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Unitary sequences and classes of barrelledness

M. Lopez Pellicer and S. Moll

Abstract. Itis well known that some dense subspaces of a barrellecsmadd be not barrelled. Here
we prove that dense subspace$.0{(2, X) are barrelled (unordered Baire-like prbarrelled) spaces if
they have “enough” subspaces with the considered barnggsdproperty and if the normed spacénas
this barrelledness property.

These dense subspaces are used in measure theory anceitetiaess is related with some sequences
of unitary vectors.

Sucesiones unitarias y clases de tonelaci  6n

Resumen. Es bien conocido que existen espacios tonelados con suligsgiensos no tonelados.
Aqui se prueba que los subespacios densds.d€, X) son espacios tonelados (unordered Baire-like
o p—tonelados) si tienen “suficientes” subespacios con la pdaul de tonelacion considerada vy si el
espacio normad& tiene esa propiedad de tonelacion.

Estos subespacios densos se utilizan en teoria de la medidalase de tonelacion esta relacionada
con ciertas sucesiones de vectores unitarios.

1. Preliminaries

Along this paper2 will denote a non void setX a normed space over the field of real or com-
plex numbers/.. (2, X) the linear space oveK of all those functionsf : Q@ — X such that the
set{| f(w)| : w € 2} is bounded, equipped with the supremum ndffl ., = sup {||f(w)| : w € 2},
bes(Q, X) the linear subspace &f, (€2, X) of all those functiong’ € 1.,(€2, X) countably supported and
co(£2, X) the linear subspace &és(£2, X) of all those functiong : Q@ — X such that for each > 0 the
set{w € Q : || f(w)]| > €} is finite or empty.

Let us recall that a (Hausdorff) locally convex spdcés barrelled if each barrel (i.e. each absorbing,
closed and absolutely convex set)hnis a neighborhood of the origin (see [14, Definition 4.1.1]).

A p—netin a vector spac¥ (see [1]) is a familyw ={E, : t € T,} of linear subspaces af, with
T, = Us_; N*, suchthat” = U, .y En, En C Eng1, Bt = U, ey Eton @NdE; , C By g1, fort € Ty
andn € N.

A (Hausdorff) locally convex spack is barrelled of clasp (p—barrelled for short) if given a—net
W ={E, :t € T,} thereis & € N” such thatF is barrelled and dense #. The barrelled spaces of class
1 were introduced by Valdivia in [23] with the name suprablerespaces, also calledH)-spaces in [15]
and [20].
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Other definitions of barrelled spaces related to the Bargielrhaus theorem or with the closed graph
theorem may be found in [6, Theorems 1.1.4, 1.1.8, 3.2.2 &hd]3

It has been discovered that some of the classical barrelterdibnal spaces are barrelled spaces of class
p. For instance, Dieudonnéf( [25, p. 133]) proved tha° (i.e. the linear subspace &f, formed by the
sequences taking finitely many different values) is bagcellThe barrelledness ¢f was also pointed out
independently by Saxon [19]. 4 is a ring of subsets df? andi3°(A) is the linear hull with coefficients
in K of the characteristic function¥s, A € A, endowed with the supremum norm, Schachermayer [21]
noticed that/§°(.A) is barrelled if and only if its duaba(.A), the vector space ovéf of the bounded
finitely additive scalar measures defined.drequipped with the supremum norm, verifies the Nikodym
boundedness theorem ([2, p. 80]).

If Ais ac-algebra Valdivia noticed thd§°(.A) is suprabarrelled [23] and Ferrando and Lopez Pellicer
found thatg°(.A) is p— barrelled [4]. Some other strong barrelledness propesfi&s (.A) and applications
may be found in [5], [8], [9], [11], [16] and [17].

Itwas proved in [13] that if2 is countable infinite them, (2, X) is barrelled if and only ifX is barrelled.
For an infinite sef), it has been established in [7] tha(2, X) is barrelled, ultrabornological or unordered
Baire-like ( [22]) if and only if X is barrelled, ultrabornological or unordered Baire-likespectively. In
[12] it has been proved thag (2, X) is 1— barrelled if and only ifX is 1— barrelled.

The aim of this paper is to prove tha{(Q2, X), bes(Q2, X)) and a wide class of subspaceda$(Q2, X)
are (barrelledp—barrelled if and only ifX is (barrelled—barrelled.

In what followssupp(f) means the support df, i.e. supp(f) = {x € Q: f(x) # 0}. We are going to
use the classical notation given, for instance, in [2] ari.[Zhe linear hull of a subset of a linear space
E will be denoted by A).

If E is a linear subspace 6fs(2, X) we will denote bySg, the family of all sequenceff,, : n € N}
such thatf,, € E, | f.||,, = 1 for eachn = 1,2,... and whose support verify one of the following
conditions:

a) supp(fn) N supp(fn) = Oif 0 £ m

b) there is a countable séty, wo, . . ., Wy, Wpt1, - ..} C Q such thatupp(f,) C {wnt+1, Wnt2,- -},
forn=1,2,...

If f € Eandl’ C QthenPrf is the element obes(2, X) such thaf Prf) (z) = f(x) if z € T and
(Prf) (z) = 0whenz ¢ I'. We will defineE(T") = {f € E : supp(f) C T'} and, in particulabes(T', X)
={f € bes(Q, X) : supp(f) C T}

We will denote byB the family of linear subspaces bfs(Q2, X) such thatifE € B andA Cc T C Q,
beingA finite andI’ countable, thehcs(A, X) C E(I') = Pr (E). ThenE = E(T') + E(Q\I).

2. Barrelledness

In the family B we are going to consider the famil§, such that the locally convex vector spa€e= B
belongs td3, if given a sequencgf,, : n € N} € Sg there exists a barrelled spadé 7) suchthat” C E,
{fn : n € N} is bounded in(F, 7) andr is a locally convex topology finer than the topology induced'i
by the topology ofF.

Lemmal If E € ByandQ is abarrel in E there exists a finite seX (possibly empty) such thét absorbs
the unit ball of E(Q\ A).

PROOF We assert that there is a countable Aet= {w;,ws, ...} such that) absorbs the closed unit
ball of E(Q\ A). In fact, if this were not true, there would befa € E with || f,]|, = 1 andf; ¢ Q.
By the hypotesis and the countability 8f; = supp(f;1) we deduce the existence ¢f € F(Q\A;)
with || f2]| ., = 1 and fo ¢ 2Q). Once again, as the s&, = supp(f2) is countable there exist €
E(O\ {A1 U Az} with [|fs], = 1 andfs ¢ 3Q.

By induction we would obtain a sequenéé, : n € N} € Sg. Then, by hypotesis, there exists a
barrelled spacéF, 7) being ' C E andr a locally convex topology finer than the topology inducedin
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by the topology ofF, such thaf f,, : n € N} is bounded in(F, 7) . Therefor&) N F'is a0— neighborhood
in (F,7) and then, by boundedness, there existssach that{f,, : n € N} C pQ. From this relation
follows the contradictiorf, € pQ.

Therefore, there exists a countable &et= {wq, ws, ..., w, ...} such thaty) absorbs the closed unit
ball of E(Q\A).

Now we are going to prove that there exists a natural numbech that) absorbs the closed unit ball
of E({wi+1,wi+2, .. })

If this were not true, there would exist a sequekgg : n € N} with f,, € E({wni1, Wni2,...}),
lfnll = 1andf, ¢ nQ for eachn = 1,2, ... But the sequencgf,, : n € N} € Sg and then, as in the
preceding case, we would obtaiyae N such that{ f,, : n € N} C ¢Q. This last inclusion contains the
contradictionf, € ¢@, which proves that there exists a natural numbsuch that?) absorbs the closed
unit ball OfE({er'Jrl, Wit2, .- })

Finally, we have obtained thatX = {w, ws, ... w;} then@ absorbs the closed unit ball B\ A) =
E(Q\{wl,wg,...})—i—E({le,wHQ,...}) |

Proposition 1  Suppose thall € 5y. ThenE is barrelled if and only ifX is barrelled.

ProoOE If @) is a barrel inE then by Lemma 1, there exists a finite getsuch that) absorbs the unit
ball of E(Q2\ A). The barrelQ also absorbs the unit ball of the barrelled sp&ted) = X2 (see [6,
Proposition 1.1.13]). From the isomorphism betwderand E(Q\A) x E(A) it follows that @ is a
neighborhood of zero .

Conversely, ifE is barrelled ang € €2 then from the isometry betweefiandE({p}) = E/E(O\{p})
it follows from [6, Proposition 1.1.9] thaX is barrelled. B

Alocally convex spacé is unordered Baire-like ([22]) if given it a countable coveringA,,, n € N}
of closed absolutely convex sushsetdhtthere exists aml,, which is neighbourhood of zero iA.

In the family B we are going to consider the famiy,;, such that the locally convex vector spdce: 5
belongs toB,,;, if given a sequencéf,, : n € N} € Sg there exists an unordered Baire-like spéger)
such thatF C E, {f, : n € N} is bounded in(F, 7), andr is a locally convex topology finer than the
topology induced irf’ by the topology off.

Lemma?2 LetV = {V, : n € N} be a sequence of absolutely convex and closed subsgtsadh that
E = U,en(V,,). Suppose thakb' € B,,;.

Then there exists a subfamily = {W,, : n € N} of V and a sequenc@A,, : n € N} of finite subsets
of 2 such that, for every € N, E(Q — A,,) C (W,,) and

E= Un€N<Wn>
PROOF First we are going to prove that there existsc N and a countable subsat,, such that
EQ—An) C (V).

In fact, if this were not true we would find a sequergg : n € N} of unitary vectors inE({2) such
that

fi & (W)

and
fn € EQ—-UA) —(V),  n=23,...

whereA; = supp(f;) and| f; ||= 1 for eachi € N.

Then, by hypothesis, there exists an unordered Baire{libe& F, 7) such thatr" C E, {f,, : n € N}is
bounded ir(F, 7) andr is a locally convex topology finer than the topology induaed'iby the topology of
E. Therefore, there exists1g,, that contains a nieghbourhood of zerd i 7), implying that the bounded
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set{f, : n € N} is contained in(V;,,). The inclusion{f,, : n € N} C (V,,) contains the contradiction
fm € (Vin), proving our first observation.

Therefore, from this property and [22, Theorem 4.1] we haet there exists a subfamily = {W,, :
n € N} of V and a sequencg),, : n € N} of countable subsets 6f such thatF(Q2 — A,,) C (W,,), for
eachn € N, andE = (J,, .y (Wa)-

From this first property it follows that it is enough to proetemma for2 = N.

In this case we are going to prove that there exists somealatumbern such that

E(N={1,2,....m}) C (V).

If this property were not true we would find a sequefi¢g : n € N} of unitary vectors inE(N) such
that

fn € E(N={1,2,...,n}) — (V)

and we would have that the sequergg : » € N} C Sg. By hypothesis, there exists an unordered
Baire-like spacgF, 7) such thatF" C E, {f, : n € N} is bounded in(F, ) andr is a locally convex
topology finer than the topology induced inby the topology ofE. Exactly as in the preceding case we
would obtain the contradictiofi, € (V,,), proving the second property we are looking for.

These two properties imply that there exists= N and a finite subsed,,, such that

EQ—Ap) C (Vi)

and, then, from [22, Theorem 4.1] it follows the lemmall

Proposition 2 Suppose thatl € B,,. ThenFE is unordered Baire-like if and only iX is unordered
Baire-like.

PrRoOOF If E is unordered Baire-like ang € (2, then from the isometry betweek and E({p}) =
E/E(Q — {p}) it follows from [6, Proposition 1.3.6] thaX is unordered Baire-lke.

Conversely, ifX is unordered Baire-like anfl’ were not unordered Baire-like, then there exists a se-
quence{V,, : n € N} of absolutely convex and closed subset&afuch that

E = J{Va,n e N}

and each,, is not a neighbourhood of zero in the barrelled spacésee Proposition 1). Then, by bar-
relledness, we have that
E Z (Vy,), n € N.

From these relations and Lemma 2 we deduce that there exmibsequencéW,, : n € N} of
{V, : n € N} and a sequencg),, : n € N} of finite subsets of2 such that

E= U<Wn>

neN
E g (W,), neN
E(Q—-A,) c (W), neN

It is clear that we have for eaghe N that
E(An) & (Wh)
and then there exists for eagtsome),, € A,, such that

E({on}) £ (Wn).
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We consider the equivalence relatiGhin N defined by the equality,, = 6, (i.e. mRn if 0., = 6,).
This relation defines a partitiof¥,,, n € P} in N, whereP is a finite or countable subset it

Let {w, : n € P} be the finite or countable subset@fuch thatv,, = J,, beings an arbitrary element
of F,,. We may rewrite the relation8({d,,}) ¢ (W,), n € N, in the form:

E({w,}) ¢ (W,), mekF, neP.

We have that the spac€ is unordered Baire-like and th&t({w,, }) and X are isometric. Therefore

E({wn}) ¢ U (Wp), neP.

meF,

These non inclusions enables us to chofises E({wn}) — U, cr, (W), || fu llc= 1, for each
n € P. Then:
{fnnePy & (Wy), VmeN

and the hypothesi®& € B,,;, implies the existence of an unordered Baire-like spdce), beingF' C E,
{fn : n € P} boundedin(F, 7), and the topology is finer than the topology induced #in F'. Therefore,
there exists som#/,,, containing a neighbourhood of zero(if, 7). This implies the contradiction

{fn:neP}cC (W,)

which proves the proposition. B

3. Barrelledness of class p

Remember that a (Hausdorff) locally convex spdtés barrelled of clas® (or p—barrelled) if given a
p—netW ={E, : t € T, } there is & € NP such thatE; is barrelled and dense if1. It is not difficult to
see that whell is p—barrelled there are marty,, ¢t € NP, which are barrelled and densefih and the next
definitions help us in obtaining the corresponding proof.

Definition 1 Let A be a subset of the sit of natural numbers. We will say that is a set of class (of
strict classl) if A is infinite (if there exists1; € Nsuchthatd = {n € N:n > n;}).

A subsetA of N? is a set of clasg (of strict clasy) if A = (J,cp, {b} x C, beingB; a set of class
p — 1 (of strict clasgp — 1) and such that eadh, a set of clasg (of strict classl).

It is obvious that a subset of classp (of strict classp) may be written asA = {J,.p, {b} x Cb,
being By, a set of clas% (of strict classk) and each’}, a set of clas® — k (of strict classp — k), with
1<k<p-1.

Also an easy induction give us the next result.

Proposition 3 Let A and B be two sets diN?, then:

1. If Ais a set of strict clasp and B is a set of strict clasg (of classp), thenA N B is of strict clasp
(of classp).

2. A contains a set of strict clagsif and only ifN? \ A does not contain a set of clags

3. If Bisaset of clasg there exists a bijectiop from B ontoNP such thaty preserves the lexicographic
order.

The last statement implies thatW= {E; : ¢t € T,} is ap-net in thep—barrelled spac& andB is a
set of clas® then there is @ € B such thatE; is barrelled and dense ifi, because the new numeration
of {E; : t € B} with the help ofy gives a newp—net in E. From this observation the next proposition
follows easily.
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Proposition 4 A (Hausdorff) locally convex space is barrelled of clagsf and only if given ap-net
W= {E, : t € T, } there exists a sed,, of strict classp such thatift € A, thenE; is barrelled and dense
in E.

PROOF LetA = {t € N? : E, is barrelled and dense ifi}. From the preceding observation it follows
that B = NP \ A cannot contain a set of clags Then Proposition 3 statemeitimplies thatA contains a
set of strict clasp. W

If ¢t = (t1,t2,...,%i,...t,) € T, and E; is barrelled and dense if then, obviously,E:,,. +, iS
barrelled and dense ifi, for 1 <i < p — 1 ([6, Proposition 1.1.10]).

Recall that a locally convex spadeis Baire-like if given an increasing coveridgl,, : n € N} of E,
being each,, a closed absolutely convex subsetifthere exists anl,, which is a neighborhood of zero
([18)]). It is obvious that suprabarrelled spaces are Bliire-that Baire-like spaces are barrelled, that if
{E, : n € N} is alinear increasing covering of the Baire-like spatthere exists aifr,, which is dense in
E and that ifF' is barrelled and dense in the Baire sp&tthenF is Baire-like ([6, Propositions 3.1.2 and
3.2.3]). Therefore a locally convex (Hausdorff) spdces p—barrelled if given g-netW= {E, : t € T, }
in F it is verified one of the following conditions:

1. There exist$ € NP such thatF; is barrelled and dense if.
2. There exist$ € NP such thatF, is Baire-like.

3. Thereis asefl C N? of strict clasgp such that for eache A we have tha¥, is barrelled and dense
in E.

4. Thereis a sefl C NP of strict clasgp such that for each € A we have thaf, is Baire-like.
In the two last conditions we may omit the word strict.

Now let us suppose thay) = {F; :t € T,,} is ap-netinE. LetT, ,,.., be a barrel inF,, ., n,,
E
anng...np - Tnlng.,.np y anng...np - <Vn1n2...np>n Snlng...np - ﬂf::np anng...np,lmi anng...np,l -

UZZI S"lnz---ﬂp' Sﬂlnz»»»ﬂp—l = m:’?:'ﬂpfl Z”1"2---”p72m’ T ’an = UZOZZI 8”1"2’ S"I = mfnozm Zm.-

It is obvious that ifA is a set of strict clasp and ' C Sy, n,...n, for each(niny...n,) € A
then we have that" C Sy, F' C Smymss -0 F' C Siymy..my,—y @NAF C Spymo..omy,—ym, When
(mims...mp) € A.

Lemma3 LetW = {F;:tc T,} be ap-netinE and letT),,,,. .., be a barrel inF,, .. .,. Suppose
that given a sequencf, : p € N} € Sg there exists a setl of strict classp such that{f, : p € N} C
Snins..n, fOreach(ni, na, ..., n,) € A. Then there exists a countable ge{possibly empty) and a sét
of strict classp such thatE! (2 \ A) C Sy, n,...n, foreach(ni, no, ..., n,) € B.

PROOFE We are going to prove the lemma by decreasing inductionst Kie will see that there is a
countable sef\ (possibly empty) and a natural numbarsuch that (2 \ A) C S,,,.

In fact, if this were not true then we may finfl € E, with ||fi||, = 1 and f; ¢ S;. The set
Ay = supp(f1) is countable and fron (2 \ A1) ¢ S, we deduce the existence offa € E (Q2\ Aq)
with [|f2]| . = 1 and fo ¢ So. Then putA; = supp (f2) and fromE (2 \ (A1 UA3)) ¢ S3 we may
suppose that there exisfs € E (2\ (A1 UAz)) with ||fs|| ., = 1 and f3 ¢ Ss. Continuing in this
way we determine by induction a unitary sequefi¢g : n € N} in E and a pairwise disjoint sequence
{A, : n € N} of countable subsets & such thatA,, = supp(fy), [|fullo = 1 andf, ¢ S, , for
n=12,...

The sequencédf, : ¢ € N} € Sg. By hypothesis there exists a sdtof strict classp such that
{f¢:q €N} C Suiny..n,, for each(ni, na,...,n,) € A. We also have thaff,: g€ N} C S, if
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(n1,n9,...,n,) € A. From this inclusion follows the contradictiofy, € S,,, which proves our asser-
tion.

Continuing with the induction let us suppose that theretsxassetA;,_; of strict classh — 1 and a
countable sef\ such thattl (2 \ A) C Sy,ny...n,,_, fOreach(ny,ne,...,np—1) € Ap_1. Let A4, ; and

A;;_l be a partition ofd;,_; such that:

° A/hf1 is formed by the elements= (nq,ns,ns,...,n,_1) belonging toA;, _; for which we could
determine a countable s&f, of Q2 and a natural numben such thatZ (2 \ {A U Ap}) C Sning..np_ym-

e Ay = Ay \A, . If (n1,n2,m3,...,n,_1) € A, _,, A" is a countable subset 6fandm € N
we have thafy (Q \ {A U A}) Z Sning..np_1m-

If A;_, contains a seB of strict classh — 1 then we immediately obtain the next step of the inductive
process. In fact, i = Use s Ap we have that for every € B there exists a sef, of strict classl
such that® (Q \ {A U A'}) C Sning..nn_iny, fOrevery(ny,na,...,np—1,1m4) € Upyep {0} x I = Ap,

being obvious thatl;, is a set of strict clask.
If A, _, does not contain a set of strict cldss- 1 thenA, _, contains a seB;,_; of classh — 1 such

that for each{ni,no,...,np—1,nn) € Br—1 x N and each countable subgst of ) we have that

E (Q\ {AuA”}) Z Soinaen 1o (1)

Itis obvious thatB;,_; x N is a set of class, whose elements can be enumerated in the following way
{(n1(3),n2(@),...,np_1(1),np(i)) : 1 =1,2,3,...}.

From (1) we deduce tha? (Q\ A) € Sy, (1),n.(1)
E(Q\A),with[|g1]| oo =1 andgy & Sy, (1),n5(1),....n,,(1)-

If A} = supp(g1) we have by (1) tha (Q \ {A U A;}) 7 Spy(2)ma(2),....nn(2)- This relation

nn(1) Which enables us to determing <

.

indicates the existence gf € £ (Q\ {A U A;}) with [|g2|| . = 1 andgs & Sy, (2).ns(2),....00(2)-

Now, if A, = supp(g2), we also have by (1) thaf (2\ {A UATUAL ) ¢ Sy, 9)ms(9),.m9):
Therefore, and after an obvious induction, we could obtaeguencegy; : i € N} of unitary vectors
in £ with pairwise disjoint support&; = supp(g;), i = 1,2,3,..., such thay; ¢ S, (i).n.(),....nn () »
i=1,2,3,...
The sequencéy; : i € N} € Sg and therefore there exists a §&0f strict clasg such thafg; : i € N} C
Snins..n, O (n1,n2,...,nh, Nhy1,...,np) € C. By Proposition 3 statementthere exists an indek
such that{g; : i € N} C Sm(k),ng(k),...,nh(k)-
This relation contains the contradictign € Sy, (k),ns(k),....n, (k) that proves this lemma.l

Lemma4 LetW = {F;:t € T,} be ap-netin the (Hausdorff) locally convex spateand letT), ,,,...n,
be a barrel inF},, ,..n,. If F'is ap-barrelled subspace af then there exists a subsétof strict classp
such thatF’ C Sy, n,...n, Wheneve(ning ... n,) € A.

PROOF Since{F' N F, :t € T,}isap-netinF, thereis a setl of strict clas® such thatifinins ... n,) €

AthenF N F,, n,..n, is barrelled and dense ifi. By density,F' N Tmnz,,,%F is a neighborhood of zero
in F. ThereforeF" C Z,,n,...n, forevery(niny...n,) € A, which implies thatt" C S, ,...., Whenever
(ning...np) € A. N

Lemma5 LetW = {F;:t e T,} be ap-netin the (Hausdorff) locally convex spaggletT,,, ,,...., be
a barrel in Fy,, ,...n,, I' @ subspace of andr a locally convex topology i finer than the induced by
E. If (F,7) is p-barrelled then there exists a sdt of strict classp such thatl" C S, n,...., Wwhenever
(ning...np) € A.
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PROOF  Since(F, 7) isp-barrelledand F N F; : t € T, } is ap-netinF, there is a se# of strict clasgp
suchthatif(niny ...n,) € AthenF N E, ,,. .n, is barrelled and dense {iF, 7). HenceF N Ty, ..,
is a neigbourhood of zero if' N F,,,,..n, €ndowed with the topology induced byand, by density,

Fn Tnlnz,,,np(F"T) is a neighborhood of zero ifF, 7). ¢FromF N Tnlnz,,,np(F"T) C Tmnz,,,an it fol-
lows that ' C Z,,p,...n, fOr every (niny...n,) € A, which implies thatF" C S, p,...n, Whenever
(ning...np) € A. N

Now, in the family5 we are going to consider the subfamBly such that® € B belongs ta3,, if given
the sequencéf,, : n € N} € Sg there exists a—barrelled spacéF, 7) suchthaff, :ne N} C FC E
andr is a locally convex topology finer than the topology induaed@’iby the topology ofF.

Lemma6 LetW = {F;:t e T,} beap-netinE and letT,,,,,..,, be abarrelinF, ,, .. If E € B,
and X is ap—barrelled space then there exists a seof strict classp such thatll = Sy, ,...n, When
(n1,n9,...,np) € A.

PROOF As E € B, Lemma 5 guaranties that we may apply Lemma 3. Therefore itasigh to prove
this lemma wherf is a countable set. Therefore we are going to supposéithatN and we will obtain
the proof by decreasing induction.

Now we are going to prove that there exists a natural numbesuch thate? = S,,,. In first place,
we will find a natural number such thatE'({i + 1,7 + 2,...}) C S;. In fact if this were not possible we
would determine a sequené¢; : i € N} of unitary vectorssuchthat € E({i +1,i+2,...})\ S;, for
i=1,2,...

The relation{ f; : i € N} € Sg, E € B, and Lemma 5 implies that there exists a dedf strict class
psuchthat{f; : i € N} € Sy n,..n, When(ny,no,...,n,) € A. Therefore if(ni, no,...,n,) € Awe
have thaf{ f; : i € N} € S,,, implying the contradictiorf,,, € S,,.

This enables us to suppose that there exists a natural numsbeh thatf({i + 1,i + 2,...}) C S;.
LetA = {1,2,...,i}.

Since the spac# (A) is isometric toX 2 endowed with thé,, norm, we have thak ({1,2,...,i})is
p-barrelled (see [6, Proposition 2.3]). Hence, there is a3sef strict classp such thatX® ¢ Snins..np
when(ni,na, ..., n,) € B (Lemmad4). Then for eachn, ms, ..., m,) € Bwe have thalk® C S,,,,. If
ny > max(i,mi)thenE = E(N) =E({1,2,...,i})+E({i+1,i+2,...}) CS;+Sm; C Sn,+Sn, C
Sn,

Let us suppose that in tHé — 1)-step of the inductive process we have determined aget of class
h—1suchthat (N) = Sy, n,...n,_, Whenevekny, na,...,np_1) € Ap_1. Letb = (n1,n2,...,np_1) €
Ap_1. The setsSy, n,. np..n;..n. Withn, € N h < i < s < pgenerate in a natural way the- (h—1)-net
formed by the sets!, . withn; € Nforh <i < s <p, given by

S, = Snﬂlz»»»nh

ninz...Nnp

1mn2..Mp...MG;... M

and
ns’

!
Snlng,.,nh...ni...ns,lns - Sn1n2»~nh---ni---ns—lns ning...NL...NG...MNg_1

withn; e Nh <i<s<pandh <s—1.
In S’ consider the barref” = Tonins..n,

ninz...Np ninz...Np

E®) N szlm...np' beingT),, n,...n, the barrel

o L B(N) ——E(N)
giveninFy, n,. n, (C Spiny.n, € Snins..n,). SINCET), = Thing..m,

nina..np , applying the first
step of the inductive process to the- (h — 1)-net

{Shmmmnmim. i ENYR <i<s<p}

we get a sef}, of classl such thattl (N) = Sy, n,...n,,_1n, fOr €achn, € I,. The induction finishes with
the observation tha\tjbeA’H {b} x I is a setA;, of strict classh and thatEl (N) = Sp,n,...n),_1n, When

(n1,ne,...,ny) € Ay. This induction proves the lemma. l
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Theorem 1 Let(2 be a non void set and suppose ti#at B,. The locally convex spadg is p-barrelled
if and only if X is p-barrelled.

PROOF Forw € Q we have thaf’ and the producE (\ {w}) x E ({w}) with the supremum norm are
isometric. Therefore, the spac&s{w}), andE E(Q\ {w}) are isometric. Hence iF is p-barrelled,
thenX (isometric toE ({w})) is p-barrelled according to [6, Proposition 3.2.12].

Conversely, ifX is p-barrelled we are going to show by induction tliats p-barrelled.

Now we prove that is suprabarrelleditbarrelled). We know thak' is Baire-like (see Proposition 1
and [6, Proposition 1.2.1]). Therefore{if,, : n € N} is al-netin E there is an such thatF,, is dense
in E for m > n. If E were not suprabarrelled we would find fra 1-net{F;, : n € N} such that each
F,, is dense and non barrelled. L&t be a barrel inF;,, which is not neighborhood of zero if,. Set
Vv, = T_nE andsS, =,,>, (Va). According to Lemma 6, there is son¥¢ = E, henceF = (V,,) and
the barrelledness df ( Proposition 1) yields thd,, is a neighborhood of zero i&. ThenT,, = V,, N F},
is a neighborhood of zero iR,,, a contradiction that enables us to establish that thestseat’,, which is
barrelled.

Assuming tha¥ is (p—1)-barrelledp > 2, and thaf F; : ¢ € T, } is ap-netinE, then we can suppose
that there is a sed,,_; of class(p — 1) such thatF; is barrelled and dense fifort € A,_1. If t € Ap_1
thenF; is Baire-like ([6, Proposition 1.2.1]), hence there is a4gbf classp such thatf,,, is dense in&
for (¢,n,) € A,. Consequently, iZ were notp-barrelled we may find ga—net{Ft it e T;} such that each
F;, fort € NP, is not barrelled and densein LetT; be a barrel inF; fort € N?, which is not neighborhood
of zero inF;, for t € NP. According to Lemma 6, there is @, 7o, ..., n,) such thatS,, ,,. . n, = E

and then, by barrelledness (Proposition4),,,...n, 1n, = Tnins...n,_1n, 1S @ neighborhood of zero in
Snins..ny_1n,- This implies the contradiction that,, n,...n, 17, = Vaina..np_1n, N Fring..ng_1n, 1S @
zero neighborhood i, ,...n,_,n,- HENCEE is p-barrelled. W

If we apply Lemma 6 wheff’,, ,.,...n, = Fr,n,...n, We obtain the following property.

LetW = {F; : t € T,} be ap—netinE. If E € B, andX is ap—Dbarrelled space, then there exists a
set A of strict clasgp such thatF; is dense inE whent € A.

This property simplifies the second part of the proof of Teeot. In fact, if X is p—barrelled and®
were notp—barrelled we may find a—net{F; : ¢t € T, } such thatF} is not barrelled and dense #j, for
eacht € NP. We obtain the same contradiction as in the end of the proohebrem 1.

4. Notes

WhenE is ¢y(£2, X) orbes(€2, X) and{ f,, : n € N} is a sequence of unitary vectors with disjoint supports,
it is easy to prove tha{tzz":1 anfnilan] <1, n=1,2,...}is a Banach disk.

If {f.:n €N} is a sequence of unitary vectors Bfand there is a countable sgi, wo,...} C
Q, such thatsupp(f,) C {wny1, Wnt2, ...} thenitis obvious thafd > | an fr i > oo |an]| < 1}isa
Banach disk.

Thereforecy (2, X) andbes (€2, X) arep—barrelled if and only ifX is p—barrelled.
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