
�	 is not compatible with itself.

Definition 6 (Compatible Functions) Let "� � be 	 -based, � �� �� , and � � � � ! � ������"�.
The definition of " is compatiblewith the definition of � on argument� iff for all rules $
 ��� �� �
����
���� � � � � ��

�
���, we have

"���� � � � � ����� ����� � � � � ���� ����� � � � � ��� ��
�
�

�� "���� � � � � ����� �
� � ����� � � � � ���� � � � � "���� � � � � ����� �
� � ����� � � � � ��� �

for a context � over �� , ��� ���� ������ ���� ��, �
 �� ���� for all �.

Note that in Def. 6," can also be a symbol of�� . For instance,� is compatible with���.
The concept of compatibility can be extended to arbitrarily deep nesting leading to acompatibility

sequence [22]. Consider a term���%��� ���%
�
�� ����

��� ����� ����� where the pairwise different variables
�� on ��’s inductive positions do not occur in the terms%�
 � �

�
� with �� at ��-th argument of�� and��

at ��-th argument of��. The definition of compatibility sequences should guarantee that if�� �� ��� ���
is a compatibility sequence on the arguments���� ���, then in an induction on��, the resulting context is
propagated outside of the whole term. Hence, we require that�
 must be compatible with�
�� on argument
�
 for all � � ��� 	�. For example,��� ����

� is a compatibility sequence on��� ��. For more details about
compatibility sequences of function definitions as well assimultaneous compatibility, the reader should
refer to [22] and [12].

Theorem 3 [22] An equation ���%
�
�� ���%

�
�� � � � ����

�� � � � � ����� �
�
�� � � is decidable using the induction

scheme based on the cover set ��� of ��, if � is a 	 -term, each �
 has a 	 -based definition, ���� � � � � ��� is
a compatibility sequence, and %�
 � �

�

 are 	 -terms not containing the variables ��.

Up to now,� is not compatible with itself on the second argument because of the non-recursive rule.
In [12], we allow the compatibility requirement to be violated for non-recursive rules so that more function
definitions can be compatible with each other and our results are more widely applicable. Then,��� is also
compatible with� and��� is compatible with

.

The conditions of Theorem 3 can be easily checked syntactically. They ensure that every subgoal in
an induction proof attempt generated using the cover set induction method is such that (i) the induction
hypothesis(es) generated from the cover set method is applicable and (ii) each subgoal reduces to a formula
over�� and can thus be decided. For example, in case of the conjecture�������
����� � �� the base case

165

D. Kapur, J. Giesl and M. Subramaniam

obtained by substituting� for � gives� � � which is valid in Presburger arithmetic; for the induction step
case, the conclusion is�������
�������� � ���� which simplifies to���������
������ � ����. Then the
induction hypothesis�������
����� � � applies, giving���� � ���� which is valid in Presburger arithmetic.
Examples of conjectures which can be decided in this way are:

��
���������� � �� �������
����� � ��
�����

������������ � �� �
���������������� � ��

Functions����� ���� convert bit vectors to numbers and vice versa, respectively;

�� pads zeros to a bit
vector;�
�� gives the last bit of the bit vector output by����; for definitions, the reader may consult [21].

4.3. Equational Conjectures with Defined Symbols on Both Sides

In [12], Giesl and Kapur relaxed the restrictions on the forms of conjectures where inductive validity is
decidable. Both sides of an equational conjecture can now contain defined function symbols which have
	 -based definitions.

Consider a simple conjecture which falls outside the conjectures discussed in the previous section:
����� � �� � ������ � �. During an attempt to prove it by induction on�, the formula����� � �� �
������ � � � ������ ����� � ������ � ���� in the induction step case simplifies to:���������� � ��� �
�������� � ��. Since it contains the defined symbols� and���, its function symbols are not from� �� .
Similarly, let� be defined on&�-terms with the rules� � � � � and� � �� � �� � � � � � �. In a proof
by induction on	 of the distributivity law below

��� �� � 	 � � � 	 � � � 	� (1)

the induction step case�� � �� � � � � � � � � � � � �� � �� � �� � �� � � � �� � �� � � � �� � ��
simplifies to a formula with “�” (i.e., it is not in&�):

��� �� � �� � �� � � �� � ��� � � �� � �� � � � ��� (2)

In [12], it was shown that equational conjectures

'�� � � "�� � � ���� �� � � �� � � �� � '��� � � "��� � � � ���� �� � � �� � � ���

can be decided under certain conditions, if�� "� '� � �� "�� '� have	 -based function definitions and both
�'� "� �� and�'�� "�� � �� are compatibility sequences. Under certain conditions, on the positions marked
with “ � � �” one may also have terms with defined symbols, i.e., terms that are no	 -terms. Unlike previous
constructions in [11, 22], an induction subgoal for such an equational conjecture need not simplify after the
application of induction hypotheses to a formula over� � ; instead the simplified formula still has occur-
rences of defined function symbols. We developed conditions on the original equational conjecture which
ensure that every subgoal which would occur in a proof attempt can besafely generalized. Then subterms
with defined symbols in the subgoal are abstracted by variables, producing a formula over� � . If the gener-
alized formula is declared valid by a decision procedure for	 , then of course, the original conjecture which
is an instance of this generalized formula is valid as well; however, forsafe generalizations the converse
is also true, i.e., if the generalized formula is declared false by the decision procedure, then the original
conjecture is false as well. Using these ideas, it becomes possible to syntactically check all the necessary
conditions by only inspecting the original conjecture without performing a proof attempt. This results in a
decidable class of formulas whose inductive validity can be decided. Some conjectures in this class are:

������ �� � ������ � �� ������ �� � ������ � �������
����

��� ��� � ������ � ������� ������

��� ���� � ����

��� ������� �����

��� �� � 	 � � � 	 � � � 	� ��� �� � 	 � �� �� � 	��
������ 	� � � 	� � ������ �� � 	�

166

Induction and Decision Procedures

4.4. Safe Generalizations by the No-Theory Condition

The requirement of compatible function symbols ensures that in proof attempts, the induction hypothesis
will be applicable to the induction conclusion leading to a proof obligation��
 �� � � � �
�� � ����� � � � � ���
where� and� are contexts over�� and
�� � � � �
�� ��� � � � � �� are subterms containing defined symbols.
These subterms can be determined before the induction proof attempt by inspecting how subterms of the
original conjecture get propagated by rewrite rules.

Thus, we need syntactic criteria to ensure that an equation��
�� ����
�� � ����� ���� ��� may be gener-
alized to����� � ���� ��� � � ����� � ���� ��� �, where

� �� ’s are subterms with defined function symbols as
their roots. Here,

 and�� are replaced by fresh variables and identical terms are replaced by the same
variable. This generalized equation is an equation over�� and thus, its (inductive) validity can be decided
by a decision procedure for	 . In general, however, inductive validity of the generalized equation implies
inductive validity of the original equation, but not vice versa.

We define ano-theory condition which ensures that this generalization issafe in the theory of free
constructors or Presburger Arithmetic.5 Then an equation is inductively valid ifand only if the generalized
equation is inductively valid. A term
 is said to satisfy the no-theory condition if and only if there is no
	 -term equivalent to
. Our condition mainly relies on information about the definitions of functions which
can be pre-compiled.

Definition 7 (No-Theory) A term
 satisfies the no-theory condition iff there is no � � 	������� ���
with ��� � �
�
��
 � �. If additionally,
 � ����� for pairwise different variables ��, then � satisfies
the no-theory condition, too.

The no-theory condition is likely to be satisfied for almost all defined functions� (otherwise, the func-
tion � is not needed, since one can use the term� instead). It is proved in [12] that the no-theory condition
for 	 -based functions is decidable for	� and	��.

If � � �� does not satisfy the no-theory condition, then there is a term� � 	������� ��� such that
�������� �� � for every non-recursive� -rule ����� � � (i.e., � � 	������� ���). In the theory of free
constructors, this means that�������� and� are syntactically identical. Thus, there are only finitely many
possibilities for the choice of�. By checking whether these choices for� contradict the remaining rules of
� , we can decide the no-theory condition for� . We illustrate the idea with examples.

For � to be expressible in	� , �� � �� must be equivalent to one of�� ��� ��� ��
��. From the non-
recursive rule��� � �, ����� can only be��; all other choices are ruled out. But this choice contradicts
the second rule�� ���� � ���� ��: normalizing by�� � �� � �� produces� and����. Similar to�, it
is easy to see that���, ���, ���, and

 satisfy the no-theory condition.

For the theory of Presburger Arithmetic, if����� � � � � ��� ���� � where� is a&�-term, then� ����

�� � �� � �� � � � � � �� � �� for �
 � ��. Every� -rule � � � gives a polynomial equation of the form
&� � &� � �� � � � �� &� � �� � (� �(� � �� � � � ��(� � �� in the variables���� � � � � ��� of � (since� is
	 -based, its rules do not contain nested occurrences of� resulting in linear polynomials). Since they must
be equal, we obtain the constraints&� � (�� � � � � &� � (�. It is decidable whether the set of all these
constraints is satisfiable. The constraints are unsatisfiable iff� satisfies the no-theory condition.

For example, for�, we assume that� � � ���� �� � �� � � � �� � �. Its first rule gives�� � ��� � �;
the second rule gives�� � ��� � ��� � �� � �� � ��� � �� � � ���. The resulting set of constraints,
��� � �� �� � �� �� � �� � ��� �� � �� � ��, is inconsistent. Thus� satisfies the no-theory condition.

Algorithms for checking the no-theory condition for	� and	�� are given in [12], where in addition,
the no-theory condition check on a function definition is used to define a no-theory test on terms different
from �����.

The following theorem shows that the no-theory condition indeed allows us to replace pairwise variable
disjoint terms by fresh variables.

5This criterion is generally applicable for safe generalizations. Moreover, one could refine our approach by performing such
generalizations also at the beginning before the start of the proof.

167

D. Kapur, J. Giesl and M. Subramaniam

Theorem 4 [12] Let 	 be 	� or 	�� and let
�� � � � �
�� ��� � � � � �� be pairwise identical or variable
disjoint terms satisfying the no-theory condition. For all contexts ��� over�� and fresh variables ��� and
��� , we have ��� � �
�
�� ��
�� ����
�� � ����� ���� ��� iff ����� � � � � � ��� � �� ����� � � � � � ��� �.

The following theorem precisely defines the set of equations with defined function symbols on both
sides whose inductive validity is decidable. Using compatibility and book-keeping data structure�	�-sets
introduced in [12], it can be estimated which subterms of� � and�� with defined symbols will occur after
simplification without actually attempting an induction proof [12]. Those subterms can be checked for the
no-theory condition. Thus, without even doing the induction proof, one can recognize whether the equation
will simplify to conjectures over the signature�� of the theory. This class called�)� is precisely defined
in [12]; an algorithm for deciding equations in�)� is also given. Below, we informally state the main
result.

Theorem 5 [12] An equation �� � �� can be decided using the cover set method, if �� and �� have
compatibility sequences ���� � � � � ��� and �"�� � � � � "��, the innermost function symbols on both sides, ��
and "�, have identical cover sets6, and the subterms with defined function symbols appearing in the sim-
plified subgoals, which can be computed from the definitions of � �� � � � � ��� "� � � � � "�, satisfy the no-theory
condition.

For example, the equations listed at the end of Section 4.3 are in this class�)� and can therefore
be decided. For����� � �� � ������ � �, the left-hand side����� � �� has the compatibility sequence
������� and the right-hand side has the compatibility sequence��� with the induction variable�. Using
compatibility, one can estimate that only the subterms������ and�������� appear in simplified conjectures
after application of induction hypotheses. The function��� satisfies the no-theory condition; therefore,
������ and������ �� also fulfill the no-theory condition. For the distributivity equation��� �� �	 � � �
	���	, the left-hand side has the compatibility sequence��� and the right-hand side has the (simultaneous)
sequence��� ��� ���; induction is performed on	. The only subterm with a defined symbol in the simplified
conjecture is� � �� � � � which satisfies the no-theory condition.

5. Automatically Deciding Quantifier-free Conjectures

In [11], Giesl and Kapur showed how to extend the class of decidable conjectures from equations to quanti-
fier-free formulas in which equations of the form'�� � � � "�� � � ���� �� � � �� � � �� � � are atomic formulas,
where�'� "� �� forms a compatibility sequence of	 -based function definitions and� is a	 -term. Some
examples of such conjectures include�����
�	���� � � � ������� � ���� and������ � � � � � ��
Equations appearing in these formulas are neither valid nor unsatisfiable; consequently, there is a need
to characterize the subset of instantiations for the variables for which these equations are true. For this
extension, we need the notion of acorrectness predicate of an equation.

For simplicity, we will consider	 -based definitions in the theory of free constructors	� ; the rewrite
system� consisting of	 -based definitions is convergent and sufficiently complete. Furthermore, atomic
formulas under consideration are of the form:� � � ��� where�� is a 	 -term and if a cover set� �
������ �

�
���� � � � �

�
������� � � � � ��

�
�� �
����� � � � �

�
������� is used to generate an induction scheme for attempt-

ing a proof of such a formula, then we have�����
 � �
�
� �
����

�

���� � � � � ���

�

��� �� for a constructor term

context�
 for all � � � � !.

5.1. Correctness Predicates

We present a technique for automatically generating the definition of acorrectness predicate � � for an
equation�
 �� � �� as a finite set of (unconditional) convergent and sufficiently complete rewrite rules.

6This requirement can be weakened bymerging cover sets, cf. Section 3.4.

168

Induction and Decision Procedures

For any tuple of constructor ground terms� �, we have������ � �����. The definition of correctness
predicates is similar to the definitions of [10, 26], but its form is quite restricted since we are interested
in ensuring that validity of correctness predicates is decidable and thatexact correctness predicates can be
generated which completely characterize the domain of values on which the conjecture holds.

For example, consider the proof of the conjecture�����
�	���� � � by induction w.r.t. the cover set� �	
� .
If � � �, the conjecture simplifies to���� ; for � � ����, the conjecture reduces to	
��� . In the induction
step, where� � �������, one has to prove that�����
�	���� � � implies �����
�	���������� � �������.
After simplification and the application of the induction hypothesis, the subgoal reduces to���� . This
suggests that if the induction hypothesis is valid, then the induction conclusion is also valid.

We thus have the following rules for the correctness predicate� ��
��	
�������:

���
��	
���������� � ���� � ���
��	
������������� � 	
��� �
���
��	
���������������� � ���
��	
�����������

The above definition is that of the���� predicate, which is the condition for�����
�	���� � � to be valid.
Note that the third rule above is stronger than the following rule one would have gotten from the above
analysis:

���
��	
���������������� � ���� if ���
��	
�����������

We will use the third rule above since we wish to synthesize a complete definition of a correctness predicate
which is easier to do using unconditional rewrite rules. As a result, the correctness predicate so generated
may not be exact (since the third rule would make the correctness predicate	
��� if the recursive call is
	
��� on a particular value), and hence, provides only a sufficient condition for the conjecture to be valid.

To prove�� � �� w.r.t. a cover set�, for each pair���
 � �

�

��� � � � �

�

���

�� � �, we must check whether
the equation�
����

�

���� � � � � ���

�

���

�� � ����
�

 � obtained after simplification and application of induction

hypotheses, is valid. In order to obtain correctness predicates as simple as the ones above, one possibility
is to require that such equations are either valid forall instantiations or fornone. This ensures that the
right-hand sides of the rules for correctness predicates only have the form���� , 	
��� , or recursive calls of
correctness predicates.

Definition 8 (Radical equations) An equation �� � �� is radicalunder � � ������ �

�
���� � � � �

�
�������

� � � � ����� �
����� � � � �

�
������� iff �����
 � �

�
� �
����

�

���� � � � � ���

�

���

�� for a constructor term context �

and for each � � � � !, either �
����

�

���� � � � � ���

�

���

��� � ����
�

 � is valid in 	� or ��
����

�

���� � � � �

���

�

��� ��� � ����

�

 � is valid in 	� .

It is easy to see that checking whether an equation is radical is decidable. For instance, the equation
�����
�	���� � � is radical under��	
� .

The correctness predicate for a radical equation can be easily synthesized; for a tuple in� corresponding
to a base case, the right-hand side istrue or false ; for a tuple corresponding to an induction step case, the
right-hand side isfalse or the recursive call on the arguments corresponding to the hypothesis.

To ease the presentation, we will now restrict ourselves to cover sets where there is at most one induction
hypothesis for every induction step case.7 Thus, we only consider cover sets with pairs���
 � �

�

��� � � � �

�
����� where� � �
 � �.

Definition 9 (Correctness Predicate) Given an equation �� � �� as defined above such that it is
radicalunder �, its correctness predicate ������ under � is defined by the following rules:

��������
�

 � �

�
���� � if �
 � ����

�

 � is valid in 	� and �
 � ��

	
��� � if ��
 � ����
�

 � is valid in 	� and �
 � ��

��������
�

 � �

�
�������

�

���� if �
����

�

���� � ����

�

 � is valid in 	� and �
 � ��

	
��� � if ��
����

�

���� � ����

�

 � is valid in 	� and �
 � ��

7The definition of correctness predicates can be easily generalized to the case of multiple induction hypotheses. In fact, correctness
predicates can be defined for arbitrary equations.

169

D. Kapur, J. Giesl and M. Subramaniam

Theorem 6 Let ������ be a correctness predicate for �� � �� as defined above under �, let� also contain
the rules defining ������ , let �� be the variables in �� � ��. Then,

(a) ���� � �
��	
 ��������
�� � ���� � �� � ��.

(b) In general, ���� �� �
��	
 �� � �� � ��������
�� � ���� .

To see that the converse does not hold (b), consider the conjecture�
�	��� � ����; its correctness predicate
��	
��������� is 	
��� for the two base cases as well as for the recursive case. However,�
�	��� � ���� is
���� for � � ����� as well as for� � �����.

5.2. Conjectures with Exact Correctness Predicate

We now characterize equations�� � �� where the correctness predicate������ is exact, i.e., for all ��,
��������

�� is ���� iff ���� � �
��	
 ����
�� � ����

��. As stated above, exactness is ensured if in Def. 9,
in the case of recursive call, the induction conclusion����

�

 � � ����

�

 � is equivalent to���
�
��� � ���

�

���. For

that reason, the correctness predicate��	
��������� returns	
��� for the arguments����� and����� although
the conjecture is���� , since it is	
��� for the smaller arguments� and���� as well. Thus,� ����� is only
exact if������ � ����

�� implies the validity of���%�� � ���%
�� for all arguments%�
� �� (�), where
� is

the relation described by the cover set�. In the above proof of�����
�	���� � � w.r.t. � �	
� , for example,
this conjecture has the desired property

���� � �
��	
 �����
�	���������� � ������� � �����
�	���� � �� (7)

For many equations�� � ��, one does not only have�����
 � �
�
� �
����

�

���� � � � � ���

�

���

�� for all ���
 � �

�

���

� � � �
�
����� � �, but also�����
 � � �
����

�

���� � � � � ���

�

��� �� for some constructor ground contexts�
 and

�
. Property��� is ensured if whenever#���� is not equivalent to#���� for some instantiation, then�����
is also not equivalent to����� for every substitution� that is greater than# w.r.t. the induction relation
induced by the cover set. A sufficient requirement for this is that the contexts�
 added around�� are
always at most as big as the contexts�
 added around��. This is made precise below.

Definition 10 Given a monotonic ordering� on constructor terms which is stable under substitutions, an
equation �� � �� maintains� under a cover set � w.r.t. � iff �
��

�� � �
��
�� for all � � � � !, where �

and �
 are constructor ground contexts in

����
�

 � ��

� �
����

�

���� � � � � ���

�

��� �� and

����
�

 � � �
����

�

���� � � � � ���

�

��� ���

The following lemma proves that for equations which maintain an ordering, each induction conclusion
indeed implies its induction hypothesis.

Lemma 1 Let �, �, � be as in Def. 10 and let �� � �� maintain � under � w.r.t. �. Then for all
� � � � ! with �
 � �, ���� � �
��	
 ����

�

 � � ����

�

 � � ���

�

��� � ���

�

���.

Now we prove that if�� � �� maintains an ordering, then������ is indeed exact.

Theorem 7 [11] Let �� � �� be a radical equation which maintains some ordering � under � w.r.t. �
and let ������ be its correctness predicate whose definition is included in �. Then ���� � �
��	
 �� �
�� � ��������

�� � ���� .8

8A more general version of this theorem can be proved in which a conjecture does not have to be radical, and further, it is not
necessary for the induction scheme of a cover set to have at most one induction hypothesis in every subgoal.

170

Induction and Decision Procedures

In a proof attempt of�
�	��� � ����, we obtain�� � �, �� � ���� and�� � �, �� � ����. In
the induction step case, the left-hand side�
�	��������� evaluates to���
�	����, i.e., we have� � � ����,
whereas�� � �. There does not exist an ordering� such that�
��

�� � �
��
�� for all �, since�� � ��

would imply � � ���� and����� � ����� would imply ���� � � which contradicts the transitivity and
irreflexivity of �. Thus,�
�	��� � ���� does not maintain any ordering under� �	
� and its correctness
predicate is not exact.

The above analysis of exactness of correctness predicates can also be useful for fixing faulty conjectures,
an objective for which correctness predicates were introduced by Protzen [26]. Since an exact correctness
predicate precisely characterizes all instantiations on which the faulty conjecture is���� , it can be used to
fix the faulty conjecture into the “strongest theorem” possible.

5.3. Decidability of Boolean Combination of �-provable Equations

Below, we require that all equations�� � �� occurring in a conjecture� are radical and maintain some
ordering under the same cover set�.9 By Thm. 7 , their correctness predicates������ are sound and
exact. For example,�
�	��� � � is radical and maintains the subterm ordering under� �	
� . We obtain the
correctness predicate

��	
��������� � ���� � ��	
������������ � ���� � ��	
��������������� � 	
��� �

Given a correctness predicate��, ��� is generated by replacing the result���� by 	
��� and the result
	
��� by ���� whereas right-hand sides of the form���
�� are replaced by����
��. In the above example
this yields

���	
��������� � 	
��� � ���	
������������ � 	
��� � ���	
��������������� � ���� �

This correctness predicate is sound and exact for the conjecture��
�	��� � �.
A straightforward construction for���	��

from ���
and ���

, however, does not work if one rule
���

���� � ���
�
�� leads to a recursive call, but the other has the form���

���� � ���� . If we make
���	��

���� � ���	��
�
��, then we may lose the exactness of the correctness predicate, since it could

be that���
�
�� �� 	
��� . This is evident if one tries to construct the correctness predicate for�

�����
�	���� � � � ��
�	��� � �.

����� � 	
��� � �������� � 	
��� � ����������� � ������

This correctness predicate is not exact, since it is always	
��� , whereas� is true for all even numbers
greater than�. Even worse, the resulting correctness predicate for the negated conjecture�� would not
even be sound (since it would always be���� whereas�� is false for all even numbers greater than�).

To avoid this problem,basic correctness predicates (denoted� �����) are defined in [11], where for
recursive pairs���� �
��� � �, it is required that we have the rule��������

��� �������

��, but not the rule

��������
�� � 	
��� . For a radical equation maintaining an ordering with respect to a cover set�, under

certain conditions on� one can always obtain such a basic correctness predicate. To this end,� is extended
so that the equation remain radical and maintains an ordering with respect to the extended cover set; see
[11] for details.

Definition 11 Let � be a convergent sufficiently complete rewrite system and let � be a complete well-
founded cover set such that for all ���� �
��� � � � �

�
��� � �, � � � � �, and for two different pairs

���� �
���� ����� �
���� � �, there does not exist a substitution * with
�* � ���+* for a variable re-
naming +. Let � be a quantifier-free formula such that all equations in � are radical and maintain some
ordering under � w.r.t. �.

9Different equations in a conjecture may have to be proved using different cover sets; these cover sets can often be combined
into a single cover set to generate a single induction scheme using merging (cf. Section 3.4). Further, it is not necessary for different
equations to maintain the same monotonic ordering.

171

D. Kapur, J. Giesl and M. Subramaniam

Let �� � ������ �

�
���� � � � �

�
������� � � � � ��

�
�� �
����� � � � �

�
������� be the extension of �, let �����
 � �

�
�

�
����

�

���� � � � � ���

�

���

�� for a constructor ground context �
. Then the basic correctness predicate ��
under � is defined by the following rules (analogous rules are used for formulas containing �, �, �):

��������
�

 � �

��
�

���� � if �
 � ����
�

 � is valid in 	� and �
 � ��

	
��� � if ��
 � ����
�

 � is valid in 	� and �
 � ��

�������

�

���� if �
 � ��

�������
 � �

��
�

���� � if we have the rule ������
 �� 	
��� �
	
��� � if we have the rule ������
 �� ���� �
�����
�
���� if we have the rule ������
 �� ����
�
 ��

���	��
���
 � �

��
�

���� � if we have the rules ���
���
 �� ���� and ���

���
 �� ���� �
	
��� � if we have the rules ���

���
 �� 	
��� or ���
���
 �� 	
��� �

���	��
�
�
���� if we have the rules ���

���
 �� ���
�
�
��� and ���

���
 �� ���
�
�
����

In our example, we obtain

������������� � ���
 � ������������������ � ���
 �

�����������	���� � ���
 � ����������������	���� � ���	
 �

�����������	
����� � ���	
 � ����������������	

����� � ���
 �

�����������	
����� � ���	
 � ����������������	

����� � ���	
 �

�����������	
����� � �����������	

������ ����������������	
����� � ����������������	

������

For�����
�	���� � � � ��
�	��� � �,

����� � 	
��� � �������� � 	
��� � ����
����� � ���� �

����
����� � 	
��� � ����

����� � ����
������

Theorem 8 (Decidability of Arbitrary Conjectures) Let �, �, � be as in Def. 11. Then inductive
validity of � is decidable (by checking whether all non-recursive rules of �� have the right-hand side ���� ,
where �� is the basic correctness predicate for � under �).

The condition of an equation being radical and maintaining an orderings can be checked automatically
(by using orderings from the area of term rewrite systems which are amenable to automation). To de-
cide inductive validity of�, construct the rules for the basic correctness predicate� � (which can be done
automatically) and check whether there is no rule of the form���� � �� � 	
��� .

As another example, the equations������ � � and� � � are both radical. The equation������ � �
maintains the superterm ordering and� � � maintains the subterm ordering. So inductive validity of the
conjecture������ � � � � � � is decidable. The decision procedure constructs the following rules for the
basic correctness predicate.

���
�����
������ � ���� � ���
�����
��������� � ���� �
���
�����
������������ � ���
������������

The conjecture in our example is valid since the above basic correctness predicate is always���� . We
can thusdecide conjectures which were up to now hard problems for inductive theorem provers. In fact,
virtually all existing inductive provers fail in verifying������ � � � � � �.10 The reason is that the
induction conclusion��������� � ���� � ���� � � can be evaluated to���������� � �, but there is no
way to apply the induction hypothesis������ � � � � � � and thus, the proof of the induction step case
does not succeed.

10This problem was pointed out to us by U. K¨uhler.

172

Induction and Decision Procedures

6. Generating Lemmas using Decision Procedures

A major challenge in attempting proofs by induction is to determine intermediate lemmas needed to com-
plete a proof. In this section, we discuss two topics in which a decision procedure of a data structure plays
an important role in generation and speculation of intermediate lemmas.

In [23], Kapur and Subramaniam proposed an approach for automatically generating lemmas of the form
'�� � � "�� � � '�� � �� � � �� � � �� � � from	 -based recursive definitions of'� "� � using a decision procedure for
	 ; � is a	 -term. Apart from the possible use of these lemmas in proving other nontrivial properties about
functions appearing in them, there are at least two additional types of benefits of generating such lemmas.
If a user is surprised to see a particular lemma following from a definition, i.e., he/she did not expect the
property to be true, this can provide useful insight about a bug in the definition. Otherwise, it enhances
user’s confidence in the formulation of the definition. A decision procedure for	 is used to derive the
right-hand side of such a lemma once its left-hand side can be hypothesized.

The procedure introduced in [23] can be run in the background after the	 -based recursive definitions
are formulated; lemmas are generated without any help from the user. In the next subsection, we review the
main ideas of the approach and give an example. Details, including the precise description of the procedure,
can be found in [23].

The second topic of discussion is the generalization heuristic employed in most theorem provers. Our
theorem proverRRL, for instance, employs an extremely aggressive approach in the course of a proof at-
tempt for speculating intermediate conjectures which works well with the backtracking facility. Before a
proof of a conjecture is attempted, common nonvariable subterms in the conjecture are identified for pos-
sible generalization by fresh variables (under certain conditions); various generalizations of the conjecture
are attempted for possible proofs before trying the original conjecture. Contrary to the experience reported
in [4, 6] our experience has been quite positive; if a counter-example to a proposed generalization is identi-
fied or a proof attempt of a proposed generalization does not appear to be making progress, backtracking is
performed.

In case function definitions are given on a data structure that has a decision procedure associated with
its theory, e.g., Presburger arithmetic, then merely generalizing identical nonvariable subterms by distinct
variables often leads to unsound generalizations. As shown in [17], a decision procedure can be used to
check for equivalence of subterms. Equivalent subterms are abstracted by a variable. Determining whether
a term appears as a subterm within a given term is also done using the decision procedure. These ideas are
briefly reviewed in the second subsection; for details, the reader should refer to [17].

6.1. Generating Simple Lemmas from Definitions

The key idea of the method proposed in [23] is to identify terms of the form��� �� � � � � ���, where each�

is a	 -term, and hypothesize a simple conjecture����� � � � � ��� � �, where� is aparametric general term
in 	 expressed using all the variables appearing in the left-hand side and some parameters whose values
have to be determined. Depending upon	 , � may take many different forms, depending upon the number
of canonical forms of	 -terms. Using the definition of� , constraints on parameters in� are collected and
these constraints are checked for consistency; if found consistent, then for every assignmentÆ of values of
parameters that satisfy these constraints, a simple lemma����� � � � � ��� � Æ��� is generated. If there are
infinitely many such assignments satisfying the constraints, then a finite description of these assignments is
sought to generate finitely many lemmas, as otherwise, the procedure will diverge generating infinitely many
lemmas. If constraints are consistent only for certain instances of����� � � � � ���, then those instances can
be generated as well. If no instance of����� � � � � ��� can be identified for which constraints on parameters
are consistent, then no lemma with an instance of����� � � � � ��� is generated. In order to be able to generate
most general lemmas, various instances of����� � � � � ��� leading to consistent constraints on parameters can
be combined and abstracted. We first illustrate these ideas using an example; this is followed by a detailed
discussion of the key steps. The general procedure with additional examples is given in [23].

Consider��
��� below which is defined on&�-terms; the function��
������ �� computes	���. Here,

173

D. Kapur, J. Giesl and M. Subramaniam

��
� is a shorthand for
� �. We are interested in generating lemmas about��
��� such that their right-hand
sides are expressible in&�.

�� ��
������ ��� �� 	� ��
������ ������ ����
������ ����

� ��
��������� �� � ��
������ �� � ��
������ ��� �� ��
��������� ����� � ����
��������� ����

Begin with the conjecture��
������ �� � �� ���� ���� with the goal of finding��� ��� ��.11 Constraints
are generated from the rules. Rule 1 gives��
 �� � �. The second constraint is generated from rule 2 by
replacing the left-hand side and the recursive call with�� ���� ������� and�� ���� ����. It simplifies
to �	
 �� � �. The third and fourth constraints are generated in a similar fashion from rules 3 and 4, and
they simplify to�

 �� � �� �� �� and��
 �� � �. These constraints are not satisfiable for all values of
� and�. So, there is no solution for all values of�, and hence��
��� cannot be expressed in&�.

As the reader would notice, there are two kinds of constraints: (i) constraints purely in terms of pa-
rameters (e.g.,��� �	� ��), calledparametric constraints, and (ii) constraints involving both parameters and
variables (e.g.�
). Some of the second type of constraints can be transformed to parametric constraints
(hence true for all values of variables) (for�
, this would mean� � � �� �� � �); but they are also true for
specific values of variables and parameters (for�
, this could mean that for� � �, � � � � and�� can take
any value). Such a constraint is calledstrongly satisfiable. However, there are also constraints involving
both parameters and variables which cannot be transformed to parametric constraints (and thus they do not
hold for all values of variables) and which can hold for only some values of variables and parameters; they
are calledweakly satisfiable (e.g., the constraint��� � ����� � ���� � �� � � � � is such an example).

Now conjectures with proper instances of��
������ �� as their left-hand sides can be speculated. In
order to attempt to generate most general conjectures, maximal consistent subsets of the set of inconsistent
constraints���� �	� �
� ��� are identified. One such maximal consistent subset of the above inconsistent
set of constraints is���� �	� ��� giving �� � �� �� � � with �� being unconstrained. For these values
of parameters, constraint�
 can be solved for specific values of variables. Particularly, if� = �, then�

reduces to�
��: �� = ��, which can be consistently added to���� �	� ���12. The rules associated with the
instances are computed by splitting the rule using the variable substitution, e.g:, rule
 is split by�� � ��
into two rules; how this splitting is done is explained in [23].

���
����	�	���� ��� �,
���
����	�	�	����� ���
����	��� �� �
����	��� �� �
����	��� �� �
����	��� ��.

The constraint for rule
�� is �
��
 �� � �� � � and the constraint for rule
�	 is �
�	
 	�� �
�� ��
��.
The rules to be considered for speculating a conjecture are��� 	�
��� �� based on a maximal consis-
tent subset���� �	� �
��� ��� of constraints. ¿From the left-hand side of these rules, a possible conjec-
ture with ��
������ �� as the left-hand side is generated (since the left-hand sides of rules 1 and 2 are
��
������ ��� ��
������ �����).

The rules��� 	�
���
�	� �� are analyzed to pick their instances which are likely to be used to compute
��
������ ��. Rules 1 and 2 constitute such a complete set since any ground instance of��
������ �� can
be normalized to a&�-term using them. The constraints generated from rules 1 and 2 have the solution
��� � �� �� � ��, which generates the lemma��
������ �� � ����.

Rules associated with the maximal set��� 	�
��� ��may also be expanded to generate additional rules
for generating left-hand sides for conjectures. The expansion is done by choosing a rule whose right-hand
side is a&�-term, e.g: rule 3.1, and splitting by unifying the recursive calls in other rules with the left-hand
side of rule 3.1. The unification of the recursive call��
��������� �� in rule 4 with��
��������� �� of rule
3.1 produces four equivalent rules two of which are:

���
����	�	���� 	����� �, ���
����	�	���� 	�	������ 	�	�
����	�	���� �����

11This corresponds to the no-theory condition for�
��
�, which is decidable for the theory of free constructors�� as well as for
���.

12Other values of� produce instances with�� = �, which contradicts�� and hence cannot be added to���� ��� ���.

174

Induction and Decision Procedures

The conjecture with the left-hand side��
��������� �� can now be hypothesized by abstracting from the left-
hand sides of rules 3.1, 4.1, and 4.2, which completely define��
��������� ��. The associated constraints,
�
��
 ����� � �, ����
 �������� � � and���	
 �� � �, are solved and give��
��������� ��� ���

as the new lemma.

6.2. Key Steps of the Approach

There are three major steps in the procedure for generating lemmas. The discussion below uses&�. For
details, the reader should refer to [23].

6.2.1. Generating Right-Hand Side of a Conjecture

Given a conjecture of the form����� � � � � ��� � �, where� is a parametric term over&�, find valuesÆ of
parameters in�, if any, such that����� � � � � ��� � Æ��� is an inductive theorem.

Let �'� � ����� � � � � ���� � � ��
 �
 � ��. Also assume that the set of rules in the definition of�
needed to normalize ground instances of�'� is already computed, denoted as� ���. For each rule�
 � �

in ����, a parametric equation is generated by replacing each term of the form��
 �� � � � �
�� in the rule
by ����
�
 � ���, where������� � � � � ���� � ��
�� � � � �
��. To ensure that a parametric equations can be
generated corresponding to a rule�
 � �
, �
 must match with�'� and each recursive call
 to � in �
 must
either match with�'� or ��
� must simplify to a	 -term.

Let , be the finite set of all the constraints so generated. A constraint may be simplified using	��
to a parametric constraint. For example, given two parametric expressions, say� � �� � �� �� � �� �� �
�� � �� �� � �� �� � �� �� � �� ��, where��� ��� ��� ��� �� are parameters, the most general solution
is �� � �� � ��� �� � ��� �� � �. If , includes an unsatisfiable constraint or a weakly satisfiable
parametric equation (in which both parameters as well as variables appear), then, is not consistent. Values
of parameters constrained by different parametric constraints may clash as well.

If , is consistent implying that for all values of variables, an assignment of parameter values can be
found satisfying every constraint in,, generate a finite representation of all such assignments of parameters.
(This problem is related to the unification problem over	 .) For every most general solutionÆ of the set
of parametric constraints generated from,, the conjecture�'� = Æ���
�
 � ���, is a lemma. And, this
also implies that�'� is expressible in&�. If an assignment of parameters cannot be found for which each
constraint in, is true for all values of variables, then generate a finite representation of values of variables
and the corresponding assignment of parameters for which the constraints in, are true. These assignments
then give instances of�'� � � as lemmas.

6.2.2. Generating Maximal Consistent Subsets

If the set, of parametric equations generated from�'� � ����� � � � � ��� is inconsistent, maximal consis-
tent subsets of, can be used to generate instances of�'� possibly serving as the left-hand sides of new
conjectures about� .

First, every unsatisfiable parametric equation is deleted from,. The remaining equations are parti-
tioned into the subsets,	�, ,��, ,��, standing for parametric constraints, strongly satisfiable parametric
equations (which involve both variables and parameters) and weakly satisfiable (also called weak) para-
metric equations (which also involve both variables and parameters). A strongly satisfiable parametric
equation�

 �%
�
 � %� = � in ,�� can either be viewed as a conjunction of parametric constraints
�
 %� � �� � � � � %� � � which can be included in,	�, or it can be viewed as a weakly satisfiable parametric
equation and be included in,��. For each�
 � ,��, there are two cases leading to exponentially many
possibilities, each consisting of the set of parametric constraints (purely in terms of parameters) and the set
of weak parametric equations both in parameters and variables. For each such set of constraints and any
maximal consistent subset of parametric constraints, a most general solutionÆ for parameters is computed;
Æ is then applied on each weak parametric equation involving both parameters and variables to compute

175

D. Kapur, J. Giesl and M. Subramaniam

the values of variables, if any, such that the instantiated equation is consistent. For any such substitution of
variables of the weak parametric equations, the corresponding rule is split using the variable instantiations.
A rule set from���� is then identified corresponding to the maximal consistent subset of constraints. This
rule set is then used to speculate possible left-hand sides of conjectures by abstracting from its left-hand
sides.

For example, consider the inconsistent set of parametric equations, = ���
 � � � �, �	
 �� � �,
�

 �� � �� �� ��, ��
 �� � �� generated from��
�
��. ,	� = ���
 �� � �� �	
 �� � �� ��
 �� � ��,
,�� = ��� � � �� � ���, and,�� = �. There are two possibilities based on��� � � �� � ���: �����

�� � �� �	
 �� � �� �

 �� � �� �� � �� ��
 �� � ������ ����
 �� � �� �	
 �� � �� ��
 �� �
��� ��

 �� ���� � �����. There are two maximal consistent subsets-�,� = ��� � �� �� � �� �� � ��
and-�,� = ��� � �� �� � ��. Corresponding to-�,�, the rule set is�	�
� ��. For-�,�, an instance
of rule 3 generated from�
 is computed requiring� to be�; the resulting rule set is��� 	�
��� ��.

6.2.3. Identifying Left-Hand Sides and their Complete Definitions

Given a subset. of rules of�� which possibly generate a consistent set of parametric equations, pos-
sible left-hand sides of conjectures need to be speculated. For every speculated left-hand side�'� �
����� � � � � ��� of a conjecture, it must be ensured that every ground instance of�'� can be normalized
to a ground	 -term using the rules in.; if not, additional rules from� � are added to. to ensure this
property (hopefully without violating the consistency condition).

Rules in. are first refined by splitting based on unifying recursive calls with the left-hand sides of
nonrecursive rules in.. Let �
 � �
 be a non-recursive rule in. (i.e.,�
 is a&�-term). For every recursive
rule �� � �� in ., replace it by�%��
���� � ���� �� if a recursive call in�� unifies with�
 with the most
general unifier�. The expansion is performed for all possible pairs of non-recursive rules�
 � �
 and
recursive rules�� � �� in .. Splitting of a rule is guided by the substitution of variables and is precisely
defined in [23].

Once a complete set of rules for computing every instance of�'� has been identified, the left-hand
sides of these rules are abstracted to generate�-tuples of terms to construct the left-hand sides of new
conjectures to be speculated (see the procedure�/, in [23] for details). For each such tuple in the output,
�'� � ����� � � � � ���, its complete definition���� as a set of rules is computed from. (see the procedure
��!%��
� in [23]). Then the solutions for the constraints resulting from� ��� determine the right-hand sides
of the new lemmas�'� � �. These steps are repeated until it is not possible to proceed any further or enough
lemmas have been generated (since we suspect that the procedure can, in general, generate infinitely many
lemmas).

6.3. Generating Lemmas with Multiple Defined Function Symbols

The above discussion was limited to generating lemmas of the form��� �� � � � � ��� � �, where� and each
�
 are	 -terms. Using function symbols with compatible	 -based definitions, lemmas whose left-hand
sides include multiple occurrences of	 -based functions can also be generated. Many nontrivial lemmas
needed in the verification of arithmetic circuits [18, 20, 21] are of this form. Given&�-based function
symbols" and� such that" is compatible with� , a conjecture"���� � � � � ����� � � � � ���� � � � � ��� = ��
�
�
����� � �� can be speculated where�
’s and�� ’s are distinct variables and� appears only in the inductive
argument positions of" (on which the definition of" recurses). The procedure is the same as in the previous
subsection. This is illustrated using an example below.

Refer to the definitions of function symbols�
�	 and���� given in Section 4.2. The procedure in the
previous subsection will not generate any simple lemma with an instance of������� or �
�	���. Com-
patibility sequences of function symbols can be generated easily.13 For instance,�
�	 is compatible with
����.

13Note that besides the rules in the definition of� and�, other applicable rules may be used to simplify terms to check compatibility
of functions� and�. Properties of function symbols such as associativity and commutativity (AC) may also be used.

176

Induction and Decision Procedures

Given�
�	��������� � �� � � ��, where parameters��� �� are unknown, parametric equations are
generated using the rules defining����. From rule 1,� is instantiated to�, giving�
�	��������� � � � ��
��, which simplifies to the constraint�� � �. From rule 2,� is instantiated to�, giving �
�	��������� �
�� � � ��, which simplifies to the constraint�� � �� � �. From rule 3,� is instantiated to������� giving
the conclusion subgoal�
�	��������������� � �� � � �� � �� � �� assuming the induction hypothesis
�
�	��������� � �� �� ��, obtained by instantiating� to be�. After simplifying and using the induction
hypothesis, we get�� ���� � �� ����������, which simplifies to����� � �. These three constraints
are consistent, giving�� � �� � � as the solution. Thus, the lemma�
�	��������� � � is generated.

If a conjecture generated from a compatibility sequence of function definitions cannot be expressed in	 ,
then appropriate instances of the conjecture are computed exactly in the same way as discussed in the previ-
ous subsection. Some of the lemmas generated by the proposed approach based on the theories of&� and
finite lists are given below; more details can be found in [23].

�������	����	����������� � �� �� �����

������������ � ��
���
�����
����� � �� �
�	��������� � ��
������������� � ��

����� �� � �� ��
����� �� � �� �� ��
����������� � ��

��� ���� � ��

�������

���
������������ �������� ��������� � �� �� ��
������
����
����������� �������� ��������� � �� �� ��

Recall that���� and���� convert a bit vector to a number and vice versa, and

�� pads a bit vector;
���
� complements a bit vector;��	����	� shifts a bit vector by one position. The functions��

���
���

and�
����
�� take three bit vectors and generate a bit vector, implementing the ripple carry and carry save
adders, respectively. Definitions of these functions are given in [20]. The function��� reverses a list. The
function
�� computes the Ackermann function.

6.4. Enhancing Generalization Heuristic: Using Decision Procedure for
Identifying Subterms

Most theorem provers use a simple heuristic of replacing common nonvariable subterms by variables to
generalize a conjecture. Semantic analysis can be useful in the implementation of the generalization heuris-
tic since a subterm may have multiple occurrences semantically but syntactically these multiple occurrences
may not be apparent. Consider the following conjecture about���:

����� � � � �� � � �� � � � � �� � �� � � ��

The first argument of��� appears to be quite different from the second argument. If no semantic analysis is
performed and syntactic equality is used to generalize common subterms,������ � � �� � � � � �� � � is a
generalized version of the conjecture by abstracting occurrences of����� in the left-hand and right-hand
side by a variable�. This generalization is not a valid formula since there are counterexamples. ¿From a
semantic standpoint, however, the second argument of��� is twice the first argument, which can be detected
using	��. Using this relationship between the first and second arguments, the generalized conjecture is
������ � � �� � �� which can be proved.

Given a conjecture� of the form� = � if ��� , the heuristic identifies a maximal nonvariable subterm
� occurring in at least two of�, � and��� . Instead of looking for syntactically identical subterms, look
for semantically equivalent subterms. Since there may be many such maximal subterms, they are collected
in a list as possible candidates for generalization. For every nonempty subset from this set of candidates,
generate a generalized version�� of the conjecture� by simultaneously replacing distinct subterms by
distinct variables and try its proof. If any such generalized conjecture is proved, then the original conjecture
is also proved. Otherwise, if all possible generalizations have been attempted unsuccessfully, then the
original conjecture� is attempted.

177

D. Kapur, J. Giesl and M. Subramaniam

For Presburger arithmetic, maximal subterms are identified as follows: for a given subterm�, if � is
not a linear term, syntactic subterm check is performed; otherwise, if� is linear, other linear subterms are
checked for occurrences of� using	�� by querying whether there is a linear subterm

 �. If the answer
is no, then� does not occur in
; otherwise, find the number of times� appears in
 (this can be done by
repeated query and subtraction from
 until the result becomes smaller than�). Let
 � � � ��
�, where�
is a positive integer and
� is a linear term (smaller or noncomparable) than�. Then,� is abstracted as a new
variable� with
 replaced by� � ��
�. A complete description of the extended generalization procedure
using	�� with many examples is given in [17].

Using the results in [12], the generalization heuristic can be made a lot more powerful. Theorem 4 states
conditions under which a nonvariable subterm that does not satisfy the no-theory condition can be safely
replaced by a variable. This needs further investigation.

7. Concluding Remarks

The paper gives an overview of the cover set method for mechanizing inductive reasoning with a particular
focus on how decision procedures for data structures can be exploited for semantic analysis. We have also
discussed how induction can be integrated into decision procedures without compromising their automation.
In particular, we have shown how a decision procedure can be used to

1. generate an induction scheme from an instance of a basic term��� �� � � � � ��� in a given conjecture
and the definition of� using the cover set method;

2. identify a large class of conjectures about defined functions based on syntactic conditions for which
the cover set method serves as a decision procedure for their validity even though their proofs need
to be done by induction;

3. generate lemmas from function definitions using decision procedures; and

4. enhance generalization heuristic using a decision procedure for speculating generalizations of con-
jectures based on identifying equivalent subterms.

We believe our approach allows an integration of inductive reasoning within fully automated tools like
model checkers or compilers.

There are still many open problems which need to be investigated to move towards the goal of automat-
ically deciding additional conjectures. The focus so far has been on 1-level proofs by induction, requiring
that every subgoal in such a proof (after possible application of an induction hypothesis and simplification
possibly using lemmas) either simplifies to a formula in a decidable theory or to a formula with defined
symbols which can be safely generalized to a formula in a decidable theory. A typical induction proof
however can lead to many subgoals which themselves may have to be proved by induction. The approach
needs to be extended to handle such cases.

Since the proposed approach leads to a decision procedure for a class of quantifier-free formulas in-
volving defined symbols, this gives an extended decidable theory with formulas in which defined symbols
occur. Two types of bootstrapping is possible using the extended decidable theory. Firstly, new recursive
definitions can be given using terms (containing defined symbols) in the extended decidable theory. In this
way, a	 -based function definition can use other defined function symbols which themselves have	 -based
definitions. Secondly, a subgoal in a proof attempt could simplify to a formula with defined symbols which
is in the extended decidable theory.

It should also be possible to extend the conditions for safe generalizations in [12] beyond the theo-
ries of free constructors and of Presburger Arithmetic. Further, these ideas are of independent interest
and can be useful for designing safe generalization heuristics for speculating intermediate lemmas. More-
over, there are lots of possibilities for generating lemmas from	 -based definitions in the background us-
ing quantifier-elimination methods for parametric formulas expressed in a decidable theory that admits
quantifier-elimination.

178

Induction and Decision Procedures

Another promising topic for research is the failure analysis of induction schemes as proposed in Subra-
maniam’s thesis [27] to identify a priori and weed out induction schemes which are not likely to succeed in
a particular attempt.

Acknowledgement. This research was partially supported by an NSF ITR award CCR-0113611.

References

[1] Autexier, S., Hutter, D., Mantel, H., & Schairer, A. (1999) Inka 5.0 – A Logical Voyager.Proc. CADE-16, LNAI
1632.

[2] Baader, F. & Nipkow, T. (1998)Term Rewriting and All That. Cambridge University Press.

[3] Bouhoula, A. & Rusinowitch, M. Implicit Induction in Conditional Theories.Journal of Automated Reasoning,
14:189–235.

[4] Boyer, R. S. & Moore, J S. (1979)A Computational Logic, Academic Press.

[5] Boyer, R. S. & Moore, J S. (1988)A Computational Logic Handbook. Academic Press.

[6] Boyer, R. S. & Moore, J S. (1988) Integrating Decision Procedures Into Heuristic Theorem Provers: A Case
Study of Linear Arithmetic.Machine Intelligence, 11:83–157.

[7] Bundy, A., Stevens, A., van Harmelen, F., Ireland, A. & Smaill, A. (1993) Rippling: A Heuristic for Guiding
Inductive Proofs.Artificial Intelligence, 62:185-253.

[8] Dershowitz, N. (1987) Termination of Rewriting.Journal of Symbolic Computation, 3:69–116.

[9] Enderton, H. B. (1994)A Mathematical Introduction to Logic. 2nd edition, Harcourt/Academic Press.

[10] Franova, M. & Kodratoff, Y. (1992) Predicate Synthesis from Formal Specifications,Proc. ECAI 92.

[11] Giesl, J. & Kapur, D. (2001) Decidable Classes of Inductive Theorems.Proc. IJCAR ’01, LNAI 2083, pp. 469–
484.

[12] Giesl, J. & Kapur, D. (2003) Deciding Inductive Validity of Equations.Proc. CADE’03, LNAI 2741, pp. 17-31.
An expanded version is Technical Report AIB-2003-03, 2003. Available fromhttp://aib.informatik.
rwth-aachen.de

[13] Kapur, D. (1994) An Automated Tool for Analyzing Completeness of Equational Specifications.Proc. of Inter-
national Symposium on Software Testing and Analysis (ISSTA), pp. 28–43.

[14] Kapur, D. (2001) Rewriting, Induction and Decision Procedures: A Case Study of Presburger Arithmetic.
Symbolic-Algebraic Methods and Verification Methods — Theory and Applications, (eds. Alefeld, Rohn, Rump,
and Yamamato), Springer Mathematics, Wien-NY, pp. 129–144.

[15] Kapur, D., Narendran, P., Rosenkrantz, D. & Zhang, H. (1991) Sufficient-Completeness, Quasi-Reducibility and
Their Complexity.Acta Informatica, 28:311–350.

[16] Kapur, D. & Nie, X. (1994) Reasoning About Numbers in Tecton.Proc. 8th International Symposium on Method-
ologies for Intelligent Systems, (ISMIS’94), pp. 57–70.

[17] Kapur, D. & Subramaniam, M. (1996) New Uses of Linear Arithmetic in Automated Theorem Proving by Induc-
tion. Journal of Automated Reasoning, 16:39–78.

[18] Kapur, D. & Subramaniam, M. (1996) Mechanically Verifying a Family of Multiplier Circuits.Proc. Computer
Aided Verification (CAV), LNCS 1102, pp. 135–146.

[19] Kapur, D. & Subramaniam, M. (1997) Mechanizing Verification of Arithmetic Circuits: SRT Division.Proc.
FSTTCS-17, LNCS 1346, pp. 103–122.

179

D. Kapur, J. Giesl and M. Subramaniam

[20] Kapur, D. & Subramaniam, M. (1998) Mechanical Verification of Adder Circuits using Powerlists.Journal of
Formal Methods in System Design, 13(2):127–158.

[21] Kapur, D. & Subramaniam, M. (2000) Using an Induction Prover for Verifying Arithmetic Circuits.International
Journal of Software Tools for Technology Transfer, 3(1):32–65.

[22] Kapur, D. & Subramaniam, M. (2000) Extending Decision Procedures with Induction Schemes.Proc. CADE-17,
LNAI 1831, pp. 324–345.

[23] Kapur, D. & Subramaniam, M. (2003) Automatic Generation of Simple Lemmas from Recursive Definitions
Using Decision Procedures–Preliminary Report.Proc. ASIAN 2003, LNCS.

[24] Kapur, D. & Zhang, H. (1995) An Overview of Rewrite Rule Laboratory (RRL). Journal of Computer and Math-
ematics with Applications, 29:91–114.

[25] Kaufmann, M., Manolios, P. & Moore, J S. (2000)Computer-Aided Reasoning: An Approach. Kluwer.

[26] Protzen, M. (1996) Patching Faulty Conjectures,Proc. CADE-13, LNAI 1104.

[27] Subramaniam, M. (1997) Failure Analyses in Inductive Theorem Provers. Ph.D. Thesis, Department of Computer
Science, University of Albany, New York.

[28] Zhang, H, Kapur, D. & Krishnamoorthy, M. S. (1988) A Mechanizable Induction Principle for Equational Speci-
fications.Proc. CADE-9, LNCS 310.

[29] Zhang, H. (1988).Reduction, Superposition and Induction: Automated Reasoning in an Equational Logic. Ph.D.
Thesis, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY.

Deepak Kapur J¨urgen Giesl
Dept. of Computer Science LuFG Informatik II
University of New Mexico RWTH Aachen
Albuquerque, NM 87131, USA Ahornstr. 55
kapur@cs.unm.edu 52074 Aachen, Germany

giesl@informatik.rwth-aachen.de

Mahadevan Subramaniam
Dept. of Computer Science
University of Nebraska
Omaha, NE, USA
msubramaniam@mail.unomaha.edu

180

