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Unitary sequences and classes of barrelledness

M. López Pellicer and S. Moll

Abstract. It is well known that some dense subspaces of a barrelled space could be not barrelled. Here
we prove that dense subspaces ofl∞(Ω, X) are barrelled (unordered Baire-like orp−barrelled) spaces if
they have “enough” subspaces with the considered barrelledness property and if the normed spaceX has
this barrelledness property.

These dense subspaces are used in measure theory and its barrelledness is related with some sequences
of unitary vectors.

Sucesiones unitarias y clases de tonelaci ón

Resumen. Es bien conocido que existen espacios tonelados con subespacios densos no tonelados.
Aquı́ se prueba que los subespacios densos del∞(Ω, X) son espacios tonelados (unordered Baire-like
o p−tonelados) si tienen “suficientes” subespacios con la propiedad de tonelación considerada y si el
espacio normadoX tiene esa propiedad de tonelación.

Estos subespacios densos se utilizan en teorı́a de la mediday su clase de tonelación está relacionada
con ciertas sucesiones de vectores unitarios.

1. Preliminaries

Along this paperΩ will denote a non void set,X a normed space over the fieldK of real or com-
plex numbers,l∞(Ω, X) the linear space overK of all those functionsf : Ω −→ X such that the
set{‖f(ω)‖ : ω ∈ Ω} is bounded, equipped with the supremum norm‖f‖∞ = sup {‖f(ω)‖ : ω ∈ Ω},
bcs(Ω, X) the linear subspace ofl∞(Ω, X) of all those functionsf ∈ l∞(Ω, X) countably supported and
c0(Ω, X) the linear subspace ofbcs(Ω, X) of all those functionsf : Ω −→ X such that for eachε > 0 the
set{ω ∈ Ω : ‖f(ω)‖ > ε} is finite or empty.

Let us recall that a (Hausdorff) locally convex spaceE is barrelled if each barrel (i.e. each absorbing,
closed and absolutely convex set) inE is a neighborhood of the origin (see [14, Definition 4.1.1]).

A p−net in a vector spaceY (see [1]) is a familyW = {Et : t ∈ Tp} of linear subspaces ofY , with
Tp =

⋃p

k=1 Nk, such thatY =
⋃

n∈N
En, En ⊂ En+1, Et =

⋃

n∈N
Et,n andEt,n ⊂ Et,n+1, for t ∈ Tp−1

andn ∈ N.
A (Hausdorff) locally convex spaceE is barrelled of classp (p−barrelled for short) if given ap−net

W = {Et : t ∈ Tp} there is at ∈ Np such thatEt is barrelled and dense inE. The barrelled spaces of class
1 were introduced by Valdivia in [23] with the name suprabarrelled spaces, also called (db)-spaces in [15]
and [20].
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Other definitions of barrelled spaces related to the Banach-Steinhaus theorem or with the closed graph
theorem may be found in [6, Theorems 1.1.4, 1.1.8, 3.2.2 and 3.2.4].

It has been discovered that some of the classical barrelled functional spaces are barrelled spaces of class
p. For instance, Dieudonné (cf. [25, p. 133]) proved thatl∞0 (i.e. the linear subspace ofl∞ formed by the
sequences taking finitely many different values) is barrelled. The barrelledness ofl∞0 was also pointed out
independently by Saxon [19]. IfA is a ring of subsets ofΩ andl∞0 (A) is the linear hull with coefficients
in K of the characteristic functionsXA, A ∈ A, endowed with the supremum norm, Schachermayer [21]
noticed thatl∞0 (A) is barrelled if and only if its dualba(A), the vector space overK of the bounded
finitely additive scalar measures defined onA equipped with the supremum norm, verifies the Nikodým
boundedness theorem ([2, p. 80]).

If A is aσ-algebra Valdivia noticed thatl∞0 (A) is suprabarrelled [23] and Ferrando and López Pellicer
found thatl∞0 (A) isp− barrelled [4]. Some other strong barrelledness propertiesof l∞0 (A) and applications
may be found in [5], [8], [9], [11], [16] and [17].

It was proved in [13] that ifΩ is countable infinite thenc0(Ω, X) is barrelled if and only ifX is barrelled.
For an infinite setΩ, it has been established in [7] thatc0(Ω, X) is barrelled, ultrabornological or unordered
Baire-like ( [22]) if and only ifX is barrelled, ultrabornological or unordered Baire-like,respectively. In
[12] it has been proved thatc0(Ω, X) is 1− barrelled if and only ifX is 1− barrelled.

The aim of this paper is to prove thatc0(Ω, X), bcs(Ω, X) and a wide class of subspaces ofbcs(Ω, X)
are (barrelled)p−barrelled if and only ifX is (barrelled)p−barrelled.

In what followssupp(f) means the support off , i.e. supp(f) = {x ∈ Ω : f(x) 6= 0}. We are going to
use the classical notation given, for instance, in [2] and [25]. The linear hull of a subsetA of a linear space
E will be denoted by〈A〉.

If E is a linear subspace ofbcs(Ω, X) we will denote bySE the family of all sequences{fn : n ∈ N}
such thatfn ∈ E, ‖fn‖∞ = 1 for eachn = 1, 2, . . . and whose support verify one of the following
conditions:

a)supp(fn) ∩ supp(fm) = ∅ if n 6= m
b) there is a countable set{w1, w2, . . . , wn, wn+1, . . .} ⊂ Ω such thatsupp(fn) ⊂ {wn+1, wn+2, . . .},

for n = 1, 2, . . .
If f ∈ E andΓ ⊂ Ω thenPΓf is the element ofbcs(Ω, X) such that(PΓf) (x) = f(x) if x ∈ Γ and

(PΓf) (x) = 0 whenx /∈ Γ. We will defineE(Γ) = {f ∈ E : supp(f) ⊂ Γ} and, in particularbcs(Γ, X)
= {f ∈ bcs(Ω, X) : supp(f) ⊂ Γ}.

We will denote byB the family of linear subspaces ofbcs(Ω, X) such that ifE ∈ B and∆ ⊂ Γ ⊂ Ω,
being∆ finite andΓ countable, thenbcs(∆, X) ⊂ E(Γ) = PΓ (E). ThenE = E (Γ) + E(Ω�Γ).

2. Barrelledness

In the familyB we are going to consider the familyB0 such that the locally convex vector spaceE ∈ B
belongs toB0 if given a sequence{fn : n ∈ N} ∈ SE there exists a barrelled space(F, τ) such thatF ⊂ E,
{fn : n ∈ N} is bounded in(F, τ) andτ is a locally convex topology finer than the topology induced in F
by the topology ofE.

Lemma 1 If E ∈ B0 andQ is a barrel inE there exists a finite set∆ (possibly empty) such thatQ absorbs
the unit ball ofE(Ω�∆).

PROOF. We assert that there is a countable set∆ = {w1, w2, . . .} such thatQ absorbs the closed unit
ball of E(Ω�∆). In fact, if this were not true, there would be af1 ∈ E with ‖f1‖∞ = 1 andf1 /∈ Q.
By the hypotesis and the countability of∆1 = supp(f1) we deduce the existence off2 ∈ E(Ω�∆1)
with ‖f2‖∞ = 1 andf2 /∈ 2Q. Once again, as the set∆2 = supp(f2) is countable there existsf3 ∈
E(Ω� {∆1 ∪ ∆2}) with ‖f3‖∞ = 1 andf3 /∈ 3Q.

By induction we would obtain a sequence{fn : n ∈ N} ∈ SE . Then, by hypotesis, there exists a
barrelled space(F, τ) beingF ⊂ E andτ a locally convex topology finer than the topology induced inF
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by the topology ofE, such that{fn : n ∈ N} is bounded in(F, τ) . ThereforeQ∩F is a0− neighborhood
in (F, τ) and then, by boundedness, there exists ap such that{fn : n ∈ N} ⊂ pQ. From this relation
follows the contradictionfp ∈ pQ.

Therefore, there exists a countable set∆ = {w1, w2, . . . , wn . . .} such thatQ absorbs the closed unit
ball of E(Ω�∆).

Now we are going to prove that there exists a natural numberi such thatQ absorbs the closed unit ball
of E({wi+1, wi+2, . . .}).

If this were not true, there would exist a sequence{fn : n ∈ N} with fn ∈ E({wn+1, wn+2, . . .}),
‖fn‖∞ = 1 andfn /∈ nQ for eachn = 1, 2, . . . But the sequence{fn : n ∈ N} ∈ SE and then, as in the
preceding case, we would obtain aq ∈ N such that{fn : n ∈ N} ⊂ qQ. This last inclusion contains the
contradictionfq ∈ qQ, which proves that there exists a natural numberi such thatQ absorbs the closed
unit ball ofE({wi+1, wi+2, . . .}).

Finally, we have obtained that if∆ = {w1, w2, . . . wi} thenQ absorbs the closed unit ball ofE(Ω�∆) =
E(Ω� {w1, w2, . . .}) + E({wi+1, wi+2, . . .}) �

Proposition 1 Suppose thatE ∈ B0. ThenE is barrelled if and only ifX is barrelled.

PROOF. If Q is a barrel inE then by Lemma 1, there exists a finite set∆ such thatQ absorbs the unit
ball of E(Ω�∆). The barrelQ also absorbs the unit ball of the barrelled spaceE (∆) = X∆ (see [6,
Proposition 1.1.13]). From the isomorphism betweenE and E(Ω�∆) × E(∆) it follows that Q is a
neighborhood of zero inE.

Conversely, ifE is barrelled andp ∈ Ω then from the isometry betweenX andE({p}) = E�E(Ω�{p})
it follows from [6, Proposition 1.1.9] thatX is barrelled. �

A locally convex spaceE is unordered Baire-like ([22]) if given inE a countable covering{An, n ∈ N}
of closed absolutely convex susbsets ofE, there exists anAn which is neighbourhood of zero inE.

In the familyB we are going to consider the familyBub such that the locally convex vector spaceE ∈ B
belongs toBub if given a sequence{fn : n ∈ N} ∈ SE there exists an unordered Baire-like space(F, τ)
such thatF ⊂ E, {fn : n ∈ N} is bounded in(F, τ), andτ is a locally convex topology finer than the
topology induced inF by the topology ofE.

Lemma 2 LetV = {Vn : n ∈ N} be a sequence of absolutely convex and closed subsets ofE such that
E = ∪n∈N〈Vn〉. Suppose thatE ∈ Bub.

Then there exists a subfamilyW = {Wn : n ∈ N} of V and a sequence{∆n : n ∈ N} of finite subsets
of Ω such that, for everyn ∈ N, E(Ω − ∆n) ⊂ 〈Wn〉 and

E = ∪n∈N〈Wn〉

PROOF. First we are going to prove that there existsm ∈ N and a countable subset∆m such that

E(Ω − ∆m) ⊂ 〈Vm〉.

In fact, if this were not true we would find a sequence{fn : n ∈ N} of unitary vectors inE(Ω) such
that

f1 6∈ 〈V1〉

and
fn ∈ E(Ω − ∪n−1

i=1 ∆i) − 〈Vn〉, n = 2, 3, . . .

where∆i = supp(fi) and‖ fi ‖∞= 1 for eachi ∈ N.
Then, by hypothesis, there exists an unordered Baire-like space(F, τ) such thatF ⊂ E, {fn : n ∈ N} is

bounded in(F, τ) andτ is a locally convex topology finer than the topology induced inF by the topology of
E. Therefore, there exists aVm that contains a nieghbourhood of zero in(F, τ), implying that the bounded
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set{fn : n ∈ N} is contained in〈Vm〉. The inclusion{fn : n ∈ N} ⊂ 〈Vm〉 contains the contradiction
fm ∈ 〈Vm〉, proving our first observation.

Therefore, from this property and [22, Theorem 4.1] we have that there exists a subfamilyW = {Wn :
n ∈ N} of V and a sequence{∆n : n ∈ N} of countable subsets ofΩ such thatE(Ω − ∆n) ⊂ 〈Wn〉, for
eachn ∈ N, andE =

⋃

n∈N
〈Wn〉.

From this first property it follows that it is enough to prove the lemma forΩ = N.
In this case we are going to prove that there exists some natural numberm such that

E(N − {1, 2, . . . , m}) ⊂ 〈Vm〉.

If this property were not true we would find a sequence{fn : n ∈ N} of unitary vectors inE(N) such
that

fn ∈ E(N − {1, 2, . . . , n}) − 〈Vn〉

and we would have that the sequence{fn : n ∈ N} ⊂ SE . By hypothesis, there exists an unordered
Baire-like space(F, τ) such thatF ⊂ E, {fn : n ∈ N} is bounded in(F, τ) andτ is a locally convex
topology finer than the topology induced inF by the topology ofE. Exactly as in the preceding case we
would obtain the contradictionfp ∈ 〈Vp〉, proving the second property we are looking for.

These two properties imply that there existsm ∈ N and a finite subset∆m such that

E(Ω − ∆m) ⊂ 〈Vm〉

and, then, from [22, Theorem 4.1] it follows the lemma.�

Proposition 2 Suppose thatE ∈ Bub. ThenE is unordered Baire-like if and only ifX is unordered
Baire-like.

PROOF. If E is unordered Baire-like andp ∈ Ω, then from the isometry betweenX andE({p}) =
E/E(Ω − {p}) it follows from [6, Proposition 1.3.6] thatX is unordered Baire-lke.

Conversely, ifX is unordered Baire-like andE were not unordered Baire-like, then there exists a se-
quence{Vn : n ∈ N} of absolutely convex and closed subsets ofE such that

E =
⋃

{Vn, n ∈ N}

and eachVn is not a neighbourhood of zero in the barrelled spaceE (see Proposition 1). Then, by bar-
relledness, we have that

E 6⊆ 〈Vn〉, n ∈ N.

From these relations and Lemma 2 we deduce that there exists asubsequence{Wn : n ∈ N} of
{Vn : n ∈ N} and a sequence{∆n : n ∈ N} of finite subsets ofΩ such that

E =
⋃

n∈N

〈Wn〉

E 6⊆ 〈Wn〉, n ∈ N

E(Ω − ∆n) ⊂ 〈Wn〉, n ∈ N

It is clear that we have for eachn ∈ N that

E(∆n) 6⊂ 〈Wn〉

and then there exists for eachn someδn ∈ ∆n such that

E({δn}) 6⊂ 〈Wn〉.

370



We consider the equivalence relationR in N defined by the equalityδm = δn (i.e. mRn if δm = δn).
This relation defines a partition{Fn, n ∈ P} in N, whereP is a finite or countable subset ofN.

Let {wn : n ∈ P} be the finite or countable subset ofΩ such thatwn = δs, beings an arbitrary element
of Fn. We may rewrite the relationsE({δn}) 6⊂ 〈Wn〉, n ∈ N, in the form:

E({wn}) 6⊂ 〈Wn〉, m ∈ Fn, n ∈ P.

We have that the spaceX is unordered Baire-like and thatE({wn}) andX are isometric. Therefore

E({wn}) 6⊂
⋃

m∈Fn

〈Wm〉, n ∈ P.

These non inclusions enables us to choosefn ∈ E({wn}) −
⋃

m∈Fn
〈Wm〉, ‖ fn ‖∞= 1, for each

n ∈ P. Then:
{fn : n ∈ P} 6⊆ 〈Wm〉, ∀m ∈ N

and the hypothesisE ∈ Bub implies the existence of an unordered Baire-like space(F, τ), beingF ⊂ E,
{fn : n ∈ P} bounded in(F, τ), and the topologyτ is finer than the topology induced byE in F . Therefore,
there exists someWm containing a neighbourhood of zero in(F, τ). This implies the contradiction

{fn : n ∈ P} ⊂ 〈Wn〉

which proves the proposition. �

3. Barrelledness of class p

Remember that a (Hausdorff) locally convex spaceE is barrelled of classp (or p−barrelled) if given a
p−netW = {Et : t ∈ Tp} there is at ∈ Np such thatEt is barrelled and dense inE. It is not difficult to
see that whenE is p−barrelled there are manyEt, t ∈ Np, which are barrelled and dense inE, and the next
definitions help us in obtaining the corresponding proof.

Definition 1 Let A be a subset of the setN of natural numbers. We will say thatA is a set of class1 (of
strict class1) if A is infinite (if there existsn1 ∈ N such thatA = {n ∈ N : n ≥ n1}).

A subsetA of Np is a set of classp (of strict classp) if A =
⋃

b∈B1
{b} × Cb, beingB1 a set of class

p − 1 (of strict classp − 1) and such that eachCb a set of class1 (of strict class1).

It is obvious that a subsetA of classp (of strict classp) may be written asA =
⋃

b∈Bk
{b} × Cb,

beingBk a set of classk (of strict classk) and eachCb a set of classp − k (of strict classp − k), with
1 ≤ k ≤ p − 1.

Also an easy induction give us the next result.

Proposition 3 LetA andB be two sets ofNp, then:

1. If A is a set of strict classp andB is a set of strict classp (of classp), thenA ∩ B is of strict classp
(of classp).

2. A contains a set of strict classp if and only ifNp \ A does not contain a set of classp.

3. If B is a set of classp there exists a bijectionϕ fromB ontoNp such thatϕ preserves the lexicographic
order.

The last statement implies that ifW= {Et : t ∈ Tp} is ap-net in thep−barrelled spaceE andB is a
set of classp then there is at ∈ B such thatEt is barrelled and dense inE, because the new numeration
of {Et : t ∈ B} with the help ofϕ gives a newp−net inE. From this observation the next proposition
follows easily.

371



Proposition 4 A (Hausdorff) locally convex space is barrelled of classp if and only if given ap-net
W= {Et : t ∈ Tp} there exists a setAp of strict classp such that ift ∈ Ap thenEt is barrelled and dense
in E.

PROOF. Let A = {t ∈ Np : Et is barrelled and dense inE}. From the preceding observation it follows
thatB = Np \ A cannot contain a set of classp. Then Proposition 3 statement2, implies thatA contains a
set of strict classp. �

If t = (t1, t2, . . . , ti, . . . tp) ∈ Tp andEt is barrelled and dense inE then, obviously,Et1t2...ti
is

barrelled and dense inE, for 1 ≤ i ≤ p − 1 ([6, Proposition 1.1.10]).
Recall that a locally convex spaceE is Baire-like if given an increasing covering{An : n ∈ N} of E,

being eachAn a closed absolutely convex subset ofE, there exists anAp which is a neighborhood of zero
([18]). It is obvious that suprabarrelled spaces are Baire-like, that Baire-like spaces are barrelled, that if
{En : n ∈ N} is a linear increasing covering of the Baire-like spaceE there exists anEn which is dense in
E and that ifF is barrelled and dense in the Baire spaceE thenF is Baire-like ([6, Propositions 3.1.2 and
3.2.3]). Therefore a locally convex (Hausdorff) spaceE is p−barrelled if given ap-netW= {Et : t ∈ Tp}
in E it is verified one of the following conditions:

1. There existst ∈ Np such thatEt is barrelled and dense inE.

2. There existst ∈ Np such thatEt is Baire-like.

3. There is a setA ⊂ Np of strict classp such that for eacht ∈ A we have thatEt is barrelled and dense
in E.

4. There is a setA ⊂ Np of strict classp such that for eacht ∈ A we have thatEt is Baire-like.

In the two last conditions we may omit the word strict.

Now let us suppose thatW = {Ft : t ∈ Tp} is ap-net inE. Let Tn1n2...np
be a barrel inFn1n2...np

,

Vn1n2...np
= Tn1n2...np

E
, Zn1n2...np

=
〈

Vn1n2...np

〉

, Sn1n2...np
=

⋂∞

m=np
Zn1n2...np−1m, Zn1n2...np−1

=
⋃∞

np=1 Sn1n2...np
, Sn1n2...np−1

=
⋂∞

m=np−1
Zn1n2...np−2m, . . . ,Zn1

=
⋃∞

n2=1 Sn1n2
, Sn1

=
⋂∞

m=n1
Zm.

It is obvious that ifA is a set of strict classp and F ⊂ Sn1n2...np
for each(n1n2 . . . np) ∈ A

then we have thatF ⊂ Sm1
, F ⊂ Sm1m2

, . . . , F ⊂ Sm1m2...mp−1
andF ⊂ Sm1m2...mp−1mp

when
(m1m2 . . . mp) ∈ A.

Lemma 3 LetW = {Ft : t ∈ Tp} be ap-net inE and letTn1n2...np
be a barrel inFn1n2...np

. Suppose
that given a sequence{fp : p ∈ N} ∈ SE there exists a setA of strict classp such that{fp : p ∈ N} ⊂
Sn1n2...np

for each(n1, n2, . . . , np) ∈ A. Then there exists a countable set∆ (possibly empty) and a setB
of strict classp such thatE (Ω \ ∆) ⊂ Sn1n2...np

for each(n1, n2, . . . , np) ∈ B.

PROOF. We are going to prove the lemma by decreasing induction. First we will see that there is a
countable set∆ (possibly empty) and a natural numbern1 such thatE (Ω \ ∆) ⊂ Sn1

.
In fact, if this were not true then we may findf1 ∈ E, with ‖f1‖∞ = 1 and f1 /∈ S1. The set

∆1 = supp(f1) is countable and fromE (Ω \ ∆1) * S2 we deduce the existence of af2 ∈ E (Ω \ ∆1)
with ‖f2‖∞ = 1 andf2 /∈ S2. Then put∆2 = supp (f2) and fromE (Ω \ (∆1 ∪ ∆2)) * S3 we may
suppose that there existsf3 ∈ E (Ω \ (∆1 ∪ ∆2)) with ‖f3‖∞ = 1 andf3 /∈ S3. Continuing in this
way we determine by induction a unitary sequence{fn : n ∈ N} in E and a pairwise disjoint sequence
{∆n : n ∈ N} of countable subsets ofΩ such that∆n = supp(fn), ‖fn‖∞ = 1 and fn /∈ Sn , for
n = 1, 2, . . .

The sequence{fq : q ∈ N} ∈ SE . By hypothesis there exists a setA of strict classp such that
{fq : q ∈ N} ⊂ Sn1n2...np

, for each(n1, n2, . . . , np) ∈ A. We also have that{fq : q ∈ N} ⊂ Sn1
if
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(n1, n2, . . . , np) ∈ A. From this inclusion follows the contradictionfn1
∈ Sn1

, which proves our asser-
tion.

Continuing with the induction let us suppose that there exists a setAh−1 of strict classh − 1 and a
countable set∆ such thatE (Ω \ ∆) ⊂ Sn1n2...nh−1

for each(n1, n2, . . . , nh−1) ∈ Ah−1. Let A
′

h−1 and

A
′′

h−1 be a partition ofAh−1 such that:

• A
′

h−1 is formed by the elementsb = (n1, n2, n3, . . . , nh−1) belonging toAh−1 for which we could
determine a countable set∆b of Ω and a natural numberm such thatE (Ω \ {∆ ∪ ∆b}) ⊂ Sn1n2...nh−1m.

• A
′′

h−1 = Ah−1�A
′

h−1. If (n1, n2, n3, . . . , nh−1) ∈ A
′′

h−1, ∆
′′

is a countable subset ofΩ andm ∈ N

we have thatE
(

Ω \
{

∆ ∪ ∆
′′

})

* Sn1n2...nh−1m.

If A
′

h−1 contains a setB of strict classh − 1 then we immediately obtain the next step of the inductive

process. In fact, if∆
′

=
⋃

b∈B ∆b we have that for everyb ∈ B there exists a setIb of strict class1

such thatE
(

Ω \
{

∆ ∪ ∆
′

})

⊂ Sn1n2...nh−1nh
for every(n1, n2, . . . , nh−1, nh) ∈

⋃

b∈B {b}× Ib = Ah,

being obvious thatAh is a set of strict classh.
If A

′

h−1 does not contain a set of strict classh − 1 thenA
′′

h−1 contains a setBh−1 of classh − 1 such

that for each(n1, n2, . . . , nh−1, nh) ∈ Bh−1 × N and each countable subset∆
′′

of Ω we have that

E
(

Ω \
{

∆ ∪ ∆
′′

})

* Sn1n2...nh−1nh
(1)

It is obvious thatBh−1 ×N is a set of classh, whose elements can be enumerated in the following way
{(n1(i), n2(i), . . . , nh−1(i), nh(i)) : i = 1, 2, 3, . . .}.

From (1) we deduce thatE (Ω \ ∆) * Sn1(1),n2(1),...,nh(1) which enables us to determineg1 ∈
E (Ω \ ∆), with ‖g1‖∞ = 1 andg1 /∈ Sn1(1),n2(1),...,nh(1).

If ∆
′

1 = supp(g1) we have by (1) thatE
(

Ω \
{

∆ ∪ ∆
′

1

})

* Sn1(2),n2(2),...,nh(2). This relation

indicates the existence ofg2 ∈ E
(

Ω \
{

∆ ∪ ∆
′

1

})

, with ‖g2‖∞ = 1 andg2 /∈ Sn1(2),n2(2),...,nh(2).

Now, if ∆
′

2 = supp(g2), we also have by (1) thatE
(

Ω \
{

∆ ∪ ∆
′

1 ∪ ∆
′

2

})

* Sn1(3),n2(3),...,nh(3).

Therefore, and after an obvious induction, we could obtain asequence{gi : i ∈ N} of unitary vectors
in E with pairwise disjoint supports∆

′

i = supp(gi), i = 1, 2, 3, . . ., such thatgi /∈ Sn1(i),n2(i),...,nh(i) ,
i = 1, 2, 3, . . ..
The sequence{gi : i ∈ N} ∈ SE and therefore there exists a setC of strict classp such that{gi : i ∈ N} ⊂
Sn1n2...nh

for (n1, n2, . . . , nh, nh+1, . . . , np) ∈ C. By Proposition 3 statement1 there exists an indexk
such that{gi : i ∈ N} ⊂ Sn1(k),n2(k),...,nh(k).
This relation contains the contradictiongk ∈ Sn1(k),n2(k),...,nh(k) that proves this lemma.�

Lemma 4 LetW = {Ft : t ∈ Tp} be ap-net in the (Hausdorff) locally convex spaceE and letTn1n2...np

be a barrel inFn1n2...np
. If F is a p-barrelled subspace ofE then there exists a subsetA of strict classp

such thatF ⊂ Sn1n2...np
whenever(n1n2 . . . np) ∈ A.

PROOF. Since{F ∩ Ft : t ∈ Tp} is ap-net inF , there is a setA of strict classp such that if(n1n2 . . . np) ∈

A thenF ∩ Fn1n2...np
is barrelled and dense inF . By density,F ∩ Tn1n2...np

F
is a neighborhood of zero

in F . ThereforeF ⊂ Zn1n2...np
for every(n1n2 . . . np) ∈ A, which implies thatF ⊂ Sn1n2...np

whenever
(n1n2 . . . np) ∈ A. �

Lemma 5 LetW = {Ft : t ∈ Tp} be ap-net in the (Hausdorff) locally convex spaceE, let Tn1n2...np
be

a barrel in Fn1n2...np
, F a subspace ofE andτ a locally convex topology inF finer than the induced by

E. If (F, τ) is p-barrelled then there exists a setA of strict classp such thatF ⊂ Sn1n2...np
whenever

(n1n2 . . . np) ∈ A.
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PROOF. Since(F, τ) is p-barrelled and{F ∩ Ft : t ∈ Tp} is ap-net inF , there is a setA of strict classp
such that if(n1n2 . . . np) ∈ A thenF ∩ Fn1n2...np

is barrelled and dense in(F, τ). HenceF ∩ Tn1n2...np

is a neigbourhood of zero inF ∩ Fn1n2...np
endowed with the topology induced byτ and, by density,

F ∩ Tn1n2...np

(F,τ)
is a neighborhood of zero in(F, τ). ¿FromF ∩ Tn1n2...np

(F,τ)
⊂ Tn1n2...np

E
it fol-

lows thatF ⊂ Zn1n2...np
for every (n1n2 . . . np) ∈ A, which implies thatF ⊂ Sn1n2...np

whenever
(n1n2 . . . np) ∈ A. �

Now, in the familyB we are going to consider the subfamilyBp such thatE ∈ B belongs toBp if given
the sequence{fn : n ∈ N} ∈ SE there exists ap−barrelled space(F, τ) such that{fn : n ∈ N} ⊂ F ⊂ E
andτ is a locally convex topology finer than the topology induced in F by the topology ofE.

Lemma 6 LetW = {Ft : t ∈ Tp} be ap-net inE and letTn1n2...np
be a barrel inFn1n2...np

. If E ∈ Bp

andX is a p−barrelled space then there exists a setA of strict classp such thatE = Sn1n2...np
when

(n1, n2, . . . , np) ∈ A.

PROOF. As E ∈ Bp Lemma 5 guaranties that we may apply Lemma 3. Therefore it is enough to prove
this lemma whenΩ is a countable set. Therefore we are going to suppose thatΩ = N and we will obtain
the proof by decreasing induction.

Now we are going to prove that there exists a natural numbern1 such thatE = Sn1
. In first place,

we will find a natural numberi such thatE({i + 1, i + 2, . . .}) ⊂ Si. In fact if this were not possible we
would determine a sequence{fi : i ∈ N} of unitary vectors such thatfi ∈ E ({i + 1, i + 2, . . .}) \ Si, for
i = 1, 2, . . .

The relation{fi : i ∈ N} ∈ SE , E ∈ Bp and Lemma 5 implies that there exists a setA of strict class
p such that{fi : i ∈ N} ∈ Sn1n2...np

when(n1, n2, . . . , np) ∈ A. Therefore if(n1, n2, . . . , np) ∈ A we
have that{fi : i ∈ N} ∈ Sn1

implying the contradictionfn1
∈ Sn1

.
This enables us to suppose that there exists a natural numberi such thatE({i + 1, i + 2, . . .}) ⊂ Si.

Let ∆ = {1, 2, . . . , i}.
Since the spaceE (∆) is isometric toX∆ endowed with thel∞ norm, we have thatE ({1, 2, . . . , i}) is

p-barrelled (see [6, Proposition 2.3]). Hence, there is a setB of strict classp such thatX∆ ⊂ Sn1n2...np

when(n1, n2, . . . , np) ∈ B (Lemma 4). Then for each(m1, m2, . . . , mp) ∈ B we have thatX∆ ⊂ Sm1
. If

n1 ≥ max(i, m1) thenE = E(N) = E({1, 2, . . . , i})+E ({i + 1, i + 2, . . .}) ⊂ Si+Sm1
⊂ Sn1

+Sn1
⊂

Sn1

Let us suppose that in the(h− 1)-step of the inductive process we have determined a setAh−1 of class
h−1 such thatE (N) = Sn1n2...nh−1

whenever(n1, n2, . . . , nh−1) ∈ Ah−1. Letb = (n1, n2, . . . , nh−1) ∈
Ah−1. The setsSn1n2...nh...ni...ns

, with ni ∈ N, h ≤ i ≤ s ≤ p generate in a natural way thep−(h−1)-net
formed by the setsS′

n1n2...nh...ni...ns
, with ni ∈ N for h ≤ i ≤ s ≤ p, given by

S′
n1n2...nh

= Sn1n2...nh

and
S′

n1n2...nh...ni...ns−1ns
= Sn1n2...nh...ni...ns−1ns

∩ S′
n1n2...nh...ni...ns−1

with ni ∈ N, h ≤ i ≤ s ≤ p andh ≤ s − 1.

In S′
n1n2...np

consider the barrelT ′
n1n2...np

= Tn1n2...np

E(N) ⋂

S′
n1n2...np

, beingTn1n2...np
the barrel

given inFn1n2...np
(⊂ S′

n1n2...np
⊂ Sn1n2...np

). SinceT ′
n1n2...np

E(N)
= Tn1n2...np

E(N)
, applying the first

step of the inductive process to thep − (h − 1)-net
{

S′
n1n2...nh...ni...ns

: ni ∈ N y h ≤ i ≤ s ≤ p
}

we get a setIb of class1 such thatE (N) = Sn1n2...nh−1nh
for eachnh ∈ Ib. The induction finishes with

the observation that
⋃

b∈Ah−1
{b} × Ib is a setAh of strict classh and thatE (N) = Sn1n2...nh−1nh

when
(n1, n2, . . . , nh) ∈ Ah. This induction proves the lemma.�
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Theorem 1 LetΩ be a non void set and suppose thatE ∈ Bp. The locally convex spaceE is p-barrelled
if and only ifX is p-barrelled.

PROOF. Forω ∈ Ω we have thatE and the productE (Ω� {ω})×E ({ω}) with the supremum norm are
isometric. Therefore, the spacesE ({ω}), andE�E(Ω� {ω}) are isometric. Hence ifE is p-barrelled,
thenX (isometric toE ({ω})) is p-barrelled according to [6, Proposition 3.2.12].

Conversely, ifX is p-barrelled we are going to show by induction thatE is p-barrelled.
Now we prove thatE is suprabarrelled (1-barrelled). We know thatE is Baire-like (see Proposition 1

and [6, Proposition 1.2.1]). Therefore if{Fn : n ∈ N} is a1-net inE there is an such thatFm is dense
in E for m ≥ n. If E were not suprabarrelled we would find inE a 1-net{Fn : n ∈ N} such that each
Fn is dense and non barrelled. LetTn be a barrel inFn which is not neighborhood of zero inFn. Set

Vn = Tn
E

andSn =
⋂

m≥n 〈Vn〉. According to Lemma 6, there is someSn = E, henceE = 〈Vn〉 and
the barrelledness ofE ( Proposition 1) yields thatVn is a neighborhood of zero inE. ThenTn = Vn ∩ Fn

is a neighborhood of zero inFn, a contradiction that enables us to establish that there exists aFn which is
barrelled.

Assuming thatE is (p−1)-barrelled,p ≥ 2, and that{Ft : t ∈ Tp} is ap-net inE, then we can suppose
that there is a setAp−1 of class(p − 1) such thatFt is barrelled and dense inE for t ∈ Ap−1. If t ∈ Ap−1

thenFt is Baire-like ([6, Proposition 1.2.1]), hence there is a setAp of classp such thatFtnp
is dense inE

for (t, np) ∈ Ap. Consequently, ifE were notp-barrelled we may find ap-net
{

Ft : t ∈ T′
p

}

such that each
Ft, for t ∈ Np, is not barrelled and dense inE. LetTt be a barrel inFt for t ∈ Np, which is not neighborhood
of zero inFt, for t ∈ Np. According to Lemma 6, there is a(n1, n2, . . . , np) such thatSn1n2...np

= E

and then, by barrelledness (Proposition 1),Vn1n2...np−1np
= Tn1n2...np−1np

E
is a neighborhood of zero in

Sn1n2...np−1np
. This implies the contradiction thatTn1n2...np−1np

= Vn1n2...np−1np
∩ Fn1n2...np−1np

is a
zero neighborhood inFn1n2...np−1np

. HenceE is p-barrelled. �

If we apply Lemma 6 whenTn1n2...np
= Fn1n2...np

we obtain the following property.
Let W = {Ft : t ∈ Tp} be ap−net inE. If E ∈ Bp andX is ap−barrelled space, then there exists a

setA of strict classp such thatFt is dense inE whent ∈ A.
This property simplifies the second part of the proof of Theorem 1. In fact, ifX is p−barrelled andE

were notp−barrelled we may find ap−net{Ft : t ∈ Tp} such thatFt is not barrelled and dense inE, for
eacht ∈ Np. We obtain the same contradiction as in the end of the proof ofTheorem 1.

4. Notes

WhenE is c0(Ω, X) or bcs(Ω, X) and{fn : n ∈ N} is a sequence of unitary vectors with disjoint supports,
it is easy to prove that{

∑∞

n=1 αnfn : |αn| ≤ 1, n = 1, 2, . . .} is a Banach disk.
If {fn : n ∈ N} is a sequence of unitary vectors ofE and there is a countable set{w1, w2, . . .} ⊂

Ω, such thatsupp(fn) ⊂ {wn+1, wn+2, . . .} then it is obvious that{
∑∞

n=1 αnfn :
∑∞

n=1 |αn| ≤ 1} is a
Banach disk.

Therefore,c0(Ω, X) andbcs(Ω, X) arep−barrelled if and only ifX is p−barrelled.
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[4] Ferrando, J. C. and López Pellicer, M. (1990). Strong barrelledness properties inl∞0 (X, A) and bounded finite
additive measures,Math. Ann., 287, 727–736.
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