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On the control measures of vector measures

Baltasar Rodriguez-Salinas

Abstract. If X is ac-algebra andt’ a locally convex space we study conditions for a countabtijtave
vector measures : ¥ — X to have a control measurgs If X is the Borelo-algebra of a metric
space2 we obtain necessary and sufficient conditions using-thdditivity of v. We also give results for
polymeasures.

Sobre las medidas de control de medidas vectoriales

Resumen. SiX es unas-algebra yX un espacio localmente convexo se estudian las condiciaras p
las cuales una medida vectoréghditivay : ¥ — X tenga una medida de contpal Si¥ es las-algebra
de Borel de un espacio métri€h se obtienen condiciones necesarias y suficientes usamdulitividad
de~. También se dan estos resultados para las polimedidas.

1. Basic section

Following the usual notation, we write:(3; X') for the set of the countably additive measures defined on
ac-algebraX of subsets of) and taking values in a locally convex space (l.cX.)If V is an absolutely
convex neighborhood (a.c.n.) 0f we write p,, for the seminorm associated Yband we writexy, for the
quotient space’/p,' (0). As usual, we can endod, with the norm|-[|,. defined by||gy (z) v = pv (),
wheregy, is the canonical applicatiolr — X),.

Theorem 1 Lety: ¥ — X whereX is a metrizable space, or a space such th@} is a G5 set. Then
there exists a countably additive measpre ¥ — [0.7] such that

lim A) =0,
H(AH)V( )

that s, isu-continuous. This mesugeis called a control measure of.

PrOOF If X is a metrizable space then its topology can be defined by eeseg{iV,,} of a.c.n. of0.
Then, sincey is countably additive, by [1, Corollary 1.5.3], there existfinite countably additive measure
1, SUCh thatyy,, o 7 is u,-continuous. It follows that the measure

(A) = 327", (A) /() (A€D)
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satisfies the required conditions because every megsure is p-continuous. In cas¢d} = (), V,, we
can proceed similarly, taking into account thetd) = 0 implies thaty(A) = 0 andgy,, o v(A) = 0 for
every a.c.ny and, hence, we can apply the theorem of Pettis [1, |. K.

Corollary 1 The previous Theorem is validAf is an (LF) space and, more generally, if every bounded
set of X is contained in a metrizable subspaceXf W

Proposition 1  There exists a reflexive and complete sp&cand a countably additive measuye > —
X so that there is no control measytesuch thatu(A) = 0 impliesy(A) = 0.

PROOF Let () be an uncountable set addthe spac&® endowed with the product topology. Théh
is a reflexive complete Montel nuclear space. ket (4,).cq, whered, is Dirac’s delta, and IeE be
the o-algebra of all the subsets &f. Let us suppose that there is one such meagurhen, since is
uncountable, there existse € such thatu({z}) = 0 and, hencey({z}) = 0 andd,({z}) = 0, against
the definition ofs,..

This measurey is not diffuse. To define a diffuse measure we can conditler |J;.; I;, where
{I;};es is a not countable disjoint family of copies of [0,1]. f; is the Lebesgue measure Hfwe can
define

1(A) = (4 (ANI)))jes € X =R’

for every setd C 2 such thatd N I; is p;-measurable for everyc J. R

Definition 1 Let 2 be a topological space and: ¥ — X a Borel measure. Then we say thas afat
measuraf every set of not nully-measure contains a open set of not null measure. It is di@arevery
Borel measure on a spafeendowed with the discreet topology is a fat measure. It s edsy to see that
not null fat measure on&; separable space, in particular, on a Lusin space, is an@togasure.

Theorem 2 Let X be thecs-algebra of the Borel sets of a Lusin spaQeand X’ a l.c.s.. Then, every
countably additive fat measure: ¥ — X has a control measurg such thaty is p-continuous.

PROOF  Sincef2 is a Lusin space there exists a strict weh,, ... »,) of Borel subsets of2 such that
Q=UC, andCy, .. n, =, Cn,,...n.n @and so that every open set is the union of disjoint sets of #ie w
[5, p. 98 and 101].

.

Let (ap, ... n, ) be afarnily of positive numbers whose total sum equals 1ukehoose;,, ,,, € A~
such that
|x;k7,1,...,nk © 7|(Cn1,---7nk) = Qnq,...ng
wheny(Cy, ... n,) # 0andz;,, . = 0inthe opposite case. Then, if

for every A € ¥ with v(A) # 0 there exists an open sét C A such thaty(G) # 0 and therefore there
..... n, With not nully-measure. Hencg(A4) > p(G) > u(Chp,,...n,) > 0and sou(A) =0
impliesv(A) = 0. Then, using the theorem of Pettis [1, .21] we obtain thargwmeasurey, o v is
p-continuous and, so, the measyris p-continuous. W

.....

Definition 2 A l.c.s X is said to have thproperty of the dual sequendeor the closed linear spay of
every bounded sequence there exists a sequetjgeC Y* such that, ifz € Y andz} (x) = 0 for every
n € N, thenz = 0.

Proposition 2 Let) be the closed linear span of a bounded sequence. If for afy Bubere exists a
sequencgV, } of neighborhoods of 0 such th@}, V,, N Y = 0 (i.e. {0} is aGs setin)), thenX has the
property of the dual sequence.
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PROOF. Let{z,} be a sequence dense)irandB,, = V? (the polar set o¥,,), where we can suppo3s,
to be absolutely convex. Thenyif, is the seminorming function af,,, for everyz,, there exists, € By,
suchthatz}, (z,)| > pr(xyn)/2. Leta?, (x) = 0 with z € ) for every pair(n, k) of whole numbers, then

Pe(@ = 2n) 2 [@y, (2 — 20)| = |5 (@n)] = pren) /2.

Since{x,} is dense inY, there exists a subsequenge,,} such thatp;(z — x,,) — 0; it follows that
pr(xn,) — 0, pr(xz) = 0 andz € Vy, for everyk € N, hencer =0. W

We remark that if there exists such sequefieg} with the required property, then the neighborhoods
Vo ={x € X ¢ |x}(x)] < 1(k} verify (), Vaxr N Y = {0}.

Examples. Every metrizable space and, in general, every |.c.s. saK@h is aGs set, have the property
of the dual sequence. The spdeg((?) of the distributions on an open set&f have the property of the
dual sequence, because its dual is separable, and it is nozaide. D(2) also has the property of the
dual sequence. In general, every normal space of diswitsi{i3, 4.2, p. 319] has the property of the dual
sequence.

Theorem 3 If Q is a Lusin space and’ is a l.c.s with property of the dual sequence, then everyIBore
measurey : ¥ — X has a control measure.

PrRoOOFE With the notations of Theorem 2, I8t be the closed linear span of the rangeyoflf xx € Y*
verifiesz o y(Ch, ... n,,) = 0 foranyny, ..., ng, thenz*(G) = 0 fon every open sef, becausé is the
union of disjoint set&”,,, . ... Thereforeg+o~(A) = 0 for every Borel set4, because every Lusin space
is a Radon space [5, p. 122] and, 36, = 0. Then, the numerable se{C,, ... »,) is a total set iy and
there exists a sequene’} C X such that, ifz}(z) = 0 for everyn € N thenx = 0. Itis clear that, if

B is the range ofy, we can take the € B°. Then, since{z* o v(A)} is a bounded sequence for every
A € %, it follows from the theorem of Nikodym [1, 1.3] thdfz* o v|(£2) } is also bounded. Then

pA) =) 27"as 0n|(4) (A€X)

n

is a finite Borel measure such thagifA) = 0 thenz} o v(A) = 0 for everyn € N with v(A) € Y. From
here it follows thaty(A4) = 0.

LetV be an a.c.n. of 0 it and letgy, : X — X, be the canonical application. Then, applying the
theorem of Pettis [1, 1.2] tgy, o v the theorem follows immediately. B

In orden to study the theorem of Rybakov [1, 1X.2] we give tbkofwing

Definition 3 Al.c.s. X is said to have thproperty of the sequencé, for every bounded sequenée,, }
of not null elements oft, there exists an* € A* such that:*(z,) = 0 for everyn € N.

Proposition 3 Every normed spac& and, hence, every direct sum of normed spaces, has the proper
of the sequence. The same holds true for every (LB) spacevamg & c. s. such that every bounded
sequence ot is contained in a normed space &f

PROOF LetX be a normed space aiifl, = {«* : 2*(x) = 0}. SinceX™ is a Banach space and every
H,, # X*, itfollows from the theorem of Baire thf,, H,, # X* and, hence, there exists € X*\|J,, H»,
such thate* (x) # 0 for everyn € N.

Finally, it X is the direct sum of normed spaces it can be easily provedihiaas the property of
the sequence. (It is the topological product of an infinite family of Banach ses, thent’ has not the
property of the sequence. )l

Examples: 1. LetQ be alocally compact space afigh(K) the space of the scalar continuous functions
with support contianed in the compdgt C 2, endowed with the usual norm. Then we widig (Q2) (or
K (Q)) for the strict inductive limit of the spac&y(K).
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If Q is a countable union of compacts sets tligfn(?) is an (LB) space [3, 2.12, p.164] and it follows
from Proposition 3 tha€y,(§2) has the property of the sequence. We will give a direct prédhis fact
assuming tha® is ac-compact set. In that case, sirfeés a locally compact space there exists an increasing
sequence K,,} of compact subsets 6 such that every compact skt C ) is contained in one of them.
Then, every bounded sequerce, } C Coo(€2) is contained in a subspacgy(K) and, soLy(€2) has the
property of the sequence. Indeed, let us supposedhat J,, supp ¢, is not relatively compact. Then, for
everyn € N, there existg:,, € supp ¢, such thatp, (z) # 0. Let

= ankn (xn)|_151n7

then every compact sé&f C 2 has only a finite number of points, becauseX is contained in &, and,
thereforep € Cj,(2). Since|u(|¢k, |)| > n we get that the sequenée,, } is not bounded, a contradiction.

Let us now see that the result we just obtained remains valitbwt any restriction. Lefp,, } C Coo(€2)
be a bounded sequence. (&t be a relatively compact open neighborhood4of = supp ¢,, and lety,,
be a continuous function off,, that takes the value 1 aa,, and the value 0 on the border 6%,. Then
G, = {z € Gy, : ¢Yn(x) # 0} is ac-compact open neighborhood df, andG’ = | J,, G), is ac-compact
open neighborhood of = | J,, 4,,. SinceG’ is a locally compact space there exists a measw@ey,(G’)
such that

v(pn) #0 foreveryn € N. Q)

We are not done because the canonical applicafig(f2) — Coo(G’) need not be onto. LetK,} be
an increasing sequence of compact sets whose uni6fi.id et {c;} be a positive sequence such that
Yok CklV|(Kn \ Kn—1) <1 (Ko =0) and, for everyx = {a;} € {o andy € Cyo(G’) let us set

n(p) = Z s CrV (PXK K1)
k

Let H, = {a € s : u*(pn) = 0} . It follows from (1) that eveny,, # ¢, so the theorem of Baire
states that there exists anc /. \ J,, H, such thay:®(y,) # 0 for everyn € N. Sinceu® € Cg,(G")
is a finite measure, the Borel measure defined:py) = 1*(A N G’) solves the matter, since belong to
C§,(92) and it verifiesu(py,) # 0 for everyn € N.
2. Let Q2 C R™ be an open set arB(Q2) the set of the infinitely differentiable functions with coegt
supportK C Q, with its usual topology [3]. 1§ ¢, } is a bounded sequence of not null functiongxf?),
then their supports are contained in a fixed compackset 2. Letj : D(K) — Coo(K) be the natural
injection. SinceCyo(K) has the property of the sequence, there exists a measar€,(K) such that
Julpn) = p(jen) # 0 for everyn € N and so we get th&(2) has the property of the sequence.

In general, ifX’ has the property of the sequence drislan injective continuous linear application from
al.c.s.yYinto X, then) also has the property of the sequence.
3. Let D*(Q2) be the dual ofD(Q)), that is, the space of the distributions. We will prove tfst((2)
has not the property of the sequence. Lef} C Q be a sequence not contained in any compact set of
Q and letT,, = §,,. Then,{T,} is a bounded sequence of not null elemento6{2) and, for every
p € D*(Q2) C D*(Q) there exists an € N such thatl},(¢) = ¢(x,) = 0 and it follows thatD* (2) has
not the property of the sequence.
4. Let C(Q2) be the space of continuous functions endowed with the tgyad the uniform convergence
on the compact subsets of the locally compact spacEhen, using the fact that every measure C*(Q)
has compact support, we are going to prove ¢iéf)) has the property of the sequence.

First of all, to prove that every positive measure C*(€2) has compact support, let us take into account
that there exists a sequenf®,,} of compact subsets @t such thatu(Q \ U, K») = 0 and everyK,
is contained in the interiof7,,+1 of K,+1. Then, if the support of. is not compact, we can suppose,
taking subsequences it necessary, jhdt,,) < u(Gn+1) for everyn € N. So, for everyn € N there
exists a positive functio,, € C(Q such thatu(¢,) = 1 andsupp ¢, C Gp41 \ K,. It follows that

© =, ¢n € C(Q) a contradiction withu(p) = limy, x>, <, px) = o0.
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Now, if {¢,,} is a bounded sequence {C*(2),C(€2)) of not null measures, there exists a constant
M > 0 such thatu, (¢)] < M|l¢|« for every bounded functiop € C(2) and everyn € N. Hence,
lpn|(Q) < M andp =3, 27"|u,| is a finite Radon measure. MoreoverKitis the class of the compact
sets of(2, then the sets

B:{QOEC(Q): H(,OHK SMK, VKGK}

are fundamental system of bounded set§(61). So,
M = sup{|un(p)]: n€N, p € B} <0

and
sup{|pnl(p) : n €N, ¢ € B} < M.

Therefore,{|x,|} is also a bounded sequenced(C*(£2),C(?)) andp = > 27"|u,| € C*(2) and
K = supp p is a compact set.

Then, there exists a sequenigg, } in L (i), with f,, # 0, a.e. and such thap,(A) = [, fndpu for
every Borel setd C ). SinceL;(u) is a Banach space, it follows that there exists a bounded Boretion
g € Loo(p) with supp ¢ C K and, hencey € C**(2), and such thaty,,g) = [ gfndu # 0 for every
n € N. ThenC*(Q) has the property of the sequence.

Let us now prove that if2 is o-compact and non compact, thé2) has not the property of the
sequence. In the hypothesis there exists an increasingsegf/s,,} of compact subsets ¢t such that
every compact subset 6f is contained in &,,. Lety,, # 0 be a continuous with support in \ K,, and
w € C*(Q). Then, since the support gfis a compact sek C (2, there exists &,, O K and, therefore,
u(pr) = 0 for k > n, because the support gf; is disjoint with K. It follows that the sequencgp,, } is
bounded and (?) has not the property of sequence.

Moreover, ifQ is an infinite set endowed with the discreet topology, tiéft) = R has not the
property of the sequence.

5. Let H(Q2) be the space of the holomorphic functions on an opef2setC endowed with the topology
of the uniform convergence oven the compact subsefs dthen,H (2) has the property of the sequence.
Indeed, let{¢,,} be sequence of not null functions # (). Then, since the set of zeros of every

is countable, there exists a pointe (2 such thatp, (z) = 0 for everyn € N. On the other hand, if
j: H(Q) — C(Q) is the natural injection, theh (6,) € H*(R2) and (pn," (62)) = (j(en),0:) =
vn(2) # 0, which proves what we wanted.

6. Let S be the space of the functiogsinfinitely differentiable on such thdfl + |z|2)*07¢(x) equals 0

in infinite for everyk € N andp € N, and letS* be its dual of the temperate distributions. Then, sifice
is a reflexive and Fréchet space, the Proposition 4 stat¢s$thhas the property of the sequence. On the
other hand, sincé is a subspace &* and the injectiory : S — S* is continuous, it follows thaf also
has the property of the sequence.

Proposition 4 If X* is a Baire space forthg(X*, X') topology, then¥ has the property of the sequence.
Therefore, ifX* is a Fréchet space, theit' has the property of the sequence.

PROOF Let{z,} C X be a sequence of not null elements dfig= {z* € X* : z*(x,) = 0}. Then
H, C X*is closed for thes(X*, X) and 3(X*, X') topologies. Since¥ is a Baire space, we have that
X* #, Hy. If we now takez* € X*\ | J,, H,, it follows thatz*(z,) # 0forn e N. W

Theorem 4 In the conditions of Theorem 2, i is a l.c.s. with property of the sequence, there exists
x* € X* such thatu = |z* o 7| is a control measure of.

ProoF It suffices to consider that, in virtue of the previous déiim, there exista* € X™* such that
2* 0 Y(Chy....np) 7 0Wheny(Cy, .. n,) # 0andthen reason as in Theorem 2

.....
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Remark 1 It Q = N, ¥ is theo-algebra of the subsets 6f X = RY andJ,, is the corresponding Dirac’s
delta, then the measute= {0, }»en has the control measure= > 27 "|e} oy| = )" 276, butthere
exists noz* € X* such thafz* o v| is a control measure of. We notice thatt’ so chosen is a Fréchet
space, and also Montel and nuclear spadil.

Theorem 5 If X is a sequentially complete I.c.s. without the property ef$bquence, then there exists
a countably additive measure: ¥ — X such that for nong* € X* is the measuréz* o | a control
measure fory.

ProOOF According to the hypothesis, there exists a bounded segden } C X for which the property
of the sequence fails. Lét = N, 3 thes-algebra of the subsets 8fandy(A) = >, . , 27"z, for every

A € ¥ (v is well defined becaus¥ is sequentially complete ard:,, } is bounded). It can be easily proved
thaty : ¥ — X is a countably measure. Since the property fails{for}, for everyz* € X* there exists
n € Nsuchthatz*o~y|({n}) = 27"|z*(x,)| = 0. Sincey({n}) = 27 "x,, # 0, it follows that no measure
|z* o 4| can be a control measure for W

Remark 2 If Q = N, X the s-algebra of the subsets f, X is a |.c.s. with the property of the sequence
andy : ¥ — X is a measure. Then there exists € X* such thajz* o v| a control measure foy(see,
Theorem4). R

Definition 4 If X is theos-algebra of the Borel sets of a topological sp&candy : ¥ — X is a countably
additive measure with values in a |.cX, we say thaty is r-additiveif, for every family {G,}:c; of open
sets off) there exists a countably sétC [ such that, when! is a Borel subset df),.; G \ |, ; Gi then
v(A) =0.

Theorem 6 Theorem 3 is valid whe#’ is a l.c.s. with the property of the dual sequence &rid a subset
of a Lusin space and, in particular, whéhis a separable metric space or it is a metric space but theovect
mesurey is T-additive. Moreover, we can choose a control measure wighfohmy = > |z o | with
z € X*. If X has not the property of the sequence we can not assure tttereoésof a control measure
for v of the formu = |z* o | with z* € X*. Nevertheless, if every bounded sequenck i contained in

a Banach subspace, the existence of a control measure afrtine:f= |2* o | with 2* € X* follows as a
consequence of the theorem of Rybakov [1, IX.2, p. 168].

PrROOFE It suffices to prove that, ify is 7-additive and(2 is a metric space, thef is supported in a
separable space. Létbe the support of, i.e., the set of all the points € Q2 such that the restrictiof,
of v to every neighborhootl of w is not null. First of all, let us prove that every open neigftitamd) of
any pointw € F contains an open sét C 2 such thaty(G) # 0. Indeed, there exists Borel sdtC V
such thaty(A4) # 0 and anz* € X* which verities that* o v(A) # 0 and, for every > 0, there exists
an open setr such thatd C G C V and|z* o y(G) — 2* o y(A4)| < |z* o y(G \ A)| < e. It follows
immediately the existence of an open &ewvhich verifiesA C G C V andz* o v(G) # 0 andy(G) # 0.
Using ther-additivity of it follows that every family of disjoint balls with their césrs in points ofF' is
countable. Therefore, for everythere exists a sequeng®,,;. } . of balls with radiusl /n which covers?,
and, so,l" is separable. Moreover, theadditivity of v implies thaty is supported i, i.e., v(A) = 0 if
A C Q\ F, and the supporF is proper. B

Remark 3 Opposity to what happens, in general, in the scalar case txists Borel vector measures
defined on a space of fixed density bigger thignwhich are notr-additive. To prove this, it suffices to
consider the measure= {4, }.q of Proposition 1, endowing with metric o defined byo(z,y) = 1 if

If the density of the metric spade is of measure zero, for a countably measyre ¥ — X' to have
control measure it is necessary that is 7-additive. To see this, if there exists such control meagtite
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must ber-additive, because the density@fis of measure zero. Therefore{if7; };c; is a family of open
sets of(2, there exists a countable setC I such thapu(U;.; Gi \U,c; Gi) = 0. So, if Ais a Borel subset
of U,e; Gi \ U, ey Gi, thenu(A) = 0 andy(A) = 0 and, thereforey is T-additive.

If Q is a metric space whose density is of measure zerotaish metrizable space (or (LF)), it follows
from this result and Theorem 1 that every Borel measurex — X is r-additive.

Many of these results for metric spadesare obviously true whef is a topological space such that
there exists a metric spa€® so that(2 andQ)’ have the same Borel sets.

Theorem 6 can be extended in a different direction when thesorey is supported in a Lusin space
Qo C Q. This condition is not very restrictive becauseQits a Radon space of tygeC,,, } where/C,, is
the class of the compact metrizable set§ott is necessary that is supported in a Lusin subspace for that
~ to have a control measurel

2. Extension to polymeasures
We are going to see now that the preceding results can bededea polymeasures [2].
Definition 5 A countably additive polymeasure
N X XDy — X
is uniform in the variable i (or in%;) if the measures
V(AL X oo X Ajiq X Ajpr - X Ag)
are uniformly countably additive in the sels € X, j # .

Theorem 7 Lety: ¥; x ---3; — X be a countably additive polymeasure atich metrizable space, or
a space such that its origin is@s. Then, ify is uniform inX;, there exists a countably additive measure
w1 2 X — [0, 1] such that

li A Ay ... A7) =0
Hl(g?—’O’Y( s 412, ) d)

uniformly in(As, ..., Ag) € (Za x -+ xXy). B

Theorem 8 Lety: ¥; x ---X4 — X be polymeasure where thealgebraX; is the class of the Borel
sets of a Lusin spad®;. Then, ify is uniform in3; and X’ is a 1.c.s. with property of the dual sequence,
there exists a countably additive measuge: ¥, — [0, 1] such that

li A Ay ... Ay =0
Hl(g?—’O’Y( s 412, ) d)

uniformly in(As, ..., Ag) € (32 x -+ x Xy).

PrROOFE First of all, same as in Theorem 3 we can prove that the cllisear span of the rangB of v is
the closed linear span of a bounded sequence. So, &ithe property of the dual sequence, there exists a
sequence’, € BY such thatr}, o v(A,..., Ag) = 0 for everyn € Nimpliesy(A4, ..., Aq) = 0.

On the other hand, sinegis uniformly countably additive ift,, every application

Y123A— (x)09(A Agy ... Ag)) € loo(Ba X -+ X By)
is a countably additive and, therefore, sincec B, the measure

12A— {(Q_nIZO’V(A,AQ,...,Ad)) :neN, A1621VZ}
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is also countably additive. Corollary 3 [1, 1.5] implies ndle existence of a countably additive measure
w1 2 X1 — [0,1] such thatu; (A) = 0 impliesz? o v(A, A, ..., Ay) = 0 for everyn € N and, hence,
v(A, Az, ..., Ag) = 0.

LetV be an absolutely convex neighborhood of Gdrandg,, the canonical applicatioA’ — X),. The
measure

G(A) = (gyov(A, Az, ..., Ag), (Ag,...,Ag) EXax---xXy (A€
is countably additive for the norm such that
IG(A)|| = sup {llgy 0 ¥(A, Az,..., Ad)llv + Ai € 5 Vi}.
So, it follows easily from the theorem of Pettis [1, 1.2] that

li A A, .. Ag) =0
m(ﬁ?—»ﬂ( 2 d)

uniformlyin (As, ..., Ag) € (B2 x - x Xy). N

Remark 4 Using this theorem, the first part of Theorem 6 can be gerzexilie polymeasures. Also, the
control measurg, : ¥; — [0, 1] can be taken so that

pr(A) = Jap oyl (A, Ay, A), (A€ D)

where|z}, o[, is the variation of the measure— =z oy(A4, Ay, ..., A})andA} € S fork = 1,...,d. N
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