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Unimodal contaminations in testing point null hypothesis

Miguel A. G bmez-Villegas and Luis Sanz

Abstract. The problem of testing a point null hypothesis from the Bieperspective is considered.
The uncertainties are modelled through use-efontamination class with the class of contaminations
including: 7) All unimodal distributions andi) All unimodal and symmetric distributions. Over these
classes, the infimum of the posterior probability of the poull hypothesis is computed and compared
with the p—value and a better approach than the one knowrtasneiol.

Contaminaciones unimodales en el contraste de una hip o6tesis nula puntual

Resumen. Se considera el problema del contraste de hipotesis nufau@udesde el punto de vista
Bayesiano. La incertidumbre se modeliza mediante el usodade de las distribucionescontaminadas,
cuando la clase de las contaminaciones inclayéodas las distribuciones unimodale&ytodas las dis-
tribuciones unimodales y simétricas. Se calcula el infilmtas probabilidades a posteriori de la hipotesis
nula puntual sobre estas clases y se compara con el p—vatenjendose una mejor aproximacion que la
conocida hasta ahora.

1. Introduction

1.1. The choice of the prior

A random variable X, having densityf(xz — 6) is observedf being an unknown real parameter. To
perform a Bayesian analysis concerning the parantetiélis necessary to express the prior beliefs about
0 through a prior distribution of probability. Usually, theigr information can not be exactly quantified
in terms of a single prior distribution. Perhaps, after anitetion process, we can conclude that(6)
represents our prior beliefs, but it looks reasonable thatpaior not too far frommy(6) would also be a
good approximation to our prior beliefs.

This is the reason why often a class of prior distributionssied instead of a concrete prior distribution.
In this paper, following the reasoning above, we will usedheontamination class given by

['={r=(1~-¢m+eq, qeQ}, 1)

wherery is the prior that one would use in a Bayesian analysis witly onk prior distribution. The value
of g, with 0 < € < 1, represents the amount of contamination that we want toduoire inry. And Q is the
class of probability distributions that contaminatg$?).

Gomez-Villegas and Sanz (2000) use the class (1) to conmpeamdues and posterior probabilities in
the point null testing probler® being the class of all probability distributions and theyclode that both
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values can match. The class of all probability distribusiemattractive because it is easy to work with and
it contains any prior near tay but, on the other hand, this class contains many unreasodatibutions
that are too far fromrg.

If mo(0), the base prior distribution, is unimodal it looks reasdedbe choice of) as the class of all
unimodal distributions (with the same modema3 or the class of all symmetric and unimodal distributions,
specially ifrg is also unimodal and symmetric. See Berger and Berliner@}L 8rger (1985), Sivaganesan
and Berger (1989) and Berger (1994) for further informatibout the choice af).

We start, in Section 1, with the problem. Then, in 1.2, weddtrce the procedure to make up the mixed
prior distribution and in 1.3 a justification for this consttion is provided. Section 2 compares the p—value
with the infimum of the posterior probability whépis the class of all unimodal distributions. In Section 3
the comparison is done whéhnis the class of all unimodal and symmetric distributionsiafly, Section 4
contains some additional comments.

1.2. The problem

We consider the parametric point null testing problem
Hjy:0=0y versus Hi :0 # b, (2)

based on observing a random variabte, with densityf(z|6), § € R, continuous irfy. We suppose, as
usually, that the probability of = 6, is p > 0, in such a way that the prior information is given by a
mixed distribution assigning maggo the null hypothesis and spreading the remainderp, according to
a densityr(6) € T overd # 6,. However there is no rule to fix the valuepfusuallyp = 0.5—.
In many practical situations, it is not usual to test (2). Wepose to replace (2) by the more realistic
precise hypothesis
Hy:0€l, versus Hp:0¢€ly, 3)

wherel, = (6y — b, 6y + b) andb is suitable “small” so that any value é6fe I, can be considered indis-
tinguishable fromt,. Examples of this replacement can be seen in Berger (19&5yeB and Delampady
(1987) and Lee (1989) among others.

In the classical approach, (2) can be changed by (3) when-thalye in (2) is approximately the
same as the p—value in (3). Berger and Delampady (1987) sewhtions under which both p—values are
approximately equal. From Bayesian perspective, this eatidme when the posterior probabilities of the
null hypotheses are close or, equivalently, when the Baget®if in (2) is similar to the Bayes factor in
(3). Arelation between (2) and (3) with regard to the Bayesdiais given by Gomez-Villegas and Gomez
Sanchez—Manzano (1992). There it is shown that the Bayssrfm (3) converges to the Bayes factor in
(2) whenb goes to zero. A difference between the use of Bayes factopastetrior odds in this framework
can be seen in Levine and Casella (1996).

Let us suppose that our prior distributionsi§d) € I', with I" defined by (1). In the point null testing
problem, we need a mixed prior distribution

7 (0) = plioyy (0) + (1 — p)m(0) L9260} (0), (4)

wherel (0) = 1if 6 € AandIs(0) = 0if 6 € A°. Whereas in (3) it is sufficient to chooséd) € T'.
Then, what we propose is to choose the valug, @f the mixed distribution (4), as

p= /HOwa(e)de. )

From now on we will note (4) by-* (8, b)) making the dependence bexplicit.
This construction is based on the assumption #{é} represents our prior beliefs abaubut, as it is
not possible to test (2) with(#), we approach (2) by (3) choosing a convenient valuk of
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In the same way of Berger and Sellke (1987), we seek to mimiRi¢H|z) over the clasg in (1).

A reason to take the infimum is that for a small infimum the nypdthesis must be rejected according to
the interpretation of the p—value. Further reasons can &e iseBerger and Sellke (1987). Besides, this
developmentis similar to that of Casella and Berger (198%) reconcile Bayesian and frequentist evidence
in the one—sided testing problem and we are interested inngaitear the reason for the discrepancy
between both approaches in the point null testing problem.

There is a substantial amount of literature about the retiatien between p—values and posterior prob-
abilities, some important references, besides the onesianed above, are Edwards et al. (1963), Pratt
(1965), Dickey and Lienz (1970), DeGroot (1974), Bernart@80), Ghosh and Mukerjee (1992), Berger,
Boukai and Wang (1997), Gomez—-Villegas and Sanz (1998kHdpadhyay and Das Gupta (1997), Mar-
den (2000), Sellke, Bayarri and Berger (2001) and Gomdieg)ds, Main and Sanz (2002).

1.3. Justification and notation

The choice of, the mass assigned to the point null hypothesis, as in (8sglior posterior calculations.
A way of justifying this construction is by using the Kulldad_eibler information measuré(=*|r) =

[ m(0) In(r(8)/7*(6)) df, as a measure of discrepancy betweeandr*. With our method, wheh goes
to zerod(7m*|r) also goes to zero while i is constant the@d(7*|7) is constant too. The details of this
assertion can be seen in Gbmez-Villegas and Sanz (2000).

We denote the likelihood function bf(x|6), which is considered as a function éffor the observed
valuez. We assume that,, the base prior, is unimodal with modg and densityr,(#) and thatg, the
contamination, has density6) both with respect to the Lebesgue measure. Thusgamyl" as in (1) has
density

m(6) = (1 — £)mo(6) + £q(6). (6)

The marginal distribution ofX with respect to the prior € T'is denoted bym(z|r). Assuming the
existence of all quantities in the problem, we have

m(z|r) = (1 - e)m(z[mo) + em(z|q), (7)
therefore, if the posterior distributions (6|z) andq(f|x) exist, the posterior distribution éfgivenz with

respect tor is given byr (0|x) = A(z)mo (0]x)+ (1 —A(x))q(0|z), whereh(z) = (1 —e)m(x|m)/m(x|r).
The prior mass assigned to the null hypothesis results, (Brand (6),p = (1 — €)po + €qo, Where

m=[  m@ds and = [ q)ds (®)
[0—00|<b [6—60]<b

A classical measure of evidence against the null hypothesigh depends on the observations, is the
p—value. If there exists an appropriate statigticX) for testing (3), for example a sufficient statistic, the
p—value of the sample point, is p(z) = supyc g, Pr(|T(X)| > |T(x)| |6). In particular, for testing (2),
the p—value takes the forp{z) = Pr(|T(X)| > |T(z)| |6o)-

2. Unimodal contaminations

In this section we consider tlre-contaminated class as in (1), wifh the class of contaminations as
Q@ = {All unimodal distributions with the same mode ag(9)}, 9)

a class which is particularly reasonable if the base ptig(), is also unimodal.
In order to find the infimum of the posterior probability &F; over the clasd’, with the class of
contaminations (9), it is sufficient to find it over the muchadier class

Ty ={r=1—-¢e)mg+eq, qisU(6y,00 + k)orU(6y — k,b), for somek > 0}, (20)
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as it is shown in Sivaganesan and Berger (1989). Whdte b) denotes the uniform distribution on the
interval(a, b).

In the following theorem we obtain the infimum of the postegoobability of the point null hypothesis
for the class (10) given* (6, b) by (4) andp computed as in (5).

Theorem 1 For the hypotheses (2), if we take an arbitrary prior distriton (6) € T'y as in (10) and

a mixed prior distribution as (4) with the mass assigned ® ttlll hypothesis according to (5), then the
infimum of the posterior probability dfj is attained for ar(6) with k& given by

{(1—¢e)po — p?}a — (1 — e)bm(x|mp)

k= , 11
P(L— ) (alw) .
where
iya= [, f(x]0) db andw = 0y + ki q(0) isU (6, 00 + k).
ii)a= [, , f(x|0)do andw = b — k if q(8)isU (60 — k. 00).
PROOF  Computing the infimum of the posterior probability Bf;
Pr(H;|z) = / (?9_0) (12)
(/o) + — L mzln)
is just like computing the supremum 6fk) = (1 — p)/pm(z|r) over the clas§'y.
Assumingb < k, by (5), we have
b
p= / m(0)df = (1 —e)po +e— (13)
0—60|<b k

with po given by (8), whilem(z|q) = a/k.
It must be noted thap depends ory throughgy = b/k, so the infimum ofPr(Hi|z) in ¢ can be
computed, by (7), as the supremunyig @ of

60 = =2 {1 - et + 5 | (14)
with p given by (13).

In order to find the value df for which G(k) in (14) is maximized, we obtai’ (k) and by setting this
equal to zero it is straightforward to verify that

(1 —e)m(z|mo)b+ kp(1 — p) f(xlw) + {p* — (1 — )po}a = 0. (15)

Equation (15) will have solutiok > 0 only if:

1.p2—(1-¢)p<0,and

2.[{p> — (1 —e)po}al > (1 — e)bm(z|mo).

Condition1 is reasonable since we can think that close topg and, then] is equivalent to require
p < 1—¢, and this looks reasonable if we are thinking that the amottror,e, is not large. Nevertheless,
if e =1o0rp?—(1—¢)po > 0thenG’(k) will be positive in any case and, therefore, the supremurrbail
achieved whelk goes toco. Condition 2 is due to mathematical reasons.
From (15) we obtain (11) the value bfwhich maximizes7(k) and, so, we will findnfcr, Pr(H|z). R

In order to see how Theorem 1 works, the following examplétiernormal model is considered.
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Example 1  Letus suppose tha |0 is N (6, o2) distributed, witho? known, andr(6) is N (1, 72), with

both parameters known. K1, ..

m(Z|m) is N(u, 72 + o2 /n).

., X, is a random sample of, thenX is N(f,0?/n) distributed and

Besidegy = ®{(0o+b—p)/7} — ®{(0p —b—u)/7},  denoting the standard cumulative distribution

function.

Table 1 shows, choosing? = 1, 72 = 2, 6y = u = 0 andn = 10, for some specific values of
t = /n(T — 6y)/o andb, the values of;, from (11), in which the infimum of the posterior probabili

the point null hypothesis is achieved.

Table 1. Values ofk where the infimum aPr(H;|Z) is achieved for some valuesiofindb

t b k sup,er, G(k) Pr(H{|T)
1.645 0.1 1.081 5.52499 0.05573
0.2 1112 2.58070 0.11217
0.3 1.150 1.60304 0.16902
1.960 0.1 1.175 5.43849 0.03286
0.2 1.201 2.54499 0.06770
0.3 1.233 1.58374 0.10450
2.596 0.1 1.375 5.14862 0.00836
0.2 1.394 2.41652 0.01764
0.3 1.420 1.50861 0.02664
3.291 0.1 1.598 4.74991 0.00118
0.2 1.614 2.23486 0.00250
0.3 1.632 1.39895 0.00399
The last column in Table 1 is computed from
—1
nf Pr(H;[T) = {1 + W’J’;(%ﬁ)j(m} . (16)

Besides, we can get now the value$ ahdk, sayb* andk*, so that the—values andnf ¢, Pr(H{|T)
=Pr(Hg|z) match. This could be done from the expression

although in this case the prior probability depends on thta dat we can avoid it, replacing®) by the
significance level of the testy. Moreover, the infimum of the posterior probability &f; and the p—
value are close if the value chosen tois close tob*, since the infimum is a continuous function lof
Now, the infimum is attained when the contamination distidn ¢(9), is uniform inU (6, 6y + k*) orin
U6y — k*,00).

Table 2 shows those values @f andk* for some specifi¢ = \/n(z — 6y)/o. Besides, we see that
Pr(Hg|z) is close toinf rcr, Pr(Ho|T) = Pr(Ho|T).

17)

Table 2 shows, too, that if the prior mass assigned to thehyplothesis i = 0.5, the infimum of
the posterior probability of{; is much larger than the p—value, but if the value$ @f (5) are close to
b*, then Bayesian and classical approaches are numericafig.cMoreover, table 2 shows thapit= 0.5,
the posterior probability of the point null hypothesis djsse with the posterior probability of the interval
hypothesis.
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Table 2. Values ob and k that make equal the-value withPr(H,|x), Pr(Hg|Z), infimum ovel'y

t b* k*  Pr(Hj|z)=p-value Pr(Ho|T) Pr(H{|T,p=0.5)
1.645 0.1785 1.122 0.1 0.10298 0.45062
1.960 0.1498 1.180 0.05 0.05310 0.32957
2596 0.1184 1.381 0.01 0.01081 0.11477
3.291 0.0855 1.589 0.001 0.00107 0.01868

3. Unimodal and symmetric contaminations

If the base priorrg, is unimodal and symmetric it may be reasonable to requagttie contaminations
be also unimodal and symmetric. Thus, in this section, wé wdéh the class (1) and), the class of
contaminations, will be

@ = {All symmetric unimodal distributions with the same modergs

Thise—contaminated class will be denotBgs. Sivaganesan and Berger (1989) prove that in order to find
the infimum of the posterior probability ¢f; over the clas$';; s it is sufficient to calculate it over the class

Tys = {r=(1—e)mo+eq, g€ Uy — k,0 + k) for somek > 0}, (18)

based on representing a symmetric unimodal density as aimaigf symmetric uniforms.
Theorem 2 shows the value kffor the uniform distribution where the infimum is attained.

Theorem 2 For the hypotheses (2), if(f) € T'ys as in (18) and a mixed prior distribution as (4), with
the mass assigned to the null by (5), is used, the infimum qiasierior probability ofHj is attained at a
m(0) with k given by
o L1 =2)po — p*}a — 21 — e)bm(almo) 19)
p(L = p){f ([0 + k) + f(z[6o — k)}

whereq = 'ei“j: (x]0) do.

PROOF The infimum ofPr(H{|x) overI'ys will be obtained, as in theorem 2.1, computing the supre-
mum of G(k) = (1 — p)/pm(z|x).
Assumingb < k, the prior massy, assigned to the null hypothesis is, given by (5), now

b
p=(-¢e)potey (20)
The marginal distribution ok given is, by (7),

m(a|r) = (1 - e)mlalmo) + e (21)
Then, by (21) and (20)
k(1 —e)m(z|mo) +ea/2 a
k(1 —¢)po +¢b ~ (L= e)ma|mo) - "o

Expression (22) depends only érfor b fixed andx observed. Then, by differentiating (22), it results

G(k) =

(22)

(1~ ymlalmo)b+ ghp(L — p){ (el + k) + F(zlbo — B)} + 50> — (1~ <Ipo}a =0,
and (19) is obtained. W

Theorem 2 gives us the value/fvhich maximize€7 (k) and then the value that minimizes the posterior
probability of H;.

390



Example 2 Consider a random variablé with V (6, o2) distribution,o? known, and the base priag (6)
is N(u,72) for u and 2 given. If Xi,..., X, is a random sample of size, the sample mean¥, is
N(0,0%/n) distributed andn(z|m) is N(u, 7 + 02 /n). Moreover, the prior mass assignedHg, p, is
given by (20) withpy = ®{(0o + b — p)/7} — D{(6p — b — )/ 7}.

Then, equation (19) gives solutionsfrfor fixed values oft andb. Table 3 shows the values ffat
which the infimum of the posterior probability of the pointlinaypothesis is attained for some especific
values oft = /n|T — 6y|/c and different values of. Calculus are done far = 0.2, 02 = 1, 72 = 2,

0o = p = 0 andn = 10.

Table 3. Values ofk where the infimum oPr(H;|7) is achieved for some valuesiofindb

p—value t b k SUp,er,, s G(k) Pr(H;|T)
0.1 1.645 0.1 1.570 4.40095 0.06898
0.2 +o0 2.08649 0.13503
0.3 +0o0 1.32996 0.19689
0.05 1.960 0.1 1.546 4.31036 0.04111
0.2 5.073 2.03466 0.08327
0.3 +00 1.29449 0.12493
0.01 2.596 0.1 1.634 4.08511 0.01051
0.2 1.782 1.92363 0.02206
0.3 4.477 1.21042 0.03462
0.001 3.291 0.1 1.785 3.78266 0.00148
0.2 1.846 1.78289 0.00314
0.3 1.963 1.11884 0.00499

The last column in Table 3 is obtained from

inf Pr(Hj|T) = (1 +

nelys

SUPrery s G(k))_1
f(@6o)

A couple of remarks can be made about the results shown i Balffirstly, the distributiog(6) € @, for
which the infimum is attained, depends on the value fixed ord the observatian, and in some cases the
infimum is attained for the uniform improper contaminati®@econdly, ifb takes moderate small values,
the infimum of the posterior probability df;j is close to the p—value independently of the observed value
T, so ift = 1.96 andb € (0.1,0.2) the infimum of the posterior probability is {{®.04111, 0.08327), close
to the p—value, 0.05.

As it happened in the case of unimodal contaminations, ib&sible to determine a value &fsayb*,
such that the p—value and the infimum of the posterior prdibabf H; match. Table 4 shows the values
of b* and the respectives &f sayk*.

Table 4. Values ob and k that make equal the-value withPr(Hy|z), Pr(Hg|Z), infimum ovel'y s

t b* k*  Pr(H{|T) =p-value Pr(Holz) Pr(HolZ,p=0.5)
1.645 0.1461 3.85 0.1 0.10811 0.51364
1.960 0.1213 1.60 0.05 0.05115 0.38817
2.596 0.0954 1.63 0.01 0.01014 0.14231
3.291 0.0688 1.77 0.001 0.00104 0.02357
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For example, ift = 1.96 andb* = 0.12 is chosen in (5), the infimum of the posterior probability is
attained at the uniform distribution in the interv@, — 1.6, 6, + 1.6) and this infimum and the p—value
match, whereas if the posterior probability of the pointl imicomputed withp = 0.5, as it is usually done
in the literature, it turns out to b@38817 which is too far from the p—value.

Table 4 shows too the values of the infimum of the posteriobabdity of the interval hypothesig/,

Pr(Hy|z) = f\9790|<bﬂ-(0|5) df, wherer (0|z) is given by (12), so that
. 1-e / _ £ / /(@)
Pr(Hplz) = ——— T|0)mo(0) dO + ———— do,
_( 0| ) m(:v|7r) 10— 80[<b f( | ) 0( ) m(:v|7r) 10—00]<b 2%

wheref (z|0) is the density of theV (z, o2 /n) distribution andn(z|r) is given by (7). W

4. Comments

As it is shown, thes—contaminated class allows an acceptable Bayesian apgprbath analytical and
intuitive, to the problem of testing point null hypothesis.

The procedure to determine the prior mass assigned to tiné mpali hypothesis using a small interval
of length2b, centered iry, and to compute the probability assigned(y) to this interval, allows us to
obtain values of the posterior probability of the point rylpothesis that are closer to the p—value.

Moreover, the case in which the prior mass assigned to th# pall hypothesis i9.5 is a particular
case for some value of In other words, there is a value bfor which the prior mass assigned to the point
nullis 0.5.

Then, the difference between the p—value and the postanbapility for the problem of testing a point
null hypothesis is not due to using a mixed prior distribntout rather to the choice of the prior magsin
the mixed distribution, usually = 0.5. Small values than this, depending on the sample modely aitoa
better approximation between the p—value and the posiaradrability.
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