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Unimodal contaminations in testing point null hypothesis

Miguel A. G ómez–Villegas and Luı́s Sanz

Abstract. The problem of testing a point null hypothesis from the Bayesian perspective is considered.
The uncertainties are modelled through use ofε–contamination class with the class of contaminations
including: i) All unimodal distributions andii) All unimodal and symmetric distributions. Over these
classes, the infimum of the posterior probability of the point null hypothesis is computed and compared
with the p–value and a better approach than the one known is obtained.

Contaminaciones unimodales en el contraste de una hip ótesis nula puntual

Resumen. Se considera el problema del contraste de hipótesis nula puntual desde el punto de vista
Bayesiano. La incertidumbre se modeliza mediante el uso de la clase de las distribucionesε–contaminadas,
cuando la clase de las contaminaciones incluye:i) todas las distribuciones unimodales yii) todas las dis-
tribuciones unimodales y simétricas. Se calcula el ı́nfimode las probabilidades a posteriori de la hipótesis
nula puntual sobre estas clases y se compara con el p–valor, obteniéndose una mejor aproximación que la
conocida hasta ahora.

1. Introduction

1.1. The choice of the prior

A random variable,X , having densityf(x − θ) is observed,θ being an unknown real parameter. To
perform a Bayesian analysis concerning the parameterθ, it is necessary to express the prior beliefs about
θ through a prior distribution of probability. Usually, the prior information can not be exactly quantified
in terms of a single prior distribution. Perhaps, after an elicitation process, we can conclude thatπ0(θ)
represents our prior beliefs, but it looks reasonable that any prior not too far fromπ0(θ) would also be a
good approximation to our prior beliefs.

This is the reason why often a class of prior distributions isused instead of a concrete prior distribution.
In this paper, following the reasoning above, we will use theε–contamination class given by

Γ = {π = (1 − ǫ)π0 + ǫq, q ∈ Q}, (1)

whereπ0 is the prior that one would use in a Bayesian analysis with only one prior distribution. The value
of ε, with 0 ≤ ǫ ≤ 1, represents the amount of contamination that we want to introduce inπ0. AndQ is the
class of probability distributions that contaminatesπ0(θ).

Gómez–Villegas and Sanz (2000) use the class (1) to comparep–values and posterior probabilities in
the point null testing problemQ being the class of all probability distributions and they conclude that both
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values can match. The class of all probability distributions is attractive because it is easy to work with and
it contains any prior near toπ0 but, on the other hand, this class contains many unreasonable distributions
that are too far fromπ0.

If π0(θ), the base prior distribution, is unimodal it looks reasonable the choice ofQ as the class of all
unimodal distributions (with the same mode asπ0) or the class of all symmetric and unimodal distributions,
specially ifπ0 is also unimodal and symmetric. See Berger and Berliner (1986), Berger (1985), Sivaganesan
and Berger (1989) and Berger (1994) for further informationabout the choice ofQ.

We start, in Section 1, with the problem. Then, in 1.2, we introduce the procedure to make up the mixed
prior distribution and in 1.3 a justification for this construction is provided. Section 2 compares the p–value
with the infimum of the posterior probability whenQ is the class of all unimodal distributions. In Section 3
the comparison is done whenQ is the class of all unimodal and symmetric distributions. Finally, Section 4
contains some additional comments.

1.2. The problem

We consider the parametric point null testing problem

H∗
0 : θ = θ0 versus H∗

1 : θ 6= θ0, (2)

based on observing a random variable,X , with densityf(x|θ), θ ∈ ℜ, continuous inθ0. We suppose, as
usually, that the probability ofθ = θ0 is p > 0, in such a way that the prior information is given by a
mixed distribution assigning massp to the null hypothesis and spreading the remainder,1− p, according to
a densityπ(θ) ∈ Γ overθ 6= θ0. However there is no rule to fix the value ofp –usuallyp = 0.5–.

In many practical situations, it is not usual to test (2). We propose to replace (2) by the more realistic
precise hypothesis

H0 : θ ∈ Ib versus H1 : θ ∈ Ic

b , (3)

whereIb = (θ0 − b, θ0 + b) andb is suitable “small” so that any value ofθ ∈ Ib can be considered indis-
tinguishable fromθ0. Examples of this replacement can be seen in Berger (1985), Berger and Delampady
(1987) and Lee (1989) among others.

In the classical approach, (2) can be changed by (3) when the p–value in (2) is approximately the
same as the p–value in (3). Berger and Delampady (1987) seek conditions under which both p–values are
approximately equal. From Bayesian perspective, this can be done when the posterior probabilities of the
null hypotheses are close or, equivalently, when the Bayes factor in (2) is similar to the Bayes factor in
(3). A relation between (2) and (3) with regard to the Bayes factor is given by Gómez–Villegas and Gómez
Sánchez–Manzano (1992). There it is shown that the Bayes factor in (3) converges to the Bayes factor in
(2) whenb goes to zero. A difference between the use of Bayes factor andposterior odds in this framework
can be seen in Levine and Casella (1996).

Let us suppose that our prior distribution isπ(θ) ∈ Γ, with Γ defined by (1). In the point null testing
problem, we need a mixed prior distribution

π∗(θ) = pI{θ0}(θ) + (1 − p)π(θ)I{θ 6=θ0}(θ), (4)

whereIA(θ) = 1 if θ ∈ A andIA(θ) = 0 if θ ∈ Ac. Whereas in (3) it is sufficient to chooseπ(θ) ∈ Γ.
Then, what we propose is to choose the value ofp, in the mixed distribution (4), as

p =

∫

|θ−θ0|≤b

π(θ)dθ. (5)

From now on we will note (4) byπ∗(θ, b) making the dependence ofb explicit.
This construction is based on the assumption thatπ(θ) represents our prior beliefs aboutθ but, as it is

not possible to test (2) withπ(θ), we approach (2) by (3) choosing a convenient value ofb.
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In the same way of Berger and Sellke (1987), we seek to minimize Pr(H∗
0 |x) over the classΓ in (1).

A reason to take the infimum is that for a small infimum the null hypothesis must be rejected according to
the interpretation of the p–value. Further reasons can be seen in Berger and Sellke (1987). Besides, this
development is similar to that of Casella and Berger (1987) who reconcile Bayesian and frequentist evidence
in the one–sided testing problem and we are interested in making clear the reason for the discrepancy
between both approaches in the point null testing problem.

There is a substantial amount of literature about the reconciliation between p–values and posterior prob-
abilities, some important references, besides the ones mentioned above, are Edwards et al. (1963), Pratt
(1965), Dickey and Lienz (1970), DeGroot (1974), Bernardo (1980), Ghosh and Mukerjee (1992), Berger,
Boukai and Wang (1997), Gómez–Villegas and Sanz (1998), Mukhopadhyay and Das Gupta (1997), Mar-
den (2000), Sellke, Bayarri and Berger (2001) and Gómez–Villegas, Maı́n and Sanz (2002).

1.3. Justification and notation

The choice ofp, the mass assigned to the point null hypothesis, as in (5) is basic for posterior calculations.
A way of justifying this construction is by using the Kullback–Leibler information measure,δ(π∗|π) =
∫

π(θ) ln(π(θ)/π∗(θ)) dθ, as a measure of discrepancy betweenπ andπ∗. With our method, whenb goes
to zeroδ(π∗|π) also goes to zero while ifp is constant thenδ(π∗|π) is constant too. The details of this
assertion can be seen in Gómez–Villegas and Sanz (2000).

We denote the likelihood function byf(x|θ), which is considered as a function ofθ for the observed
valuex. We assume thatπ0, the base prior, is unimodal with modeθ0 and densityπ0(θ) and thatq, the
contamination, has densityq(θ) both with respect to the Lebesgue measure. Thus, anyπ ∈ Γ as in (1) has
density

π(θ) = (1 − ε)π0(θ) + εq(θ). (6)

The marginal distribution ofX with respect to the priorπ ∈ Γ is denoted bym(x|π). Assuming the
existence of all quantities in the problem, we have

m(x|π) = (1 − ε)m(x|π0) + εm(x|q), (7)

therefore, if the posterior distributionsπ0(θ|x) andq(θ|x) exist, the posterior distribution ofθ givenx with
respect toπ is given byπ(θ|x) = λ(x)π0(θ|x)+(1−λ(x))q(θ|x), whereλ(x) = (1−ε)m(x|π0)/m(x|π).

The prior mass assigned to the null hypothesis results, from(5) and (6),p = (1 − ε)p0 + εq0, where

p0 =

∫

|θ−θ0|≤b

π0(θ) dθ and q0 =

∫

|θ−θ0|≤b

q(θ) dθ. (8)

A classical measure of evidence against the null hypothesis, which depends on the observations, is the
p–value. If there exists an appropriate statisticT (X) for testing (3), for example a sufficient statistic, the
p–value of the sample point,x, is p(x) = supθ∈H0

Pr(|T (X)| > |T (x)| |θ). In particular, for testing (2),
the p–value takes the formp(x) = Pr(|T (X)| > |T (x)| |θ0).

2. Unimodal contaminations

In this section we consider theε–contaminated class as in (1), withQ, the class of contaminations as

Q = {All unimodal distributions with the same mode asπ0(θ)}, (9)

a class which is particularly reasonable if the base prior,π0(θ), is also unimodal.
In order to find the infimum of the posterior probability ofH∗

0 over the classΓ, with the class of
contaminations (9), it is sufficient to find it over the much smaller class

ΓU = {π = (1 − ε)π0 + εq, q isU(θ0, θ0 + k) orU(θ0 − k, θ0), for somek > 0}, (10)

387



as it is shown in Sivaganesan and Berger (1989). WhereU(a, b) denotes the uniform distribution on the
interval(a, b).

In the following theorem we obtain the infimum of the posterior probability of the point null hypothesis
for the class (10) givenπ∗(θ, b) by (4) andp computed as in (5).

Theorem 1 For the hypotheses (2), if we take an arbitrary prior distribution π(θ) ∈ ΓU as in (10) and
a mixed prior distribution as (4) with the mass assigned to the null hypothesis according to (5), then the
infimum of the posterior probability ofH∗

0 is attained for aπ(θ) with k given by

k =
{(1 − ε)p0 − p2}a − (1 − ε)b m(x|π0)

p(1 − p)f(x|w)
, (11)

where
i) a =

∫ θ0+k

θ0

f(x|θ) dθ andw = θ0 + k if q(θ) isU(θ, θ0 + k).

ii) a =
∫ θ0

θ0−k
f(x|θ) dθ andw = θ0 − k if q(θ) isU(θ0 − k, θ0).

PROOF. Computing the infimum of the posterior probability ofH∗
0

Pr(H∗
0 |x) =

f(x|θ0)

f(x|θ0) +
1 − p

p
m(x|π)

(12)

is just like computing the supremum ofG(k) = (1 − p)/p m(x|π) over the classΓU .
Assumingb ≤ k, by (5), we have

p =

∫

|θ−θ0|≤b

π(θ) dθ = (1 − ε)p0 + ε
b

k
(13)

with p0 given by (8), whilem(x|q) = a/k.
It must be noted thatp depends onq throughq0 = b/k, so the infimum ofPr(H∗

0 |x) in q can be
computed, by (7), as the supremum inq ∈ Q of

G(k) =
1 − p

p

{

(1 − ε)m(x|π0) + ε
a

k

}

(14)

with p given by (13).
In order to find the value ofk for whichG(k) in (14) is maximized, we obtainG′(k) and by setting this

equal to zero it is straightforward to verify that

(1 − ε)m(x|π0)b + kp(1 − p)f(x|w) + {p2 − (1 − ε)p0}a = 0. (15)

Equation (15) will have solutionk ≥ 0 only if:
1. p2 − (1 − ε)p < 0, and
2. |{p2 − (1 − ε)p0}a| > (1 − ε)b m(x|π0).
Condition1 is reasonable since we can think thatp is close top0 and, then,1 is equivalent to require

p < 1−ε, and this looks reasonable if we are thinking that the amountof error,ε, is not large. Nevertheless,
if ε = 1 or p2 − (1− ε)p0 ≥ 0 thenG′(k) will be positive in any case and, therefore, the supremum will be
achieved whenk goes to∞. Condition 2 is due to mathematical reasons.
From (15) we obtain (11) the value ofk which maximizesG(k) and, so, we will findinfπ∈ΓU

Pr(H∗
0 |x). �

In order to see how Theorem 1 works, the following example forthe normal model is considered.
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Example 1 Let us suppose thatX |θ is N(θ, σ2) distributed, withσ2 known, andπ0(θ) is N(µ, τ2), with
both parameters known. IfX1, . . . , Xn is a random sample ofX , thenX is N(θ, σ2/n) distributed and
m(x|π0) is N(µ, τ2 + σ2/n).

Besidesp0 = Φ{(θ0 +b−µ)/τ}−Φ{(θ0−b−µ)/τ}, Φ denoting the standard cumulative distribution
function.

Table 1 shows, choosingσ2 = 1, τ2 = 2, θ0 = µ = 0 andn = 10, for some specific values of
t =

√
n(x − θ0)/σ andb, the values ofk, from (11), in which the infimum of the posterior probabilityof

the point null hypothesis is achieved.

Table 1. Values ofk where the infimum ofPr(H∗

0 |x) is achieved for some values oft andb

t b k supπ∈ΓU
G(k) Pr(H∗

0 |x)
1.645 0.1 1.081 5.52499 0.05573

0.2 1.112 2.58070 0.11217

0.3 1.150 1.60304 0.16902
1.960 0.1 1.175 5.43849 0.03286

0.2 1.201 2.54499 0.06770

0.3 1.233 1.58374 0.10450
2.596 0.1 1.375 5.14862 0.00836

0.2 1.394 2.41652 0.01764

0.3 1.420 1.50861 0.02664
3.291 0.1 1.598 4.74991 0.00118

0.2 1.614 2.23486 0.00250

0.3 1.632 1.39895 0.00399

The last column in Table 1 is computed from

inf
π∈ΓU

Pr(H∗
0 |x) =

{

1 +
supπ∈ΓU

G(k)

f(x|θ0)

}−1

. (16)

Besides, we can get now the values ofb andk, sayb∗ andk∗, so that thep–values andinfπ∈ΓU
Pr(H∗

0 |x)
=Pr(H∗

0 |x) match. This could be done from the expression

p(x) =

{

1 +
supπ∈ΓU

G(k)

f(x|θ0)

}−1

, (17)

although in this case the prior probability depends on the data but we can avoid it, replacingp(x) by the
significance level of the test,α. Moreover, the infimum of the posterior probability ofH∗

0 and the p–
value are close if the value chosen forb is close tob∗, since the infimum is a continuous function ofb.
Now, the infimum is attained when the contamination distribution, q(θ), is uniform inU(θ0, θ0 + k∗) or in
U(θ0 − k∗, θ0).

Table 2 shows those values ofb∗ andk∗ for some specifict =
√

n(x − θ0)/σ. Besides, we see that
Pr(H∗

0 |x) is close toinfπ∈ΓU
Pr(H0|x) = Pr(H0|x).

Table 2 shows, too, that if the prior mass assigned to the nullhypothesis isp = 0.5, the infimum of
the posterior probability ofH∗

0 is much larger than the p–value, but if the values ofb in (5) are close to
b∗, then Bayesian and classical approaches are numerically close. Moreover, table 2 shows that ifp = 0.5,
the posterior probability of the point null hypothesis disagree with the posterior probability of the interval
hypothesis.
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Table 2. Values ofb andk that make equal thep–value withPr(H0|x), Pr(H∗

0 |x), infimum overΓU

t b∗ k∗ Pr(H∗
0 |x) = p–value Pr(H0|x) Pr(H∗

0 |x, p = 0.5)
1.645 0.1785 1.122 0.1 0.10298 0.45062
1.960 0.1498 1.180 0.05 0.05310 0.32957
2.596 0.1184 1.381 0.01 0.01081 0.11477
3.291 0.0855 1.589 0.001 0.00107 0.01868

3. Unimodal and symmetric contaminations

If the base prior,π0, is unimodal and symmetric it may be reasonable to require that the contaminations
be also unimodal and symmetric. Thus, in this section, we deal with the class (1) andQ, the class of
contaminations, will be

Q = {All symmetric unimodal distributions with the same mode asπ0}

Thisε–contaminated class will be denotedΓUS . Sivaganesan and Berger (1989) prove that in order to find
the infimum of the posterior probability ofH∗

0 over the classΓUS it is sufficient to calculate it over the class

ΓUS = {π = (1 − ε)π0 + εq, q ∈ U(θ0 − k, θ0 + k) for somek > 0}, (18)

based on representing a symmetric unimodal density as a mixture of symmetric uniforms.
Theorem 2 shows the value ofk for the uniform distribution where the infimum is attained.

Theorem 2 For the hypotheses (2), ifπ(θ) ∈ ΓUS as in (18) and a mixed prior distribution as (4), with
the mass assigned to the null by (5), is used, the infimum of theposterior probability ofH∗

0 is attained at a
π(θ) with k given by

k =
{(1 − ε)p0 − p2}a − 2(1 − ε)bm(x|π0)

p(1 − p){f(x|θ0 + k) + f(x|θ0 − k)} (19)

wherea =
∫ θ0+k

θ0−k
f(x|θ) dθ.

PROOF. The infimum ofPr(H∗
0 |x) overΓUS will be obtained, as in theorem 2.1, computing the supre-

mum ofG(k) = (1 − p)/pm(x|π).
Assumingb ≤ k, the prior mass,p, assigned to the null hypothesis is, given by (5), now

p = (1 − ε)p0 + ε
b

k
(20)

The marginal distribution ofX givenπ is, by (7),

m(x|π) = (1 − ε)m(x|π0) + ε
a

2k
(21)

Then, by (21) and (20)

G(k) =
k(1 − ε)m(x|π0) + εa/2

k(1 − ε)p0 + εb
− (1 − ε)m(x|π0) − ε

a

2k
, (22)

Expression (22) depends only onk for b fixed andx observed. Then, by differentiating (22), it results

(1 − ε)m(x|π0)b +
1

2
kp(1 − p){f(x|θ0 + k) + f(x|θ0 − k)} +

1

2
{p2 − (1 − ε)p0}a = 0,

and (19) is obtained. �

Theorem 2 gives us the value ofk which maximizesG(k) and then the value that minimizes the posterior
probability ofH∗

0 .
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Example 2 Consider a random variableX with N(θ, σ2) distribution,σ2 known, and the base priorπ0(θ)
is N(µ, τ2) for µ andτ2 given. If X1, . . . , Xn is a random sample of sizen, the sample mean,X , is
N(θ, σ2/n) distributed andm(x|π0) is N(µ, τ2 + σ2/n). Moreover, the prior mass assigned toH∗

0 , p, is
given by (20) withp0 = Φ{(θ0 + b − µ)/τ} − Φ{(θ0 − b − µ)/τ}.

Then, equation (19) gives solutions ink for fixed values ofx andb. Table 3 shows the values ofk at
which the infimum of the posterior probability of the point null hypothesis is attained for some especific
values oft =

√
n|x − θ0|/σ and different values ofb. Calculus are done forε = 0.2, σ2 = 1, τ2 = 2,

θ0 = µ = 0 andn = 10.

Table 3. Values ofk where the infimum ofPr(H∗

0 |x) is achieved for some values oft andb

p–value t b k supπ∈ΓUS
G(k) Pr(H∗

0 |x)
0.1 1.645 0.1 1.570 4.40095 0.06898

0.2 +∞ 2.08649 0.13503

0.3 +∞ 1.32996 0.19689
0.05 1.960 0.1 1.546 4.31036 0.04111

0.2 5.073 2.03466 0.08327

0.3 +∞ 1.29449 0.12493
0.01 2.596 0.1 1.634 4.08511 0.01051

0.2 1.782 1.92363 0.02206

0.3 4.477 1.21042 0.03462
0.001 3.291 0.1 1.785 3.78266 0.00148

0.2 1.846 1.78289 0.00314

0.3 1.963 1.11884 0.00499

The last column in Table 3 is obtained from

inf
π∈ΓUS

Pr(H∗
0 |x) =

(

1 +
supπ∈ΓUS

G(k)

f(x|θ0)

)−1

.

A couple of remarks can be made about the results shown in Table 3. Firstly, the distributionq(θ) ∈ Q, for
which the infimum is attained, depends on the value fixed forb and the observationx, and in some cases the
infimum is attained for the uniform improper contamination.Secondly, ifb takes moderate small values,
the infimum of the posterior probability ofH∗

0 is close to the p–value independently of the observed value
x, so if t = 1.96 andb ∈ (0.1, 0.2) the infimum of the posterior probability is in(0.04111, 0.08327), close
to the p–value, 0.05.

As it happened in the case of unimodal contaminations, it is possible to determine a value ofb, sayb∗,
such that the p–value and the infimum of the posterior probability of H∗

0 match. Table 4 shows the values
of b∗ and the respectives ofk, sayk∗.

Table 4. Values ofb andk that make equal thep–value withPr(H0|x), Pr(H∗

0 |x), infimum overΓUS

t b∗ k∗ Pr(H∗
0 |x) = p–value Pr(H0|x) Pr(H0|x, p = 0.5)

1.645 0.1461 3.85 0.1 0.10811 0.51364
1.960 0.1213 1.60 0.05 0.05115 0.38817
2.596 0.0954 1.63 0.01 0.01014 0.14231
3.291 0.0688 1.77 0.001 0.00104 0.02357
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For example, ift = 1.96 andb∗ = 0.12 is chosen in (5), the infimum of the posterior probability is
attained at the uniform distribution in the interval(θ0 − 1.6, θ0 + 1.6) and this infimum and the p–value
match, whereas if the posterior probability of the point null is computed withp = 0.5, as it is usually done
in the literature, it turns out to be0.38817 which is too far from the p–value.

Table 4 shows too the values of the infimum of the posterior probability of the interval hypothesis,H0,
Pr(H0|x) =

∫

|θ−θ0|≤b
π(θ|x) dθ, whereπ(θ|x) is given by (12), so that

Pr(H0|x) =
1 − ε

m(x|π)

∫

|θ−θ0|≤b

f(x|θ)π0(θ) dθ +
ε

m(x|π)

∫

|θ−θ0|≤b

f(x|θ)
2k

dθ,

wheref(x|θ) is the density of theN(x, σ2/n) distribution andm(x|π) is given by (7). �

4. Comments

As it is shown, theε–contaminated class allows an acceptable Bayesian approach, both analytical and
intuitive, to the problem of testing point null hypothesis.

The procedure to determine the prior mass assigned to the point null hypothesis using a small interval
of length2b, centered inθ0, and to compute the probability assigned byπ(θ) to this interval, allows us to
obtain values of the posterior probability of the point nullhypothesis that are closer to the p–value.

Moreover, the case in which the prior mass assigned to the point null hypothesis is0.5 is a particular
case for some value ofb. In other words, there is a value ofb for which the prior mass assigned to the point
null is 0.5.

Then, the difference between the p–value and the posterior probability for the problem of testing a point
null hypothesis is not due to using a mixed prior distribution but rather to the choice of the prior mass,p, in
the mixed distribution, usuallyp = 0.5. Small values than this, depending on the sample model, allow us a
better approximation between the p–value and the posteriorprobability.
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