

Unitary sequences and classes of barrelledness

M. López Pellicer and S. Moll

Abstract. It is well known that some dense subspaces of a barrelled space could be not barrelled. Here we prove that dense subspaces of $l_{\infty}(\Omega, X)$ are barrelled (unordered Baire-like or *p*-barrelled) spaces if they have "enough" subspaces with the considered barrelledness property and if the normed space X has this barrelledness property.

These dense subspaces are used in measure theory and its barrelledness is related with some sequences of unitary vectors.

Sucesiones unitarias y clases de tonelación

Resumen. Es bien conocido que existen espacios tonelados con subespacios densos no tonelados. Aquí se prueba que los subespacios densos de $l_{\infty}(\Omega, X)$ son espacios tonelados (unordered Baire-like o p-tonelados) si tienen "suficientes" subespacios con la propiedad de tonelación considerada y si el espacio normado X tiene esa propiedad de tonelación.

Estos subespacios densos se utilizan en teoría de la medida y su clase de tonelación está relacionada con ciertas sucesiones de vectores unitarios.

1. Preliminaries

Along this paper Ω will denote a non void set, X a normed space over the field \mathbb{K} of real or complex numbers, $l_{\infty}(\Omega, X)$ the linear space over \mathbb{K} of all those functions $f : \Omega \longrightarrow X$ such that the set $\{\|f(\omega)\| : \omega \in \Omega\}$ is bounded, equipped with the supremum norm $\|f\|_{\infty} = \sup\{\|f(\omega)\| : \omega \in \Omega\}$, $bcs(\Omega, X)$ the linear subspace of $l_{\infty}(\Omega, X)$ of all those functions $f \in l_{\infty}(\Omega, X)$ countably supported and $c_0(\Omega, X)$ the linear subspace of $bcs(\Omega, X)$ of all those functions $f : \Omega \longrightarrow X$ such that for each $\varepsilon > 0$ the set $\{\omega \in \Omega : \|f(\omega)\| > \varepsilon\}$ is finite or empty.

Let us recall that a (Hausdorff) locally convex space E is barrelled if each barrel (i.e. each absorbing, closed and absolutely convex set) in E is a neighborhood of the origin (see [14, Definition 4.1.1]).

A *p*-net in a vector space *Y* (see [1]) is a family $\mathcal{W} = \{E_t : t \in T_p\}$ of linear subspaces of *Y*, with $\mathbb{T}_p = \bigcup_{k=1}^p \mathbb{N}^k$, such that $Y = \bigcup_{n \in \mathbb{N}} E_n$, $E_n \subset E_{n+1}$, $E_t = \bigcup_{n \in \mathbb{N}} E_{t,n}$ and $E_{t,n} \subset E_{t,n+1}$, for $t \in \mathbb{T}_{p-1}$ and $n \in \mathbb{N}$.

A (Hausdorff) locally convex space E is barrelled of class p (p-barrelled for short) if given a p-net $\mathcal{W} = \{E_t : t \in \mathbb{T}_p\}$ there is a $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E. The barrelled spaces of class 1 were introduced by Valdivia in [23] with the name suprabarrelled spaces, also called (db)-spaces in [15] and [20].

Presentado por Manuel Valdivia.

Recibido: 7 de Mayo de 2003. Aceptado: 30 de Septiembre de 2004.

Palabras clave / Keywords: Barrelled space, suprabarrelled space, Baire-like spaces, bornological space, Banach disk.

Mathematics Subject Classifications: 46A08, 46B25

^{© 2003} Real Academia de Ciencias, España.

Other definitions of barrelled spaces related to the Banach-Steinhaus theorem or with the closed graph theorem may be found in [6, Theorems 1.1.4, 1.1.8, 3.2.2 and 3.2.4].

It has been discovered that some of the classical barrelled functional spaces are barrelled spaces of class p. For instance, Dieudonné (*cf.* [25, p. 133]) proved that l_0^{∞} (*i.e.* the linear subspace of l_{∞} formed by the sequences taking finitely many different values) is barrelled. The barrelledness of l_0^{∞} was also pointed out independently by Saxon [19]. If \mathcal{A} is a ring of subsets of Ω and $l_0^{\infty}(\mathcal{A})$ is the linear hull with coefficients in \mathbb{K} of the characteristic functions \mathcal{X}_A , $A \in \mathcal{A}$, endowed with the supremum norm, Schachermayer [21] noticed that $l_0^{\infty}(\mathcal{A})$ is barrelled if and only if its dual $ba(\mathcal{A})$, the vector space over \mathbb{K} of the bounded finitely additive scalar measures defined on \mathcal{A} equipped with the supremum norm, verifies the Nikodým boundedness theorem ([2, p. 80]).

If \mathcal{A} is a σ -algebra Valdivia noticed that $l_0^{\infty}(\mathcal{A})$ is suprabarrelled [23] and Ferrando and López Pellicer found that $l_0^{\infty}(\mathcal{A})$ is p-barrelled [4]. Some other strong barrelledness properties of $l_0^{\infty}(\mathcal{A})$ and applications may be found in [5], [8], [9], [11], [16] and [17].

It was proved in [13] that if Ω is countable infinite then $c_0(\Omega, X)$ is barrelled if and only if X is barrelled. For an infinite set Ω , it has been established in [7] that $c_0(\Omega, X)$ is barrelled, ultrabornological or unordered Baire-like ([22]) if and only if X is barrelled, ultrabornological or unordered Baire-like, respectively. In [12] it has been proved that $c_0(\Omega, X)$ is 1– barrelled if and only if X is 1– barrelled.

The aim of this paper is to prove that $c_0(\Omega, X)$, $bcs(\Omega, X)$ and a wide class of subspaces of $bcs(\Omega, X)$ are (barrelled) *p*-barrelled if and only if X is (barrelled) *p*-barrelled.

In what follows supp(f) means the support of f, i.e. $supp(f) = \{x \in \Omega : f(x) \neq 0\}$. We are going to use the classical notation given, for instance, in [2] and [25]. The linear hull of a subset A of a linear space E will be denoted by $\langle A \rangle$.

If E is a linear subspace of $bcs(\Omega, X)$ we will denote by S_E the family of all sequences $\{f_n : n \in \mathbb{N}\}$ such that $f_n \in E$, $||f_n||_{\infty} = 1$ for each n = 1, 2, ... and whose support verify one of the following conditions:

a) $supp(f_n) \cap supp(f_m) = \emptyset$ if $n \neq m$

b) there is a countable set $\{w_1, w_2, \ldots, w_n, w_{n+1}, \ldots\} \subset \Omega$ such that $supp(f_n) \subset \{w_{n+1}, w_{n+2}, \ldots\}$, for $n = 1, 2, \ldots$

If $f \in E$ and $\Gamma \subset \Omega$ then $P_{\Gamma}f$ is the element of $bcs(\Omega, X)$ such that $(P_{\Gamma}f)(x) = f(x)$ if $x \in \Gamma$ and $(P_{\Gamma}f)(x) = 0$ when $x \notin \Gamma$. We will define $E(\Gamma) = \{f \in E : supp(f) \subset \Gamma\}$ and, in particular $bcs(\Gamma, X) = \{f \in bcs(\Omega, X) : supp(f) \subset \Gamma\}$.

We will denote by \mathcal{B} the family of linear subspaces of $bcs(\Omega, X)$ such that if $E \in \mathcal{B}$ and $\Delta \subset \Gamma \subset \Omega$, being Δ finite and Γ countable, then $bcs(\Delta, X) \subset E(\Gamma) = P_{\Gamma}(E)$. Then $E = E(\Gamma) + E(\Omega \setminus \Gamma)$.

2. Barrelledness

In the family \mathcal{B} we are going to consider the family \mathcal{B}_0 such that the locally convex vector space $E \in \mathcal{B}$ belongs to \mathcal{B}_0 if given a sequence $\{f_n : n \in \mathbb{N}\} \in \mathcal{S}_E$ there exists a barrelled space (F, τ) such that $F \subset E$, $\{f_n : n \in \mathbb{N}\}$ is bounded in (F, τ) and τ is a locally convex topology finer than the topology induced in Fby the topology of E.

Lemma 1 If $E \in \mathcal{B}_0$ and Q is a barrel in E there exists a finite set Δ (possibly empty) such that Q absorbs the unit ball of $E(\Omega \setminus \Delta)$.

PROOF. We assert that there is a countable set $\Delta = \{w_1, w_2, \ldots\}$ such that Q absorbs the closed unit ball of $E(\Omega \setminus \Delta)$. In fact, if this were not true, there would be a $f_1 \in E$ with $||f_1||_{\infty} = 1$ and $f_1 \notin Q$. By the hypotesis and the countability of $\Delta_1 = supp(f_1)$ we deduce the existence of $f_2 \in E(\Omega \setminus \Delta_1)$ with $||f_2||_{\infty} = 1$ and $f_2 \notin 2Q$. Once again, as the set $\Delta_2 = supp(f_2)$ is countable there exists $f_3 \in E(\Omega \setminus \{\Delta_1 \cup \Delta_2\})$ with $||f_3||_{\infty} = 1$ and $f_3 \notin 3Q$.

By induction we would obtain a sequence $\{f_n : n \in \mathbb{N}\} \in S_E$. Then, by hypotesis, there exists a barrelled space (F, τ) being $F \subset E$ and τ a locally convex topology finer than the topology induced in F

by the topology of E, such that $\{f_n : n \in \mathbb{N}\}\$ is bounded in (F, τ) . Therefore $Q \cap F$ is a 0- neighborhood in (F, τ) and then, by boundedness, there exists a p such that $\{f_n : n \in \mathbb{N}\} \subset pQ$. From this relation follows the contradiction $f_p \in pQ$.

Therefore, there exists a countable set $\Delta = \{w_1, w_2, \dots, w_n \dots\}$ such that Q absorbs the closed unit ball of $E(\Omega \setminus \Delta)$.

Now we are going to prove that there exists a natural number *i* such that *Q* absorbs the closed unit ball of $E(\{w_{i+1}, w_{i+2}, \ldots\})$.

If this were not true, there would exist a sequence $\{f_n : n \in \mathbb{N}\}$ with $f_n \in E(\{w_{n+1}, w_{n+2}, \ldots\})$, $\|f_n\|_{\infty} = 1$ and $f_n \notin nQ$ for each $n = 1, 2, \ldots$ But the sequence $\{f_n : n \in \mathbb{N}\} \in S_E$ and then, as in the preceding case, we would obtain a $q \in \mathbb{N}$ such that $\{f_n : n \in \mathbb{N}\} \subset qQ$. This last inclusion contains the contradiction $f_q \in qQ$, which proves that there exists a natural number i such that Q absorbs the closed unit ball of $E(\{w_{i+1}, w_{i+2}, \ldots\})$.

Finally, we have obtained that if $\Delta = \{w_1, w_2, \dots, w_i\}$ then Q absorbs the closed unit ball of $E(\Omega \setminus \Delta) = E(\Omega \setminus \{w_1, w_2, \dots\}) + E(\{w_{i+1}, w_{i+2}, \dots\}) \blacksquare$

Proposition 1 Suppose that $E \in \mathcal{B}_0$. Then E is barrelled if and only if X is barrelled.

PROOF. If Q is a barrel in E then by Lemma 1, there exists a finite set Δ such that Q absorbs the unit ball of $E(\Omega \setminus \Delta)$. The barrel Q also absorbs the unit ball of the barrelled space $E(\Delta) = X^{\Delta}$ (see [6, Proposition 1.1.13]). From the isomorphism between E and $E(\Omega \setminus \Delta) \times E(\Delta)$ it follows that Q is a neighborhood of zero in E.

Conversely, if E is barrelled and $p \in \Omega$ then from the isometry between X and $E(\{p\}) = E \neq E(\Omega \setminus \{p\})$ it follows from [6, Proposition 1.1.9] that X is barrelled.

A locally convex space E is unordered Baire-like ([22]) if given in E a countable covering $\{A_n, n \in \mathbb{N}\}\$ of closed absolutely convex subsets of E, there exists an A_n which is neighbourhood of zero in E.

In the family \mathcal{B} we are going to consider the family \mathcal{B}_{ub} such that the locally convex vector space $E \in \mathcal{B}$ belongs to \mathcal{B}_{ub} if given a sequence $\{f_n : n \in \mathbb{N}\} \in \mathcal{S}_E$ there exists an unordered Baire-like space (F, τ) such that $F \subset E$, $\{f_n : n \in \mathbb{N}\}$ is bounded in (F, τ) , and τ is a locally convex topology finer than the topology induced in F by the topology of E.

Lemma 2 Let $\mathcal{V} = \{V_n : n \in \mathbb{N}\}$ be a sequence of absolutely convex and closed subsets of E such that $E = \bigcup_{n \in \mathbb{N}} \langle V_n \rangle$. Suppose that $E \in \mathcal{B}_{ub}$.

Then there exists a subfamily $\mathcal{W} = \{W_n : n \in \mathbb{N}\}$ of \mathcal{V} and a sequence $\{\Delta_n : n \in \mathbb{N}\}$ of finite subsets of Ω such that, for every $n \in \mathbb{N}$, $E(\Omega - \Delta_n) \subset \langle W_n \rangle$ and

$$E = \bigcup_{n \in \mathbb{N}} \langle W_n \rangle$$

PROOF. First we are going to prove that there exists $m \in \mathbb{N}$ and a countable subset Δ_m such that

$$E(\Omega - \Delta_m) \subset \langle V_m \rangle.$$

In fact, if this were not true we would find a sequence $\{f_n : n \in \mathbb{N}\}$ of unitary vectors in $E(\Omega)$ such that

 $f_1 \not\in \langle V_1 \rangle$

and

$$f_n \in E(\Omega - \bigcup_{i=1}^{n-1} \Delta_i) - \langle V_n \rangle, \qquad n = 2, 3, \dots$$

where $\Delta_i = \operatorname{supp}(f_i)$ and $|| f_i ||_{\infty} = 1$ for each $i \in \mathbb{N}$.

Then, by hypothesis, there exists an unordered Baire-like space (F, τ) such that $F \subset E$, $\{f_n : n \in \mathbb{N}\}$ is bounded in (F, τ) and τ is a locally convex topology finer than the topology induced in F by the topology of E. Therefore, there exists a V_m that contains a nieghbourhood of zero in (F, τ) , implying that the bounded

369

set $\{f_n : n \in \mathbb{N}\}$ is contained in $\langle V_m \rangle$. The inclusion $\{f_n : n \in \mathbb{N}\} \subset \langle V_m \rangle$ contains the contradiction $f_m \in \langle V_m \rangle$, proving our first observation.

Therefore, from this property and [22, Theorem 4.1] we have that there exists a subfamily $\mathcal{W} = \{W_n : n \in \mathbb{N}\}$ of \mathcal{V} and a sequence $\{\Delta_n : n \in \mathbb{N}\}$ of countable subsets of Ω such that $E(\Omega - \Delta_n) \subset \langle W_n \rangle$, for each $n \in \mathbb{N}$, and $E = \bigcup_{n \in \mathbb{N}} \langle W_n \rangle$.

From this first property it follows that it is enough to prove the lemma for $\Omega = \mathbb{N}$.

In this case we are going to prove that there exists some natural number m such that

$$E(\mathbb{N} - \{1, 2, \dots, m\}) \subset \langle V_m \rangle$$

If this property were not true we would find a sequence $\{f_n : n \in \mathbb{N}\}$ of unitary vectors in $E(\mathbb{N})$ such that

$$f_n \in E(\mathbb{N} - \{1, 2, \dots, n\}) - \langle V_n \rangle$$

and we would have that the sequence $\{f_n : n \in \mathbb{N}\} \subset S_E$. By hypothesis, there exists an unordered Baire-like space (F, τ) such that $F \subset E$, $\{f_n : n \in \mathbb{N}\}$ is bounded in (F, τ) and τ is a locally convex topology finer than the topology induced in F by the topology of E. Exactly as in the preceding case we would obtain the contradiction $f_p \in \langle V_p \rangle$, proving the second property we are looking for.

These two properties imply that there exists $m \in \mathbb{N}$ and a finite subset Δ_m such that

$$E(\Omega - \Delta_m) \subset \langle V_m \rangle$$

and, then, from [22, Theorem 4.1] it follows the lemma.

Proposition 2 Suppose that $E \in \mathcal{B}_{ub}$. Then E is unordered Baire-like if and only if X is unordered Baire-like.

PROOF. If *E* is unordered Baire-like and $p \in \Omega$, then from the isometry between *X* and $E(\{p\}) = E/E(\Omega - \{p\})$ it follows from [6, Proposition 1.3.6] that *X* is unordered Baire-like.

Conversely, if X is unordered Baire-like and E were not unordered Baire-like, then there exists a sequence $\{V_n : n \in \mathbb{N}\}$ of absolutely convex and closed subsets of E such that

$$E = \bigcup \{V_n, n \in \mathbb{N}\}$$

and each V_n is not a neighbourhood of zero in the barrelled space E (see Proposition 1). Then, by barrelledness, we have that

$$E \not\subseteq \langle V_n \rangle, \qquad n \in \mathbb{N}.$$

From these relations and Lemma 2 we deduce that there exists a subsequence $\{W_n : n \in \mathbb{N}\}$ of $\{V_n : n \in \mathbb{N}\}$ and a sequence $\{\Delta_n : n \in \mathbb{N}\}$ of finite subsets of Ω such that

$$E = \bigcup_{n \in \mathbb{N}} \langle W_n \rangle$$
$$E \not\subseteq \langle W_n \rangle, \qquad n \in \mathbb{N}$$
$$E(\Omega - \Delta_n) \subset \langle W_n \rangle, \qquad n \in \mathbb{N}$$

It is clear that we have for each $n \in \mathbb{N}$ that

$$E(\Delta_n) \not\subset \langle W_n \rangle$$

and then there exists for each n some $\delta_n \in \Delta_n$ such that

$$E(\{\delta_n\}) \not\subset \langle W_n \rangle.$$

370

We consider the equivalence relation R in \mathbb{N} defined by the equality $\delta_m = \delta_n$ (i.e. mRn if $\delta_m = \delta_n$). This relation defines a partition $\{F_n, n \in \mathbb{P}\}$ in \mathbb{N} , where \mathbb{P} is a finite or countable subset of \mathbb{N} .

Let $\{w_n : n \in \mathbb{P}\}$ be the finite or countable subset of Ω such that $w_n = \delta_s$, being s an arbitrary element of F_n . We may rewrite the relations $E(\{\delta_n\}) \not\subset \langle W_n \rangle$, $n \in \mathbb{N}$, in the form:

$$E(\{w_n\}) \not\subset \langle W_n \rangle, \quad m \in F_n, \quad n \in \mathbb{P}.$$

We have that the space X is unordered Baire-like and that $E(\{w_n\})$ and X are isometric. Therefore

$$E(\{w_n\}) \not\subset \bigcup_{m \in F_n} \langle W_m \rangle, \quad n \in \mathbb{P}$$

These non inclusions enables us to choose $f_n \in E(\{w_n\}) - \bigcup_{m \in F_n} \langle W_m \rangle$, $|| f_n ||_{\infty} = 1$, for each $n \in \mathbb{P}$. Then:

$$\{f_n : n \in \mathbb{P}\} \not\subseteq \langle W_m \rangle, \qquad \forall m \in \mathbb{N}$$

and the hypothesis $E \in \mathcal{B}_{ub}$ implies the existence of an unordered Baire-like space (F, τ) , being $F \subset E$, $\{f_n : n \in \mathbb{P}\}$ bounded in (F, τ) , and the topology τ is finer than the topology induced by E in F. Therefore, there exists some W_m containing a neighbourhood of zero in (F, τ) . This implies the contradiction

$$\{f_n : n \in \mathbb{P}\} \subset \langle W_n \rangle$$

which proves the proposition.

3. Barrelledness of class p

Remember that a (Hausdorff) locally convex space E is barrelled of class p (or p-barrelled) if given a p-net $\mathcal{W} = \{E_t : t \in \mathbb{T}_p\}$ there is a $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E. It is not difficult to see that when E is p-barrelled there are many $E_t, t \in \mathbb{N}^p$, which are barrelled and dense in E, and the next definitions help us in obtaining the corresponding proof.

Definition 1 Let A be a subset of the set \mathbb{N} of natural numbers. We will say that A is a set of class 1 (of strict class 1) if A is infinite (if there exists $n_1 \in \mathbb{N}$ such that $A = \{n \in \mathbb{N} : n \ge n_1\}$).

A subset A of \mathbb{N}^p is a set of class p (of strict class p) if $A = \bigcup_{b \in B_1} \{b\} \times C_b$, being B_1 a set of class p - 1 (of strict class p - 1) and such that each C_b a set of class 1 (of strict class 1).

It is obvious that a subset A of class p (of strict class p) may be written as $A = \bigcup_{b \in B_k} \{b\} \times C_b$, being B_k a set of class k (of strict class k) and each C_b a set of class p - k (of strict class p - k), with $1 \le k \le p - 1$.

Also an easy induction give us the next result.

Proposition 3 Let A and B be two sets of \mathbb{N}^p , then:

- 1. If A is a set of strict class p and B is a set of strict class p (of class p), then $A \cap B$ is of strict class p (of class p).
- 2. A contains a set of strict class p if and only if $\mathbb{N}^p \setminus A$ does not contain a set of class p.
- 3. If B is a set of class p there exists a bijection φ from B onto \mathbb{N}^p such that φ preserves the lexicographic order.

The last statement implies that if $W = \{E_t : t \in \mathbb{T}_p\}$ is a *p*-net in the *p*-barrelled space *E* and *B* is a set of class *p* then there is a $t \in B$ such that E_t is barrelled and dense in *E*, because the new numeration of $\{E_t : t \in B\}$ with the help of φ gives a new *p*-net in *E*. From this observation the next proposition follows easily.

Proposition 4 A (Hausdorff) locally convex space is barrelled of class p if and only if given a p-net $W = \{E_t : t \in \mathbb{T}_p\}$ there exists a set A_p of strict class p such that if $t \in A_p$ then E_t is barrelled and dense in E.

PROOF. Let $A = \{t \in \mathbb{N}^p : E_t \text{ is barrelled and dense in } E\}$. From the preceding observation it follows that $B = \mathbb{N}^p \setminus A$ cannot contain a set of class p. Then Proposition 3 statement 2, implies that A contains a set of strict class p.

If $t = (t_1, t_2, \dots, t_i, \dots, t_p) \in \mathbb{T}_p$ and E_t is barrelled and dense in E then, obviously, $E_{t_1t_2\dots t_i}$ is barrelled and dense in E, for $1 \le i \le p-1$ ([6, Proposition 1.1.10]).

Recall that a locally convex space E is Baire-like if given an increasing covering $\{A_n : n \in \mathbb{N}\}$ of E, being each A_n a closed absolutely convex subset of E, there exists an A_p which is a neighborhood of zero ([18]). It is obvious that suprabarrelled spaces are Baire-like, that Baire-like spaces are barrelled, that if $\{E_n : n \in \mathbb{N}\}$ is a linear increasing covering of the Baire-like space E there exists an E_n which is dense in E and that if F is barrelled and dense in the Baire space E then F is Baire-like ([6, Propositions 3.1.2 and 3.2.3]). Therefore a locally convex (Hausdorff) space E is p-barrelled if given a p-net $W = \{E_t : t \in \mathbb{T}_p\}$ in E it is verified one of the following conditions:

- 1. There exists $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E.
- 2. There exists $t \in \mathbb{N}^p$ such that E_t is Baire-like.
- 3. There is a set $A \subset \mathbb{N}^p$ of strict class p such that for each $t \in A$ we have that E_t is barrelled and dense in E.
- 4. There is a set $A \subset \mathbb{N}^p$ of strict class p such that for each $t \in A$ we have that E_t is Baire-like.

In the two last conditions we may omit the word strict.

Now let us suppose that $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ is a *p*-net in *E*. Let $T_{n_1n_2...n_p}$ be a barrel in $F_{n_1n_2...n_p}$, $V_{n_1n_2...n_p} = \overline{T_{n_1n_2...n_p}}^E, Z_{n_1n_2...n_p} = \langle V_{n_1n_2...n_p} \rangle, S_{n_1n_2...n_p} = \bigcap_{m=n_p}^{\infty} Z_{n_1n_2...n_{p-1}m}, Z_{n_1n_2...n_{p-1}} = \bigcup_{n_p=1}^{\infty} S_{n_1n_2...n_p}, S_{n_1n_2...n_{p-1}} = \bigcap_{m=n_p-1}^{\infty} Z_{n_1n_2...n_{p-2}m}, \dots, Z_{n_1} = \bigcup_{n_2=1}^{\infty} S_{n_1n_2}, S_{n_1} = \bigcap_{m=n_1}^{\infty} Z_m.$ It is obvious that if *A* is a set of strict class *p* and $F \subset S_{n_1n_2...n_p}$ for each $(n_1n_2...n_p) \in A$ then we have that $F \subset S$.

then we have that $F \subset S_{m_1}, F \subset S_{m_1m_2}, \ldots, F \subset S_{m_1m_2\ldots m_{p-1}}$ and $F \subset S_{m_1m_2\ldots m_{p-1}m_p}$ when $(m_1m_2\ldots m_p) \in A$.

Lemma 3 Let $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ be a *p*-net in *E* and let $T_{n_1n_2...n_p}$ be a barrel in $F_{n_1n_2...n_p}$. Suppose that given a sequence $\{f_p : p \in \mathbb{N}\} \in \mathcal{S}_E$ there exists a set *A* of strict class *p* such that $\{f_p : p \in \mathbb{N}\} \subset S_{n_1n_2...n_p}$ for each $(n_1, n_2, ..., n_p) \in A$. Then there exists a countable set Δ (possibly empty) and a set *B* of strict class *p* such that $E(\Omega \setminus \Delta) \subset S_{n_1n_2...n_p}$ for each $(n_1, n_2, ..., n_p) \in B$.

PROOF. We are going to prove the lemma by decreasing induction. First we will see that there is a countable set Δ (possibly empty) and a natural number n_1 such that $E(\Omega \setminus \Delta) \subset S_{n_1}$.

In fact, if this were not true then we may find $f_1 \in E$, with $||f_1||_{\infty} = 1$ and $f_1 \notin S_1$. The set $\Delta_1 = supp(f_1)$ is countable and from $E(\Omega \setminus \Delta_1) \notin S_2$ we deduce the existence of a $f_2 \in E(\Omega \setminus \Delta_1)$ with $||f_2||_{\infty} = 1$ and $f_2 \notin S_2$. Then put $\Delta_2 = supp(f_2)$ and from $E(\Omega \setminus (\Delta_1 \cup \Delta_2)) \notin S_3$ we may suppose that there exists $f_3 \in E(\Omega \setminus (\Delta_1 \cup \Delta_2))$ with $||f_3||_{\infty} = 1$ and $f_3 \notin S_3$. Continuing in this way we determine by induction a unitary sequence $\{f_n : n \in \mathbb{N}\}$ in E and a pairwise disjoint sequence $\{\Delta_n : n \in \mathbb{N}\}$ of countable subsets of Ω such that $\Delta_n = supp(f_n)$, $||f_n||_{\infty} = 1$ and $f_n \notin S_n$, for $n = 1, 2, \ldots$

The sequence $\{f_q : q \in \mathbb{N}\} \in S_E$. By hypothesis there exists a set A of strict class p such that $\{f_q : q \in \mathbb{N}\} \subset S_{n_1 n_2 \dots n_p}$, for each $(n_1, n_2, \dots, n_p) \in A$. We also have that $\{f_q : q \in \mathbb{N}\} \subset S_{n_1}$ if

 $(n_1, n_2, \ldots, n_p) \in A$. From this inclusion follows the contradiction $f_{n_1} \in S_{n_1}$, which proves our assertion.

Continuing with the induction let us suppose that there exists a set A_{h-1} of strict class h-1 and a countable set Δ such that $E(\Omega \setminus \Delta) \subset S_{n_1n_2...n_{h-1}}$ for each $(n_1, n_2, ..., n_{h-1}) \in A_{h-1}$. Let A'_{h-1} and A''_{h-1} be a partition of A_{h-1} such that:

• A_{h-1} is formed by the elements $b = (n_1, n_2, n_3, \dots, n_{h-1})$ belonging to A_{h-1} for which we could determine a countable set Δ_b of Ω and a natural number m such that $E(\Omega \setminus \{\Delta \cup \Delta_b\}) \subset S_{n_1 n_2 \dots n_{h-1} m}$.

• $A_{h-1}^{''} = A_{h-1} \setminus A_{h-1}^{'}$. If $(n_1, n_2, n_3, \dots, n_{h-1}) \in A_{h-1}^{''}$, $\Delta^{''}$ is a countable subset of Ω and $m \in \mathbb{N}$ we have that $E\left(\Omega \setminus \left\{\Delta \cup \Delta^{''}\right\}\right) \notin S_{n_1 n_2 \dots n_{h-1} m}$.

If A'_{h-1} contains a set B of strict class h-1 then we immediately obtain the next step of the inductive process. In fact, if $\Delta' = \bigcup_{b \in B} \Delta_b$ we have that for every $b \in B$ there exists a set I_b of strict class 1 such that $E\left(\Omega \setminus \left\{\Delta \cup \Delta'\right\}\right) \subset S_{n_1 n_2 \dots n_{h-1} n_h}$ for every $(n_1, n_2, \dots, n_{h-1}, n_h) \in \bigcup_{b \in B} \{b\} \times I_b = A_h$, being obvious that A_h is a set of strict class h.

If A'_{h-1} does not contain a set of strict class h-1 then A''_{h-1} contains a set B_{h-1} of class h-1 such that for each $(n_1, n_2, \ldots, n_{h-1}, n_h) \in B_{h-1} \times \mathbb{N}$ and each countable subset Δ'' of Ω we have that

$$E\left(\Omega\setminus\left\{\Delta\cup\Delta^{''}\right\}\right)\nsubseteq S_{n_1n_2\dots n_{h-1}n_h}\tag{1}$$

It is obvious that $B_{h-1} \times \mathbb{N}$ is a set of class h, whose elements can be enumerated in the following way $\{(n_1(i), n_2(i), \ldots, n_{h-1}(i), n_h(i)) : i = 1, 2, 3, \ldots\}$.

From (1) we deduce that $E(\Omega \setminus \Delta) \notin S_{n_1(1),n_2(1),\ldots,n_h(1)}$ which enables us to determine $g_1 \in E(\Omega \setminus \Delta)$, with $||g_1||_{\infty} = 1$ and $g_1 \notin S_{n_1(1),n_2(1),\ldots,n_h(1)}$.

If $\Delta_1' = supp(g_1)$ we have by (1) that $E\left(\Omega \setminus \left\{\Delta \cup \Delta_1'\right\}\right) \notin S_{n_1(2),n_2(2),\dots,n_h(2)}$. This relation indicates the existence of $g_2 \in E\left(\Omega \setminus \left\{\Delta \cup \Delta_1'\right\}\right)$, with $\|g_2\|_{\infty} = 1$ and $g_2 \notin S_{n_1(2),n_2(2),\dots,n_h(2)}$.

Now, if $\Delta'_2 = supp(g_2)$, we also have by (1) that $E\left(\Omega \setminus \left\{\Delta \cup \Delta'_1 \cup \Delta'_2\right\}\right) \nsubseteq S_{n_1(3), n_2(3), \dots, n_h(3)}$.

Therefore, and after an obvious induction, we could obtain a sequence $\{g_i : i \in \mathbb{N}\}$ of unitary vectors in E with pairwise disjoint supports $\Delta'_i = supp(g_i), i = 1, 2, 3, \ldots$, such that $g_i \notin S_{n_1(i), n_2(i), \ldots, n_h(i)}$, $i = 1, 2, 3, \ldots$.

The sequence $\{g_i : i \in \mathbb{N}\} \in S_E$ and therefore there exists a set C of strict class p such that $\{g_i : i \in \mathbb{N}\} \subset S_{n_1n_2...n_h}$ for $(n_1, n_2, ..., n_h, n_{h+1}, ..., n_p) \in C$. By Proposition 3 statement 1 there exists an index k such that $\{g_i : i \in \mathbb{N}\} \subset S_{n_1(k), n_2(k), ..., n_h(k)}$.

This relation contains the contradiction $g_k \in S_{n_1(k),n_2(k),\dots,n_h(k)}$ that proves this lemma.

Lemma 4 Let $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ be a p-net in the (Hausdorff) locally convex space E and let $T_{n_1n_2...n_p}$ be a barrel in $F_{n_1n_2...n_p}$. If F is a p-barrelled subspace of E then there exists a subset A of strict class p such that $F \subset S_{n_1n_2...n_p}$ whenever $(n_1n_2...n_p) \in A$.

PROOF. Since $\{F \cap F_t : t \in \mathbb{T}_p\}$ is a *p*-net in *F*, there is a set *A* of strict class *p* such that if $(n_1 n_2 \dots n_p) \in A$ then $F \cap F_{n_1 n_2 \dots n_p}$ is barrelled and dense in *F*. By density, $\overline{F \cap T_{n_1 n_2 \dots n_p}}^F$ is a neighborhood of zero in *F*. Therefore $F \subset Z_{n_1 n_2 \dots n_p}$ for every $(n_1 n_2 \dots n_p) \in A$, which implies that $F \subset S_{n_1 n_2 \dots n_p}$ whenever $(n_1 n_2 \dots n_p) \in A$.

Lemma 5 Let $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ be a p-net in the (Hausdorff) locally convex space E, let $T_{n_1n_2...n_p}$ be a barrel in $F_{n_1n_2...n_p}$, F a subspace of E and τ a locally convex topology in F finer than the induced by E. If (F, τ) is p-barrelled then there exists a set A of strict class p such that $F \subset S_{n_1n_2...n_p}$ whenever $(n_1n_2...n_p) \in A$.

PROOF. Since (F, τ) is *p*-barrelled and $\{F \cap F_t : t \in \mathbb{T}_p\}$ is a *p*-net in *F*, there is a set *A* of strict class *p* such that if $(n_1n_2 \dots n_p) \in A$ then $F \cap F_{n_1n_2\dots n_p}$ is barrelled and dense in (F, τ) . Hence $F \cap T_{n_1n_2\dots n_p}$ is a neigbourhood of zero in $F \cap F_{n_1n_2\dots n_p}$ endowed with the topology induced by τ and, by density, $\overline{F \cap T_{n_1n_2\dots n_p}}^{(F,\tau)}$ is a neighborhood of zero in (F, τ) . ¿From $\overline{F \cap T_{n_1n_2\dots n_p}}^{(F,\tau)} \subset \overline{T_{n_1n_2\dots n_p}}^E$ it follows that $F \subset Z_{n_1n_2\dots n_p}$ for every $(n_1n_2\dots n_p) \in A$, which implies that $F \subset S_{n_1n_2\dots n_p}$ whenever $(n_1n_2\dots n_p) \in A$.

Now, in the family \mathcal{B} we are going to consider the subfamily \mathcal{B}_p such that $E \in \mathcal{B}$ belongs to \mathcal{B}_p if given the sequence $\{f_n : n \in \mathbb{N}\} \in \mathcal{S}_E$ there exists a *p*-barrelled space (F, τ) such that $\{f_n : n \in \mathbb{N}\} \subset F \subset E$ and τ is a locally convex topology finer than the topology induced in *F* by the topology of *E*.

Lemma 6 Let $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ be a *p*-net in *E* and let $T_{n_1n_2...n_p}$ be a barrel in $F_{n_1n_2...n_p}$. If $E \in \mathcal{B}_p$ and *X* is a *p*-barrelled space then there exists a set *A* of strict class *p* such that $E = S_{n_1n_2...n_p}$ when $(n_1, n_2, ..., n_p) \in A$.

PROOF. As $E \in \mathcal{B}_p$ Lemma 5 guaranties that we may apply Lemma 3. Therefore it is enough to prove this lemma when Ω is a countable set. Therefore we are going to suppose that $\Omega = \mathbb{N}$ and we will obtain the proof by decreasing induction.

Now we are going to prove that there exists a natural number n_1 such that $E = S_{n_1}$. In first place, we will find a natural number i such that $E(\{i + 1, i + 2, ...\}) \subset S_i$. In fact if this were not possible we would determine a sequence $\{f_i : i \in \mathbb{N}\}$ of unitary vectors such that $f_i \in E(\{i + 1, i + 2, ...\}) \setminus S_i$, for i = 1, 2, ...

The relation $\{f_i : i \in \mathbb{N}\} \in S_E$, $E \in \mathcal{B}_p$ and Lemma 5 implies that there exists a set A of strict class p such that $\{f_i : i \in \mathbb{N}\} \in S_{n_1 n_2 \dots n_p}$ when $(n_1, n_2, \dots, n_p) \in A$. Therefore if $(n_1, n_2, \dots, n_p) \in A$ we have that $\{f_i : i \in \mathbb{N}\} \in S_{n_1}$ implying the contradiction $f_{n_1} \in S_{n_1}$.

This enables us to suppose that there exists a natural number *i* such that $E(\{i + 1, i + 2, ...\}) \subset S_i$. Let $\Delta = \{1, 2, ..., i\}$.

Since the space $E(\Delta)$ is isometric to X^{Δ} endowed with the l_{∞} norm, we have that $E(\{1, 2, \ldots, i\})$ is *p*-barrelled (see [6, Proposition 2.3]). Hence, there is a set B of strict class p such that $X^{\Delta} \subset S_{n_1n_2...n_p}$ when $(n_1, n_2, \ldots, n_p) \in B$ (Lemma 4). Then for each $(m_1, m_2, \ldots, m_p) \in B$ we have that $X^{\Delta} \subset S_{m_1}$. If $n_1 \geq \max(i, m_1)$ then $E = E(\mathbb{N}) = E(\{1, 2, \ldots, i\}) + E(\{i + 1, i + 2, \ldots\}) \subset S_i + S_{m_1} \subset S_{n_1} + S_{n_1} \subset S_{n_1}$

Let us suppose that in the (h-1)-step of the inductive process we have determined a set A_{h-1} of class h-1 such that $E(\mathbb{N}) = S_{n_1n_2...n_{h-1}}$ whenever $(n_1, n_2, ..., n_{h-1}) \in A_{h-1}$. Let $b = (n_1, n_2, ..., n_{h-1}) \in A_{h-1}$. The sets $S_{n_1n_2...n_h...n_i...n_s}$, with $n_i \in \mathbb{N}$, $h \leq i \leq s \leq p$ generate in a natural way the p-(h-1)-net formed by the sets $S'_{n_1n_2...n_h...n_i...n_s}$, with $n_i \in \mathbb{N}$ for $h \leq i \leq s \leq p$, given by

$$S'_{n_1n_2\dots n_h} = S_{n_1n_2\dots n_h}$$

and

$$S'_{n_1n_2...n_h...n_i...n_{s-1}n_s} = S_{n_1n_2...n_h...n_i...n_{s-1}n_s} \cap S'_{n_1n_2...n_h...n_i...n_{s-1}}$$

with $n_i \in \mathbb{N}, h \le i \le s \le p$ and $h \le s - 1$.

In $S'_{n_1n_2...n_p}$ consider the barrel $T'_{n_1n_2...n_p} = \overline{T_{n_1n_2...n_p}}^{E(\mathbb{N})} \bigcap S'_{n_1n_2...n_p}$, being $T_{n_1n_2...n_p}$ the barrel given in $F_{n_1n_2...n_p} (\subset S'_{n_1n_2...n_p} \subset S_{n_1n_2...n_p})$. Since $\overline{T'_{n_1n_2...n_p}}^{E(\mathbb{N})} = \overline{T_{n_1n_2...n_p}}^{E(\mathbb{N})}$, applying the first step of the inductive process to the p - (h - 1)-net

$$\left\{S'_{n_1n_2...n_h...n_i...n_s}: n_i \in \mathbb{N} \text{ y } h \leq i \leq s \leq p\right\}$$

we get a set I_b of class 1 such that $E(\mathbb{N}) = S_{n_1 n_2 \dots n_{h-1} n_h}$ for each $n_h \in I_b$. The induction finishes with the observation that $\bigcup_{b \in A_{h-1}} \{b\} \times I_b$ is a set A_h of strict class h and that $E(\mathbb{N}) = S_{n_1 n_2 \dots n_{h-1} n_h}$ when $(n_1, n_2, \dots, n_h) \in A_h$. This induction proves the lemma.

374

Theorem 1 Let Ω be a non void set and suppose that $E \in \mathcal{B}_p$. The locally convex space E is p-barrelled if and only if X is p-barrelled.

PROOF. For $\omega \in \Omega$ we have that *E* and the product $E(\Omega \setminus \{\omega\}) \times E(\{\omega\})$ with the supremum norm are isometric. Therefore, the spaces $E(\{\omega\})$, and $E \not = E(\Omega \setminus \{\omega\})$ are isometric. Hence if *E* is *p*-barrelled, then *X* (isometric to $E(\{\omega\})$) is *p*-barrelled according to [6, Proposition 3.2.12].

Conversely, if X is p-barrelled we are going to show by induction that E is p-barrelled.

Now we prove that E is suprabarelled (1-barrelled). We know that E is Baire-like (see Proposition 1 and [6, Proposition 1.2.1]). Therefore if $\{F_n : n \in \mathbb{N}\}$ is a 1-net in E there is a n such that F_m is dense in E for $m \ge n$. If E were not suprabarelled we would find in E a 1-net $\{F_n : n \in \mathbb{N}\}$ such that each F_n is dense and non barrelled. Let T_n be a barrel in F_n which is not neighborhood of zero in F_n . Set $V_n = \overline{T_n}^E$ and $S_n = \bigcap_{m \ge n} \langle V_n \rangle$. According to Lemma 6, there is some $S_n = E$, hence $E = \langle V_n \rangle$ and the barrelledness of E (Proposition 1) yields that V_n is a neighborhood of zero in E. Then $T_n = V_n \cap F_n$ is a neighborhood of zero in F_n , a contradiction that enables us to establish that there exists a F_n which is barrelled.

Assuming that E is (p-1)-barrelled, $p \ge 2$, and that $\{F_t : t \in \mathbb{T}_p\}$ is a p-net in E, then we can suppose that there is a set A_{p-1} of class (p-1) such that F_t is barrelled and dense in E for $t \in A_{p-1}$. If $t \in A_{p-1}$ then F_t is Baire-like ([6, Proposition 1.2.1]), hence there is a set A_p of class p such that F_{tn_p} is dense in E for $(t, n_p) \in A_p$. Consequently, if E were not p-barrelled we may find a p-net $\{F_t : t \in \mathbb{T}'_p\}$ such that each F_t , for $t \in \mathbb{N}^p$, is not barrelled and dense in E. Let T_t be a barrel in F_t for $t \in \mathbb{N}^p$, which is not neighborhood of zero in F_t , for $t \in \mathbb{N}^p$. According to Lemma 6, there is a (n_1, n_2, \ldots, n_p) such that $S_{n_1n_2\ldots n_p} = E$ and then, by barrelledness (Proposition 1), $V_{n_1n_2\ldots n_{p-1}n_p} = \overline{T_{n_1n_2\ldots n_{p-1}n_p}}^E$ is a neighborhood of zero in $S_{n_1n_2\ldots n_{p-1}n_p}$. This implies the contradiction that $T_{n_1n_2\ldots n_{p-1}n_p} = V_{n_1n_2\ldots n_{p-1}n_p} \cap F_{n_1n_2\ldots n_{p-1}n_p}$ is a zero neighborhood in $F_{n_1n_2\ldots n_{p-1}n_p}$. Hence E is p-barrelled.

If we apply Lemma 6 when $T_{n_1n_2...n_p} = F_{n_1n_2...n_p}$ we obtain the following property.

Let $\mathcal{W} = \{F_t : t \in \mathbb{T}_p\}$ be a *p*-net in *E*. If $E \in \mathcal{B}_p$ and *X* is a *p*-barrelled space, then there exists a set *A* of strict class *p* such that F_t is dense in *E* when $t \in A$.

This property simplifies the second part of the proof of Theorem 1. In fact, if X is p-barrelled and E were not p-barrelled we may find a p-net $\{F_t : t \in \mathbb{T}_p\}$ such that F_t is not barrelled and dense in E, for each $t \in \mathbb{N}^p$. We obtain the same contradiction as in the end of the proof of Theorem 1.

4. Notes

When E is $c_0(\Omega, X)$ or $bcs(\Omega, X)$ and $\{f_n : n \in \mathbb{N}\}$ is a sequence of unitary vectors with disjoint supports, it is easy to prove that $\{\sum_{n=1}^{\infty} \alpha_n f_n : |\alpha_n| \le 1, n = 1, 2, ...\}$ is a Banach disk.

If $\{f_n : n \in \mathbb{N}\}$ is a sequence of unitary vectors of E and there is a countable set $\{w_1, w_2, \ldots\} \subset \Omega$, such that $supp(f_n) \subset \{w_{n+1}, w_{n+2}, \ldots\}$ then it is obvious that $\{\sum_{n=1}^{\infty} \alpha_n f_n : \sum_{n=1}^{\infty} |\alpha_n| \leq 1\}$ is a Banach disk.

Therefore, $c_0(\Omega, X)$ and $bcs(\Omega, X)$ are *p*-barrelled if and only if X is *p*-barrelled.

References

- [1] de Wilde, M. (1978). Closed Graph Theorem and Webbed Spaces, Pitman, London.
- [2] Diestel, J. (1984). Sequences and series in Banach spaces, Springer-Verlag, Berlin.
- [3] Ferrando, J. C., Kakol, J. and López Pellicer, M. (2004), On a problem of Horváth concerning continuous functions vanishing at infinite, *Bull. Belg. Math. Soc. Sim.*, 11, 1–6.

- [4] Ferrando, J. C. and López Pellicer, M. (1990). Strong barrelledness properties in $l_0^{\infty}(X, A)$ and bounded finite additive measures, *Math. Ann.*, **287**, 727–736.
- [5] Ferrando, J. C. and M. López Pellicer, M. (1992). A note on a theorem of J. Diestel and B. Faires, Proc. Amer. Math. Soc., 115, 1077–1081.
- [6] Ferrando, J. C., López Pellicer, M. and Sánchez Ruiz, L. M. (1995). Metrizable barrelled spaces, Pitman, London.
- [7] Ferrando, J. C. and Lüdkovsky, S. V. (2002). Some barrelledness properties of $c_0(\Omega, X)$, J. Math. Anal. Appl., **274**. 577–585.
- [8] Ferrando, J. C. and Sánchez Ruiz, L. M. (1992). A maximal class of spaces with strong barrelledness conditions. *Proc. R. Ir. Acad.*, 92A, No 1, 69–75.
- [9] Ferrando, J. C. and Sánchez Ruiz, L. M. (2004). A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions. *Rocky Mt. J. Math.*, 34, 1, 139–172.
- [10] Kunzinger, M. (1993). Barrelledness, Baire-like and (LF)- spaces. Longman, Pitman, London.
- [11] López Pellicer, M. (1997). Webs and bounded additive measures, J. Math. Anal. Appl., 210, 257–267.
- [12] López Pellicer, M. and Moll, S. (2003). On suprabarrelledness of $c_0(\Omega, X)$, Rev. R. Acad. Cien. Serie A Mat. (RACSAM), **97**, 37–40.
- [13] Mendoza, J. (1983). A barrelledness criterion for $c_0(E)$, Arch. Math., 40, 156–158.
- [14] Pérez Carreras, P. and Bonet, J. (1987). Barrelled Locally Convex Spaces. North-Holland, Amsterdam.
- [15] Robertson, W. J., Tweddle, I. and Yeomans, F. E. (1980). On the stability of barrelled topologies III, Bull. Austral. Math. Soc., 22, 99–112.
- [16] B. Rodríguez-Salinas, B. (1980). On the class of the barrelled space $l_0^{\infty}(\Sigma)$, *Rev. Acad. Ci. Exact. Fis. Nat. (Esp.)*, **74**, 827–829.
- [17] Rodríguez-Salinas, B. (1995). On superbarrelled spaces. Closed graph theorems, *Rev. Acad. Ci. Exact. Fis. Nat.* (*Esp*), 89, 7–10.
- [18] Saxon, S. A. (1972). Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology, *Math. Ann.*, **197**, 87–106.
- [19] Saxon, S. A. (1974). Some normed barrelled spaces which are not Baire. Math. Ann., 209, 153-170.
- [20] Saxon, S. A. and Narayanaswani, P. P. (1981). Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem. *Bull. Austral. Math. Soc.*, 23, 65–80.
- [21] Schachermayer, W. (1982). On some classical measure-theoretic theorems for non σ complete Boolean algebras. *Dissert. Math.*, **214** (1982), 1–36.
- [22] Todd, A. R. and Saxon, S. A. (1973), A property of locally convex Baire spaces. Math. Ann., 206, 23–34.
- [23] Valdivia, M. (1979). On certain barrelled normed spaces. Ann. Inst. Fourier, 29, 39-56.
- [24] Valdivia, M. (1981). On suprabarrelled spaces. In Func. Anal. Holomorphy and Approximation Theory (Río de Janeiro 1978), Springer-Verlag, Berlin.
- [25] Valdivia, M. (1982). Topics in locally convex spaces. North-Holland, Amsterdam.

Manuel López Pellicer and Santiago Moll. E.T.S.I.A. (Departamento de Matemática Aplicada). Universidad Politécnica de Valencia. Camino de Vera s/n. E-46022 Valencia. Spain. mlopezpe@mat.upv.es