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Abstract

n this dissertation, we study quadratic Lie algebras, with special in-
terest in those which are 2-step nilpotent, and give algorithmic pro-
cedures to build a wide range of examples. After an overview of the

known results in this matter, we start with a deconstruction process to re-
duce the study of general quadratic Lie algebras to the nilpotent ones. This is
obtained undoing successive double extensions on quotients given from the
location of some important ideals. The variety of nilpotent quadratic Lie al-
gebras can be established from free nilpotent Lie algebras and their invariant
bilinear forms. But this is a tough problem, so we focus ourselves in the 2-step
case. We start by introducing a newmethod to obtain them using multilinear
algebra. Later we prove this newmethod is equivalent to the two main classi-
cal techniques: double and T ∗-extensions. In combination with trivectors, we
end up giving a classification of these algebras up to dimension 17.

Once covered the 2-step nilpotent case, we start building larger and more
general quadratic Lie algebras. This is achieved via double extensions using
their skew-derivations, which can be described through the Universal Map-
ping Property of free nilpotent Lie algebras. After, we study the family of
quadratic Lie algebras with only one maximal ideal: the local ones. These al-
gebras have strong structural properties and include the well-known family
of real oscillator algebras, which are the quadratic algebras attached to metric
Lorentzian forms. The next part is devoted to the ideal structure of quadratic
Lie algebras, specially those whose ideals form a chain by their inclusions.

Finally, we introduce and explain how to use a computational package we
have developed. This software is supported on the thesis results and includes
many tools used along this work.
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Resumen

n esta tesis estudiamos las álgebras de Lie cuadráticas, con especial
interés en aquellas nilpotentes de índice 2, dandométodos algorítmi-
cos para construir una amplia gama de ejemplos. Después de una vi-

sión general de los resultados conocidos sobre este tema, comenzamos con un
proceso de deconstrucción que nos permite reducir el estudio de las álgebras
de Lie cuadráticas generales a tan solo aquellas nilpotentes. Esta reducción se
obtiene deshaciendo sucesivas doble extensiones sobre cocientes, una vez es
conocida la ubicación de algunos ideales importantes. La variedad de álge-
bras de Lie cuadráticas nilpotentes se puede establecer a partir de las álgebras
de Lie nilpotentes libres y sus formas bilineales invariantes. Pero hacerlo es
difícil, así que nos enfocamos en el caso donde el índice de nilpotencia es 2.
Empezamos presentando un nuevo método para obtener dichas álgebras em-
pleando técnicas de álgebra multilineal, para luego demostrar que este nuevo
método es equivalente a las dos técnicas clásicas principales: dobles extensio-
nes y T ∗-extensiones. En combinación con trivectores, terminamos dando una
clasificación de estas álgebras hasta dimensión 17.

Una vez cubierto el caso nilpotente de índice 2, comenzamos la construc-
ción álgebras de Lie cuadráticas más grandes y generales. Esto se logra me-
diante dobles extensiones usando sus derivaciones antisimétricas, que se pue-
den describir a través de la propiedad universal para álgebras de Lie nilpoten-
tes libres. Después, estudiamos la familia de álgebras de Lie cuadráticas con
un único ideal maximal: las álgebras locales. Estas tienen propiedades estruc-
turales sólidas e incluyen a la conocida familia de álgebras osciladoras reales,
que son las álgebras cuadráticas asociadas a formasmétricas Lorentzianas. La

xi
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siguiente parte está dedicada a la estructura que presentan los ideales de ál-
gebras de Lie cuadráticas, especialmente aquellas cuyos ideales forman una
cadena por inclusión.

Finalmente, explicamos cómo usar un paquete computacional que hemos
desarrollado. Este software está respaldado por los resultados de la tesis e
incluye muchas herramientas utilizadas a lo largo de esta memoria.

xii



CHAPTER

1Introduction

ie algebras are non-associative algebraic structures defined over vec-
tor spaces. These structures are heavily related to Lie groups of dif-
ferential varieties, groups where product and inversion are differen-

tiable. Apart from this geometric relation, Lie algebras are also important in
the study of differential equations, for example in physics.

These algebras take their name from the Norwegian mathematician Mar-
ius Sophus Lie (1842–1899), which discovered an alternative form of studying
what now are called Lie groups. He proposed analysing their tangent vector
fieldswhich behave like a Lie algebra. It wasHermannWeyl (1885–1955)who
applied this theory to the study of groups that, nowadays, model symmetries
in quantum mechanics.

Apart from Lie studies in 1870s, in Germany, in 1880s, and independently,
Wilhelm Karl Joseph Killing (1847–1923) defined Lie algebras. Although his
work was less rigorous in a mathematical sense, he made great progress clas-
sifying simple Lie algebras of finite dimension, as well as giving several con-
jectures which later became proved as true.

The next step forward was made by Élie Joseph Cartan (1869–1951) in
France. He took the works of Wilhelm Killing and Friedrich Engel (1861–
1941) and was able to complete the simple Lie algebras classification, identi-
fying the four main families and the five exceptional algebras.

1



Chapter 1. Introduction

Following these classification attempts, we have to mention one of the
greatest advances: Levi’s Theorem. Despite being conjectured by Killing and
Cartan, it was Eugenio Elia Levi (1883–1917) who proved it in 1905. This
theorem says every finite dimensional Lie algebra can be decomposed as a
direct sum of two subalgebras: one semisimple and another one solvable. It
is the solvable part the one which remains open and leads several studies.
In 1945, Anatoly Ivanovich Maltsev (1907–1967) reduced the solvable case to
the study of nilpotent Lie algebras and their derivations and automorphisms
(see [Maltsev, 1945]).

Figure 1.1: From left to right, and in chronological order: Sophus Lie,Wilhelm
Killing, Élie Cartan, Eugenio Levi, Hermann Weyl and Anatoly Maltsev.

But this thesis is focused on only certain Lie algebras, the quadratic ones.
Quadratic Lie algebras, also named as metrizable, were introduced in 1955 by
Shou-Town Tsou, it was in his PhD Thesis titled “On Metrisable Lie Groups
and Lie Algebras” (see [Yuan, 1963]). The main results from this disserta-
tion appeared in an article written by S-T. Tsou and A.G. Walker (see mar-
gin note for more information about authors and check [Tsou and Walker,
1957] for reference). Here, metric Lie algebras appear as real Lie algebras

Arthur Geoffrey Walker
(1909–2001), on the left,
was a British geometer.
He was famous for its
contributions in physics.
On the right, his Chinese
student Shou-Town Tsou
(1918-1993) who spent 2
years in Liverpool (1953–
1955) obtaining his PhD
before returning to Hong
Kong.

of Lie groups admitting a Riemannian metric invariant under all translations
of the group. In fact, according to [Milnor, 1976, Lemmas 7.1 and 7.2] (see
also [Medina, 1985, Lemma 2.1]), the connected Lie groups admitting a bi-
invariant Riemannian metric are those Lie groups for which their Lie alge-
bras are quadratic. In [Tsou and Walker, 1957] several decompositions and
existence theorems are given, and it is shown that every metrizable algebra
decomposes as an orthogonal sum of an abelian algebra and a finite num-
ber of non-decomposable reduced ones. The family of quadratic Lie algebras
is quite large and contains reductive Lie algebras, and also infinitely many
non-semisimple examples. Their structure has essential patterns which can
be used to decode the one of some Lie groups. Riemannian geometry makes

2



this class of algebras visible, but they also play an important role in many
other branches ofmathematics andphysics fromCartan’s Criterion up to com-
pletely integrable Hamiltonian systems (see [Bordemann, 1997, Section 1]).

Due to the tough classification, along the 2000s, many efforts were made
on small dimension classifications of quadratic Lie algebras or in deepening
the structure of certain families related to symmetric spaces (Kath, Olbrich,
Duong, Benayadi, Hilgert, Neeb). From then until today (see [Ovando, 2016]
and references therein), wefindpapers on classification byusing non-classical
procedures (Duong, Ovando, Benito, Laliena, de-la-Concepción, Kath, Ol-
brich) or relating quadratic algebras, geometric structures and their applica-
tions (Bajo, Benayadi, Albuquerque, Salgado, Rodriguez Vallarte, Cornulier,
del Barco, Conti and Rossi).

Multilinear algebra is closely related to quadratic Lie algebras as ilustrated
in the work of Tsou and Walker, or more recently in [Noui and Revoy, 1997],
where 2-step quadratic Lie algebras are related to trivectors. On the other
hand, their relation with Riemannian geometry (check [Milnor, 1976]) re-
flects that adjoint and coadjoint representations of their attached Lie alge-
bras are isomorphic. This is why quadratic Lie algebras are also named self-
dual. In [Medina, 1985], it is shown the existence of Lie-Poisson structures
on the variety of quadratic Lie algebras. The author also describes the ba-
sic structural properties of real and non-simple Lie algebras endowed with a
Lorentzian metric. This type of algebras is known in quantum mechanic as
oscillator algebras because they are related to the motion of n-uncoupled har-
monic oscillators near an equilibrium position (see [Ovando, 2006,Ovando,
2007a]). At the same date, Hilgert and Hofmann arrived at the oscillator Lie
algebras in their study of Lorentzian semialgebras in [Hilgert and Hofmann,
1985]. Real oscillator algebras are one-dimensional split extensions of Gen-
eralized Heisenberg algebras and can be doubly extended to a large series of
mixed quadratic Lie algebras (see [Benito and Roldán-López, 2022c]). But
quadratic families can be found more easily. For instance, the Killing form
turns simple Lie algebras into quadratic. So, reductive Lie algebras, which
are direct sum of simple and one-dimensional ideals, so are.

In order to obtain large amounts of quadratic Lie algebras, there are two
main construction procedures. The double extension is a classical method
introduced in the 1980’s to build specifically quadratic Lie algebras. The ap-
proach to the method is based on fundamental ideas appeared in two exer-

3



Chapter 1. Introduction

cises in [Kac, 1983], proposed by the author to his undergraduate students.
This observation is made in [Favre and Santharoubane, 1987], where the au-
thors show how to reconstruct a quadratic solvable algebra by double exten-
sions using an isotropic central element. We can found these elements in any
quadratic and non-reductive Lie algebra. This is a multi-step process which
can be used iteratively to obtain any quadratic Lie algebra (see [Medina and
Revoy, 1985]). For indecomposable algebras, the authors justify the claim by
deconstructing the algebra using a maximal ideal and its minimal orthogo-
nal ideal. The finite dimensionality ensures that the process ends after a few
steps. Apretty explanation of the deconstruction-and-construction procedure
is given in [Figueroa-O’Farrill and Stanciu, 1996]. Figueroa and Stanciu refine
the Medina and Revoy structure theorem and describe briefly some appli-
cations of quadratic Lie algebras to Conformal field Theory and String The-
ory. In 1997, M. Bordemann in his work [Bordemann, 1997] introduced an-
other approach: the T*-extension method, which produces even-dimensional
quadratic Lie algebras but in a single step andworks for other non-associative
algebras. In fact, the algebras that appear as T*-extensions are those that have
a lagrangian ideal. This is the case for the indecomposable 2-step quadratic
Lie algebras.

Figure 1.2: From left to right: John Milnor, Karl Heinrich Hofmann, Joachim
Hilgert, Ines Kath, Karl-Hermann Neeb, Gabriela Paola Ovando.

Previous methods are good to build examples but they presents difficul-
ties when dealing with the classification problem. The handling of isomor-
phisms is also not a simple task. Indeed, up to now, only classifications of
small dimension have been obtained. In 1987, Favre and Santhorouban eas-
ily listed the nilpotent Lie algebras up to dimension 7 (four indecomposable
in the list). Until 2007, only the complete list of nilpotent real quadratic Lie
algebras up to dimension 10 has been achieved in [Kath, 2007]. The classi-
fication of non-nilpotent solvable Lie algebras of dimension greater than six

4



is unknown. In 2012, Duong and Pham described the solvable Lie algebras
up to dimension 6. Duong and Ushirobira discussed the classification of solv-
able Lie algebras up to dimension 8 in their 2014 preprint (see [Duong and
Ushirobira, 2017], we have not found any journal reference so far). In 2014,
Elduque and Benayadi get the list of complex and real mixed Lie algebras
up to dimension 13 (see [Benayadi and Elduque, 2014]). The latest classi-
fication is accomplished by employing tools such as representation theory of
three-dimensional simple algebras and the structure of small-dimensional Jor-
dan algebras. Given the challenging task of classifying quadratic Lie algebras
in low dimension, over time alternative structural proposals have emerged
(for a more detailed description, see [Ovando, 2006]). Amalgamated prod-
ucts in the case of quadratic nilpotent found at [Favre and Santharoubane,
1987], bi-extensions in [Keith, 1984] and inflactions in [Hofmann and Keith,
1986] for quadratic mixed. Twofold quadratic extensions in [Kath and Ol-
brich, 2004, Kath and Olbrich, 2006], and the use of invariant bilinear forms
of free nilpotent Lie algebras in [Benito et al., 2017] were given to offer con-
structions and alternative schemes of classification.

Seeking for isotropic ideals to build quadratic algebras is inherent in the
essence of classical constructions. For quadratic indecomposable algebras,
solvable and nilpotent radicals are totally isotropic. From [Kath and Olbrich,
2006, Section 3], since socle and Jacobson radical are orthogonal each other, a
series of increasing and decreasing ideals can be obtained inside a quadratic
Lie algebra. Using both chains, the notion of balanced extensions of quadratic
algebras shows up as an alternative of deconstruction of quadratic algebras.
The authors pointed out their proposal follows the ideas of the hand-written
notes (unpublished) by Berard Bergery “Structure des espaces symetriques
pseudo-riemanniens”. This is not an unusual situation because the presence
of a non-degenerate invariant form exerts a constraining influence on the ideal
structure of the algebra (see [Hofmann and Keith, 1986, Corollary 1.4]). In
fact, lattices of ideals of quadratic Lie algebras are self-dual by orthogonality.
So, the aforementioned chains and their placement follow established pat-
terns.

The idea of deconstructing connects with Maltsev’s proposal for general
Lie algebras in [Maltsev, 1945] (see also [Oniščik and Hakimdžanov, 1975,
Propositions 3 and 4])In a similar way, ideals, nilpotent quadratic Lie alge-
bras, derivations and automorphisms arise as main objects in the theory of

5



Chapter 1. Introduction

general quadratic Lie algebras. Andmultilinear algebra emerge as a powerful
tool. Despite the complete classification of quadratic Lie algebras is hope-
less, the study of this variety of algebras, their main structural patterns, re-
lationships with other structures (complex structures, symmetric spaces and
Lie triple systems, Manin triples and pairs among others, see chronology in
Section 2.3) and applications to theoretical physics and other mathematical
branches is an interesting challenge.

1.1 Objectives

The aim of this dissertation is to study the structure of quadratic 2-step nilpo-
tent Lie algebras and beyond, and to develop algorithms based on quadratic
Lie structural results. This main goal comes with smaller targets:

• Reach structural results in order to reduce the study of general quadratic
Lie algebras to the nilpotent case.

• Present different approaches to get quadratic nilpotent Lie algebras.

• Classification of quadratic nilpotent algebras of nilpotency index 2 up
to dimension 17.

• Development of general constructions of quadratic Lie algebras, both
solvable and non-solvable, based on previously known and new meth-
ods and classifications.

Apart from it, and as a natural consequence of the development, we have
achieved other results:

• Study of the ideal structure of quadratic Lie algebras.

• Computational algorithms applied to quadratic Lie algebras.

6



1.2. Thesis structure

1.2 Thesis structure

The memoir is divided into six chapters, including this first one, where we
are now, which is the introduction. The second chapter, in its first section,
explains the classical well-known concepts and results on general Lie alge-
bras we are going to use through the thesis as basic tools. In this chapter, we
also have a second section devoted to Lie quadratic structures. This section is
essential for the following chapters because it reviews, reformulates and ex-
pands main research on quadratic Lie algebras obtained in the course of time
by various authors, which is summarize in a timeline at the end of chapter.

The next three chapters are the ones with the main results explained in
the objectives (deconstructions, new methods for obtaining quadratic 2-step
nilpotent Lie algebras, equivalence among the different methods for 2-step al-
gebras, classifications of these algebras, derivations, automorphisms and ideal
structure of quadratic Lie algebras). At the end of each of these chapters, we
can find a summary of themain covered results. Most of the presented results
have been published or accepted for future publication in different papers.

The final and sixth chapter introduces a computational package which
serves as an aid through all the thesis to generate examples and to obtain con-
jectures before proving new results.

It is important to notice that, at the very end of the memoir, we can find
a list of terms and symbols, just after the bibliography. This enumeration can
be extremely useful when trying to remember some notation or concepts pre-
viously explained.

As a final remark, in this dissertation, all vector spaces are considered fi-
nite dimensional over a field F of characteristic zero. Although, it is worth
mentioning many of the results can be established in characteristic different
from two.

7
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CHAPTER

2Background

n this chapter, we will explain the important terms and results which
will be the support for the rest of the thesis. We will start from what
is a Lie algebra, to continue seeing their types, including quadratic

Lie algebras which are the main topic. For these ones, we will describe the
classical construction methods, as well as a chronology about how they have
been studied and which advancements have been made through time.

Experts on Lie algebras can omit Section 2.1 as it only includes basic well-
known definitions and results.

2.1 General Lie algebras

Basics notions and facts on Lie algebras of this section follows from [Jacobson,
1979], [Elduque, 2015] and [Humphreys, 1997].

To start with, we have the most general and basic concept in this thesis, an
algebra.

Definition 2.1.1. An algebra A is a vector space over a field F endowed with a
binary bilinear product f : A×A→ A.

9



Chapter 2. Background

In general algebras, this product f(x, y) is usually denoted as xy. When
(xy)z = x(yz) or xy = yx for every x, y, z ∈ Awe have an associative algebra or
commutative algebra respectively. Any field F, its polynomials in one or several
variables F[x1, . . . , xn] and d × d matricesMd(F) provides examples of asso-
ciative algebras, where the first one is also commutative. But Lie algebras, in
general, are neither associative nor commutative. They are defined as follows:

Definition 2.1.2. A Lie algebra L is a vector space over a field F endowed with
a binary bilinear product

[ · , · ] : L× L→ L

(x, y) 7→ [x, y]

satisfying the following two properties:

1. [x, x] = 0 for every x ∈ L,

2. for all x, y, z ∈ Lwe have the Jacoby Identity:

J(x, y, z) = [[x, y], z] + [[z, x], y] + [[y, z], x] = 0. (2.1)

This product is known as Lie bracket or commutator. Note, that when
several Lie brackets appear together, we will add a subindex [ · , · ]L to specify
to which algebra belongs each.
Remark 2.1.1. Being bilinear in combination with the first property implies
the product is skew-symmetric. In fact, when the characteristic of the field is
different from two, this fact is equivalent to that first condition.

We can easily find examples of Lie algebras. Themost straightforward one
is taking any vector space with a null bracket. This type of algebras is called
abelian and, in them, identity (2.1) becomes trivial. Another well-known ex-
ample of a Lie algebra is the usual cross product of two vectors u, v denoted
as u ∧ v in the euclidean space R3.

But, in order to obtainmore general Lie algebras, we can take the following
constructions. LetA be an associative algebra with product xy, if we twist the
product in the form

[x, y] = xy − yx, (2.2)
the new binary product is skew-symmetric and satisfies identity (2.1). The
Lie algebra obtained is denoted as A−.
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2.1. General Lie algebras

Example 2.1.1. Let V be a vector space over a field F. If we consider the set of
linear endomorphisms1 of V ,End FV , with the product obtained from natural
compositions

[x, y] = x ◦ y − y ◦ x, (2.3)

for x, y ∈ EndF V we obtain a Lie algebra. This is known as the general linear
Lie algebra, and it is usually denoted as gl(V ) or (EndF V )−.

It is quite common to take a basis and identify endomorphisms with coor-
dinate matrices. In this case, product defined in equation (2.3) becomes like
the one in equation (2.2)where xy denotes this time the usualmatrix product.
Here, if V is a n-dimensional vector space the algebra is referred as gl(n,F),
glnF or simply gln.

General linear Lie algebras play an important role as any Lie algebra of
finite dimension can be embedded into a general linear Lie algebra using
its adjoint representation (see Definition 2.1.9) as stated by Ado’s Theorem
(characteristic 0) and Ivasawa’s Theorem (prime characteristic), see [Jacob-
son, 1979, Chapter VI, Section 2 and 3].

Apart from theA− construction, given an associative algebra with an anti-
involution2 (A, ⋆)we can obtain two different non-associative algebras consid-
ering eigenvalues 1 and −1 as ⋆2 = Id:

Skew(A, ⋆) = {a ∈ A | a⋆ = −a},
Sym(A, ⋆) = {a ∈ A | a⋆ = a},

The first one, under the product given in expression (2.2), is a Lie algebra
(subalgebra of A−). While the last one, with the commutative product x · y =

xy + yx, becomes a Jordan algebra as it satisfies Jordan identity

(x2 · y) · x = x2 · (y · x).

This algebra is commutative and non-associative. Both subspaces lead to the
Z2-graded decomposition considering A− product (see Section 2.1.2.3)

A = A0 ⊕A1 = Skew(A, ⋆)⊕ Sym(A, ⋆). (2.4)
1A morphism from a mathematical object to itself. In the case of vector spaces, it is simply

a linear map.
2A linear function that is its own inverse and (xy)⋆ = y⋆x⋆ for every x, y ∈ A.
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Chapter 2. Background

Example 2.1.2. In the particular case A =Md(F), expression (2.4) is the natu-
ral direct sum decomposition in skew-symmetric and symmetric matrices.

Next, we are introducing the Lie algebra of derivations.

Definition 2.1.3. Let A be an algebra over a field F. A derivation is an endo-
morphism d : A→ A such that for any a, b ∈ A

d(a b) = a d(b) + d(a) b.

Given two derivations d1 and d2, its commutator from equation (2.2) pro-
duces another derivation. This way, from any algebra the Lie algebra L we
obtain Der(L), which is the set of derivations considering the bracket prod-
uct.

In relation with derivations, we can define left and right multiplications.
Given any element x ∈ L Lie algebra, we define

lx = [x, · ],
rx = [ · , x].

Both are derivations given the Jacobi Identity. They are called inner derivations.
This way we have

Inner(L) := {adx : x ∈ L},

where adx = lx = −rx is called the adjoint of x. InnerL is also a Lie algebra,
as it is closed under the commutator, so we have the chain

InnerL ⊆ DerL ⊆ gl(L).

Finally, a usualway to describe a Lie algebra is taking a basis and giving the
product of any pair of elements in that basis. This way, for a basis {e1, . . . , en},
we can define the product by simply giving for i < j

[ei, ej ] =

n∑
k=1

aijkek,

where elements aijk are called structure constants. The other way around, a
family of scalars {aijk} define uniquely a Lie algebra over the vector space
generated by span⟨e1, . . . , en⟩ if and only if for every subindex i, j, k, r andm
the following conditions are satisfied

12
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(a) aiik = 0,

(b) aijk + ajik = 0, and

(c) aijrakrm + ajkrairm + akirajrm = 0.

These scalars are indeed the procedure used in the final section of Chapter 4
to list all algebras in the given classification and they also play an important
role in the equivalence of the three constructionmethods in that same chapter.

2.1.1 Substructures and mappings

2.1.1.1 Subalgebras and ideals

Subalgebras and ideals are main structures in algebras. It is easy to define
both notions in general nonassociative algebras, but we will refer only to Lie
algebras from now on, in order to have a clearer notation and as it will only
be needed there.

Definition 2.1.4. Let L be a Lie algebra andM a subspace of L, we sayM is a
subalgebra if [x, y] ∈M for every x, y ∈M .

Usually, throughout this paper, we will write for simplicity

[U, V ] = span⟨[u, v] : u ∈ U, v ∈ V ⟩,

where span denotes all F-linear combinations of elements in the set. Apart
from span, when there is only one element, wewillwriteFx = span⟨x⟩. There-
fore,M is a subalgebra if [M,M ] ⊆M .

In any Lie algebra L we have trivial subalgebras as the zero-dimensional
space, any 1-dimensional vector space, or the total algebra itself. In gl(n,F)
we have other well-known subalgebras as upper or lower triangular matri-
ces, skew-symmetricmatrices (check Example 2.1.2), diagonalmatrices or the
special linear algebra sl(n,F) defined as the subset of matrices with zero trace.
In the more general gl(A) we have already seen the subalgebra DerA.

On the same way, we have ideals, a type of subalgebra with a stronger
condition. In contrast with other algebras, we do not have left or right ideals
as Lie algebras are skew-symmetric.
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Chapter 2. Background

Definition 2.1.5. A subspace I of L is said to be an ideal when [I, L] ⊆ I .

Again, as before, the zero-dimensional or total algebra are also always ide-
als. But probably, the most wide-known examples are found next:
Definition 2.1.6. Let L be a Lie algebra, we defined its centre as

Z(L) = {x ∈ L : [x, y] = 0 ∀ y ∈ L}.

Ant its derived algebra3 as L′ = L2 = [L,L].

Both the centre and derived algebra are ideals. Indeed, every subspace of
the centre, and every subspace which contains the derived algebra inside are
also ideals. The derived algebra plays an important role in some Lie algebras
and will appear in Section 2.1.2.1.

Now, whenever we have some subalgebras and ideals, we are ready to
produce new ones. Given I, J ideals and A,B subalgebras of the same Lie
algebra Lwe have

• I + J , I ∩ J , [I, J ] are ideals,

• I +A, A ∩B are subalgebras, and

• I ∩A is an ideal of A.

Here, given U and V subspaces, U + V denotes the usual subspace sum

U + V := {x+ y : x ∈ U, y ∈ V }.

At the same time, we have the inner direct sum U ⊕ V when U ∩ V = 0.
This can also be identified with the more general outer sum U ×V := {(x, y) :
x ∈ U, y ∈ V } taking commutator

[(x1, y1), (x2, y2)] = ([x1, x2], [y1, y2]).

This direct sum prepares us for the following definition:
Definition 2.1.7. ALie algebra is decomposable if it can be expressed as a direct
sum of proper ideals. Otherwise, it is called indecomposable.

Directly from ideals we also get quotients of Lie algebras in the usual way.
3Not confuse derived algebra with algebra of derivations. They are completely different

terms.
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2.1. General Lie algebras

2.1.1.2 Lie algebras mappings

Immediately after the definition of an algebra, there appear linear mappings
that preserve the product.

Definition 2.1.8. Let L1 and L2 be Lie algebras, and φ : L1 → L2 a mapping.
We say φ is a Lie algebra homomorphism if it is linear and for every x, y ∈ L1

φ([x, y]L1) = [φ(x), φ(y)]L2 .

Here, kerφ is an ideal of L1, and Imφ is a subalgebra of L2.

The set of homomorphisms from L1 to L2 will be written as Hom(L1, L2).
Inside these homomorphismswe can find isomorphisms (bijective), endo-

morphisms (from some Lie algebra to itself) or automorphisms (bijective en-
domorphisms). The group of these lastmorphismswill be denoted asAut(L).

One of the main morphisms is the adjoint one, which we have briefly see
at the beginning of this chapter when seeing left and right products.

Definition 2.1.9. Let L be a Lie algebra, the adjoint homomorphism ad: L →
gl(L) is defined as (adx)(y) = [x, y].

Whenever there could be some confusion, we will write adL x. And, as
said earlier, this allows us to embed any algebra inside the general linear one.
With these adjoints we have defined InnerL, which is an ideal of DerL as
[d, adx] = ad d(x) for any d ∈ DerL and x ∈ L. Even more, from the first
out of three classic isomorphisms theorems, which can be easily rewritten in
terms of Lie algebras, we get

L/Z(L) ∼= adL L = InnerL (2.5)

as ker adL = {x ∈ L : [x, L] = 0} = Z(L).

2.1.1.3 Lie algebras representation

In order to examine an abstract Lie algebra in differentways, we can use repre-
sentation theory. This allows us to view it as a subalgebra or a quotient inside
the general linear algebra gl(V ).
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Definition 2.1.10. LetL be a Lie algebra and V a vector space. A representation
of L is a Lie algebra homomorphism φ : L → gl(V ) and the vector space V is
called L-module.

When kerφ = 0 we say the representation is faithful, and then L ∼= φ(L).
The adjoint representation introduced in Definition 2.1.9 is a classic example,
which is faithful whenever Z(L) = 0. Another example, related to this one
and that we will use in this thesis, is the coadjoint representation.
Definition 2.1.11. Let L be a Lie algebra, the coadjoint representation ad*: L→
gl(L∗) is defined as (ad*x)(β) = −β ◦ adx, so (ad*x)(β)(y) = −β([x, y]) for
x, y ∈ L, β ∈ L∗ dual space of L.

On the other hand, an equivalent way to define representations is doing it
throughout modules:
Definition 2.1.12. Let L be a Lie algebra and V a finite dimensional vector
space. A Lie module for L or L-module is an action

ϕ : L× V → V

(x, v) 7→ x · v

satisfying for x, y ∈ L, v, w ∈ V and λ, µ ∈ F:

• (λx+ µy) · v = λ(x · v) + µ(y · v)

• x · (λv + µw) = λ(x · v) + µ(x · w)

• [x, y] · v = x · (y · v)− y · (x · v)

Both definitions are equivalent concepts as given a representation φ we
can define a module ϕ(x, v) := φ(x)(v), and, on the other way, we define
φ(x) := ϕ(x, ·).

And, as it happens in algebras, we also have submodules and factor mod-
ules or quotients of modules.
Definition 2.1.13. Let V be aL-module, we sayW is a submodule ifL ·W ⊆W .
Definition 2.1.14. LetW be a L-submodule of V . We define the quotient of a
module or factor module as

ϕ : L× V/W → V/W

(x, v +W ) 7→ x · (v +W ) = (x · v) +W

16



2.1. General Lie algebras

For examples, ideals produce submodules in the adjoint representation.
And, again, given two L-modules U and V , we can easily obtain new combin-
ing them:

• summing them, U + V (or U ⊕ V )

• intersecting them, U ∩ V ,

• and tensorazing them U ⊗ V . In this case the action is defined as

x · (u⊗ v) = (x · u)⊗ v + u⊗ (x · v).

Definition 2.1.15. A Lie algebra module is called irreducible if it is not zero
and their unique submodules are itself and the null-space.

Definition 2.1.16. A Lie algebra module U is called indecomposable if there is
no non-null submodules V and W such that U = V ⊕ W . Otherwise it is
called decomposable.

Note irreducible implies indecomposable, but the reciprocal is not true.
Going to the extreme, we arrive at the next definition:

Definition 2.1.17. A Lie algebra module U is called completely reducible if

U = U1 ⊕ U2 ⊕ · · · ⊕ Uk,

with Ui irreducible modules for i = 1, . . . , k.

This definition comes in use when describing Weyl’s Theorem in Theo-
rem 2.1.23.

Finally, we will see modules homomorphisms which end up defining iso-
morphism, and the corresponding classical isomorphism theorems.

Definition 2.1.18. Let L be a Lie algebra, V andW L-modules via actions ρV
and ρW respectively. A L-module homomorphism is a lineal mapping θ : V →
W such that for each x ∈ L and v ∈ V we have

θ(ρV (x, v)) = ρ(x, θ(v)).

Thesemorphisms in combinationwith both representations seen here (ad-
joint in Definition 2.1.9 and coadjoint in Definition 2.1.11) lead us directly to
the following concept:
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Definition 2.1.19. An algebra L is called self-dual if the adjoint and coadjoint
representations are isomorphic, i.e. there is a bijective L-module homomor-
phism from L to L∗.

These elements in HomL(L,L
∗) consists on the linear maps f : L → L∗

such that for all x, y ∈ L

f([x, y]) = −f(y) ◦ adx. (2.6)

Here, we use notation HomL(V,W ) to denote the set of L-module homomor-
phisms from V toW .

With a module and a Lie algebra we can obtain new Lie algebras. This can
be done through the semidirect product of Lie algebras.

Definition 2.1.20. Let L andM two Lie algebras and ρ : L → gl(M) a repre-
sentation. The vector space L×M with product

[(x,m), (x′,m′)] = [x, x′]L + ρ(x)(m′)− ρ(x′)(m) + [m,m′]M ,

is denoted as L⋉ρM .

Lemma 2.1.2. L⋉ρM is a Lie algebra if and only if ρ(L) ⊆ DerM .

This lemma can be easily checked just verifying the Jacobi identity and can
be found as Lemma 1.1. on [Benito and de-la-Concepción, 2013].

One trivial example of this construction appears when L ⊆ DerM and
ρ is the identity. Another trivial example is obtained when M is an abelian
algebra as its derivations are gl(M). This case is usually referred as the split
extension of L by a module M . This semidirect product will be used later in
the double extension method.

2.1.2 Types of algebras

We can distinguish two big families of Lie algebras: solvable and semisim-
ple. Later, we will see that in general a Lie algebra is neither solvable, neither
semisimple. Instead, it is a mix of both types.
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2.1.2.1 Solvable and nilpotent Lie algebras

Before starting, we need a definition and a first lemma:

Definition 2.1.21. Let L be a Lie algebra, we define the derived Lie algebra as
the productL′ = [L,L]. This ideal can be extended to form a chain recursively
defining L(0) = L and L(k) := [L(k−1), L(k−1)] obtaining

L = L(0) ⊇ L′ = L(1) ⊇ L(2) ⊇ · · · ⊇ L(k).

This chain, called derived series, is precisely the one needed to define a solv-
able Lie algebra:

Definition 2.1.22. A Lie algebra L is said to be solvable if there exist m ≥ 1

such that L(m) = 0. The smallest m such that L(m) ̸= 0 and L(m+1) = 0 is
called solvable index.

This concept comes with some lemmas attached:

Lemma 2.1.3. If L is a Lie algebra where theres exist a chain of ideals

L = I0 ⊇ I1 ⊇ · · · ⊇ Im−1 ⊇ Im = 0

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L is solvable.

Indeed, the derived series is one of these chains. Moreover:

Lemma 2.1.4. Let L be a Lie algebra, then:

• If L is solvable, then every subalgebra and homomorphic image of L is solvable.

• If L contains a solvable ideal I such that L/I is also solvable, then L must be
solvable.

• If I and J are solvable ideals of L, then I + J is solvable as well.

It is precisely this last property which involves a sum the one we need to
introduce the next key concept.

Corollary 2.1.5. Let L be a finite dimensional Lie algebra, then there exist a unique
solvable ideal which contains every other solvable ideal of L. This ideal is called rad-
ical ideal and it is denoted as RadL, R(L) or simply R.
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Analogously, we have another series which introduces the family of nilpo-
tent Lie algebras.

Definition 2.1.23. The descending central series (DCS), also known as lower
central series, of a Lie algebra is definedwith termsL1 = L andLk = [L,Lk−1]

for k ≥ 2. This produces the following chain of ideals

L ⊇ L′ = L2 ⊂ L3 ⊇ . . .

The central name refers to Lk/Lk+1 ⊆ Z(L/Lk+1) and also defines an as-
cending counterpart:

Definition 2.1.24. The ascending central series (ACS), also known as upper cen-
tral series, of a Lie algebra is defined from Z0(L) = 0 and Zk(L) as the ideal
of L such that

Z(L/Zk−1(L)) = Zk(L)/Zk−1(L),

for k ≥ 1. This generates the next chain of ideals

0 = Z0(L) ⊆ Z(L) = Z1(L) ⊆ Z2(L) ⊆ · · · ⊆ L.

Definition 2.1.25. A Lie algebra L is said nilpotent if there exists t ≥ 2 such
that Lt = 0. The smallest t such that Lt ̸= 0 and Lt+1 = 0 is called nilpotency
index or nilindex. Moreover, an algebra whose nilpotency index is t is also
called t-step.

Remark 2.1.6. Every nilpotent Lie algebra is also solvable, but the converse
does not hold.

Abelian and 2-step (also called metabelian) Lie algebras are the easiest ex-
amples. These last algebras, the 2-step ones, are one our main focus for clas-
sification.

Lemma 2.1.7. For every L Lie algebra such that L ̸= 0 we have the next results:

• If L is nilpotent, then Z(L) ̸= 0 and all of their subalgebras and quotients are
nilpotent too.

• If L/Z(L) is nilpotent, then L is nilpotent.

• For any I ideal of a nilpotent Lie algebra L, I ∩ Z(L) ̸= 0.
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• If I and J are nilpotent ideals of L then I + J is also nilpotent.

And, again, this last sum property gives a maximal nilpotent ideal:
Corollary 2.1.8. Let L be a finite dimensional Lie algebra, then there exists a unique
nilpotent ideal which contains every other nilpotent ideal of L. This ideal is called
nilradical ideal and it is denoted as NilL, N(L) or simply N .

Originally, the definition was given as

N(L) = {x ∈ L | adL x is nilpotent}.

This idea will be recovered in Engel’s Theorem (see Theorem 2.1.14).
In nilpotent Lie algebras we can define the type of them:

Definition 2.1.26. Let n be a non-abelian nilpotent Lie algebra, we call type of
n to the codimension of n2 in n, i.e. the type is

d = codim n2 = dim(n/n2) = dim n− dim n2.

In general, the t-tuple (c1, . . . , ct) in which the ith component is defined as
ci = dim ni/ni+1, i.e. the dimension of the quotient of two consecutive terms
in the DCS, will be called the general type of some n (t + 1)-step algebra; and
dim n =

∑
ci.

According to [Gauger, 1973, Corollary 1.3], a setm = {x1, x2, . . . , xd} gen-
erates a nilpotent Lie algebra n (of type d) if and only if {x1+n2, . . . , xd+n2} is
a basis of n/n2. So, the type of a Lie algebra is just the cardinality of any linear
independent set m such that n = u ⊕ n2, where u is the linear span of m. The
above condition implies that the set m generates n as an algebra. Therefore,
the elements xi ∈ m can be viewed as a minimal set of generators (m.s.g.) of
algebra n.

Finally, we will denote as nd,t the free t-step nilpotent Lie algebra on d

generators (see [Benito and de-la-Concepción, 2013] for a formal specification
and references therein). Just to give a brief definition (for the notion of free
Lie algebras we follow [Jacobson, 1979, Chapter V, Section 4]):
Definition 2.1.27. Let FL(d) be the free Lie algebra on a set of d generators
over the field F. The free t-nilpotent Lie algebra on d generators is denoted
nd,t and defined as the quotient algebra

nd,t = FL(d)/FL(d)t+1.
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The elements of FL(d) are linear combinations of monomials

[xi1 , . . . , xis ] = [. . . [[xi1 , xi2 ], xi3 ], . . . , xis ],

where s ≥ 1 and xij ∈ m. So, the free nilpotent algebra nd,t is generated as
vector space by s-monomials [xi1 , . . . , xis ], for 1 ≤ s ≤ t. These monomials
form the so-called Hall basisHd,t for every nd,t (see Section 6.2.1 for details).

Any t-nilpotent Lie algebra n of type d over F is an homomorphic im-
age of nd,t according to Proposition 1.4 and Proposition 1.5 in [Gauger, 1973]
or [Satô, 1971, Proposition 4]. This is called Universal Mapping Property
(UMP), and can be seen in the next proposition.

Proposition 2.1.9. For any k-step nilpotent Lie algebra n with k ≤ t of type d,
and any d-elements y1, . . . , yd of n, the correspondence xi 7→ yi extends to a unique
algebra homomorphism nd,t → n. In the particular case that {y1, . . . , yd} is a m.s.g.,
the image contains a set of generators, so the map is surjective. Therefore, any t-step
nilpotent Lie algebra of type d is an homomorphic image

nd,t
I

where I is an ideal such
that I ⊆ n2d,t and ntd,t ̸⊆ I .

We can check [Grayson and Grossman, 1990] for a description of free
nilpotent algebras byHall basis generation and [Benito andde-la-Concepción,
2013] for main features. As main examples of nd,2 and nd,3, along the disser-
tation we will model them by using multilinear algebra as:

nd,2 = u⊕ Λ2u, [u, v] = u ∧ v,

nd,3 = u⊕ Λ2u⊕ u⊗ Λ2u

Λ3u
, [u, v ∧ w] = u⊗ v ∧ w mod Λ3u.

(2.7)

2.1.2.2 Semisimple and simple Lie algebras

The nullity of the maximal solvable ideal of a Lie algebra leads to semisimple
algebras.

Definition 2.1.28. A semisimple Lie algebra is a Lie algebra with no solvable
ideals, i.e. its solvable radical is zero.

Note that if L is semisimple, then [L,L] = L and Z(L) = 0. This way
L = 0 is semisimple. Moreover, for an arbitrary L, the quotient L/RadL is
also semisimple. But the main examples are simple Lie algebras.
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Apart from semisimple algebras, there are some Lie algebras L such that
L2 = L, they are called perfect.
Example 2.1.3. Let L be a semisimple Lie algebra of dimension n, and let V be
an irreducible module of L of dimension m ≥ 2. We define over L × V the
bracket

[(x, u), (y, v)]L×V = ([x, y]L, x · v − y · u).

Then, L× V is a perfect Lie algebra of dimension n+m. Moreover, Rad(L×
V ) = V so it is not semisimple. This split extension appears previously writ-
ten as L⋉ V .

Despite its definition in terms of its radical, a semisimple Lie algebra can
be nicely described in characteristic zero using its decomposition as an ideal
direct sum of simple algebras. These simple factors, as we have seen previ-
ously in the introductory chapter, were the first classified Lie algebras.

Definition 2.1.29. A Lie algebra is simplewhen it is not abelian and its unique
ideals are the trivial ones (total and zero).

All these simple Lie algebras were classified by Élie Cartan in this PhD
Thesis in 1894 using ideas previously introduced by Killing. Over an alge-
braically closed field, except five exceptional simple Lie algebras (e6, e7, e8, f4
and g2), every simple Lie algebra is isomorphic to one of the following four
families, known as classical algebras4:

• An for n ≥ 1, known as the special linear series. This algebra is

sl(V ) = {f ∈ gl(V ) : Tr f = 0},

where dimV = n + 1. Note the trace of an endomorphism is indepen-
dent from the chosen basis and, under linear combinations and the com-
mutator, that nullity is preserved.

• Cn for n ≥ 1, known as the symplectic series. This algebra is

sp(V, φ) = {f ∈ gl(V ) : φ(f(x), y) + φ(x, f(y)) = 0},

where φ is bilinear skew-symmetric nondegenerate, and dimV = 2n.
4It is not unusual to relate simple Lie algebras to its Dynkin diagram. These four diagrams

are the ones which define An, Bn, Cn and Dn types notation.
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• Bn and Dn for n ≥ 3, known as the orthogonal series. These algebras
are

so(V, φ) = {f ∈ gl(V ) : φ(f(x), y) + φ(x, f(y)) = 0}, (2.8)

where φ is bilinear symmetric nondegenerate and dimV = 2n+1 in the
case Bn and dimV = 2n when the type is Dn. Some authors refers to
them as o instead of so.

Remark 2.1.10. For smaller dimensions, some types are equivalent. This way
we have A1

∼= B1
∼= C1, B2

∼= C2, and D3
∼= A3. To avoid all these relations,

some authors only consider An≥1, Bn≥2, Cn≥3 and Dn≥4.
Remark 2.1.11. If we extend Dn for n ≥ 1 we obtain the semisimple but non-
simple algebras D1

∼= F, D2
∼= A1 ×A1.

Remark 2.1.12. Let φ : V × V → F bilinear non-degenerate, it induces an iso-
morphism from V to V ∗ which maps v to φ(v, ·). This leads to the involution
of the General Linear Lie algebra

⋆φ : gl(V )→ gl(V )

f 7→ f⋆,

where f⋆ is the only mapping such that

φ(f(x), y) = φ(x, f⋆(y)).

This way Skew(gl(V ), ⋆φ) = {f ∈ gl(V ) : f⋆ = −f} is equivalent to

• so(V, φ)when φ is symmetric,

• sp(V, φ) when φ is skew-symmetric.

All these families can be viewed taking basis in form ofmatrices. This way,
the counterpart of sl(V ) appeared as sl(n,F) in Subsection 2.1.1.1. For the rest
of them, we can define the auxiliar subalgebra

glS(n,F) := {M ∈ gl(n,F) :M tS = −SM}.

Now, if In is the identity matrix and 0n the null matrix, both of dimension
n× n:
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• The special orthogonal Lie algebra, so(n,F) = glS(n,F) for

S =

(
0k Ik

Ik 0k

)
or S =

1 0 0

0 0k Ik

0 Ik 0k


according to the parity of n, i.e. n = 2k or n = 2k + 1.

• The symplectic Lie algebra (even dimension) sp(2n,F) = glS(2n,F) for

S =

(
0n In

−In 0n

)

Applying this definitions we obtain:

so(2n,F) ∼=
{(

M N
P Q

)
:M t = −Q,N t = −N,P t = −P

}
so(2n+ 1,F) ∼=

{(
0 p q
r M N
s P Q

)
:
(
M N
P Q

)
∈ so(2n,F), rt = −q, st = −p

}
sp(2n,F) ∼=

{(
M N
P Q

)
:M t = −Q,N t = N,P t = P

}
Analogous to Remark 2.1.10, we have so(2,F) ∼= F, so(3,F) ∼= sl(2,F) ∼=

sp(2,F), so(4,F) ∼= sl(2,F)× sl(2,F), so(5,F) ∼= sp(4,F), and finally so(6,F) ∼=
sl(4,F).

In general, a Lie algebra L over a field F is said to be of classical type X
(X = A,B,C,D) in case its extension by scalars (see [Jacobson, 1979, Chapter
I, Section 8]) L⊗ F is simple of type X . Here F denotes the algebraic closure
of F. In this way, the number of Lie algebras over non-algebraically closed
fields, as for instance R, is way bigger than the closed case (check [Elduque,
2015]). This situation we can be observed in the following example.
Example 2.1.4. In R we can find other simple Lie algebras as

su(n,R) = {A ∈ sl(n,C) : aij = −aji}

which has the same dimension of sl(n,R) as a R-vector space but it is not
isomorphic. Although su(n,R)⊗ C ∼= sl(n,C).

Simple Lie algebras whose extension by scalars to the algebraically closed
field remains being simple are called central simple.
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2.1.2.3 Graded Lie algebras

In contrast to previous types of algebras, another important family is graded
algebras. This section is based on [Elduque and Kochetov, 2013, Section 1.1].
When restricting ourselves to just monoid grading on Lie algebras, we find
the following definition:

Definition 2.1.30. LetG be a commutative semigroup, aG-grading onL is any
decomposition of L into a direct sum of subspaces indexed by G

L =
⊕
g∈G

Lg

which respects the Lie bracket, i.e. [Lg, Lh] ⊆ Lgh. In this case L is said to be
graded.

On thismemoir, the semigroupG can beZ,N,N+,Znwith the binary sum.
When G = N we say the algebra is naturally graded, and when G = N+ it is
positive naturally graded, depending on whether the zero in included or not.

Different types of Lie algebras can be seen as graded, including simple
(see Example 2.1.5) or solvable (see Example 2.1.6).
Example 2.1.5. The smallest example of a gradation in a simple algebra is a
Z3-gradation in sl2. If we take the natural basis {e, f, h} with products

[e, f ] = h, [h, f ] = −2f, [h, e] = 2e,

we have the decomposition

sl2 = (sl2)−1 ⊕ (sl2)0 ⊕ (sl2)1 = span⟨e⟩ ⊕ span⟨h⟩ ⊕ span⟨f⟩.

This same decomposition in three parts can be seen directly as a Z-gradation,
and, with slight changes, we can also define the Z2-gradation

sl2 = (sl2)0 ⊕ (sl2)1 = span⟨h⟩ ⊕ span⟨e, f⟩.

Example 2.1.6. All nilpotent 2-step Lie algebras L admit a Z2-gradation con-
sidering the decomposition

L = L0 ⊕ L1

where L0 = L2 and L1 is a complement of L0.
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Example 2.1.7. Let nd,t be the free nilpotent Lie algebra with m = {x1, . . . , xd}
a m.s.g. If we set u = span⟨m⟩, the subspace us = [us−1, u] is the linear span of
the s-monomials. Thus nd,t is an N-graded algebra whose s-th homogeneous
component is us. The dimension of any subspace us, 1 ≤ s ≤ t is

1

s

∑
a|s

µ(a)ds/a,

where µ is the Möbius function.
Definition 2.1.31. Let L =

⊕
g∈G Lg be a gradation. An ideal I of L is called

homogeneous if
I =

⊕
g∈G

(Lg ∩ I).

Among natural graded Lie algebras, in this thesis we are interested in the
so called quasi-cyclic
Definition 2.1.32. A finite-dimensional quasi-cyclic (also known as homoge-
neous or Carnot) Lie algebra is a positive naturally graded algebra L = L1 ⊕
L2 ⊕ · · · ⊕ Lt generated as an algebra by L1. This means [Li, Lj ] ⊆ Li+j (here
Ls = 0 for s > t) and Li = [L1, Li−1] = [L1, L

i−1
1 ].

As seen, this can only be applied for nilpotent Lie algebras.
Following [Cornulier, 2016, Definition 3.3], the terms quasi-cyclic, graded,

naturally graded or homogeneous are better known in Lie algebras, while the
word Carnot (graded) is more commonly used in sub-Riemannian and con-
formal geometry. These algebraswere introduced at [Leger, 1963] byG. Leger
in 1963. The variety of quasi-cyclic Lie algebras includes free nilpotent nd,t,
generalised Heisenberg (see Definition 2.2.9) and filiforms among others Lie
algebras. It is not hard to see that a nilpotent Lie algebra n ∼= nd,t

I is quasi-cyclic
if and only if I is a homogeneous ideal of nd,t. In fact, quasi-cyclic Lie alge-
bras are the class of nilpotent Lie algebras that contain a m.s.g. {e1, . . . , ed}
such that the correspondence ei 7→ ei extends to a derivation of n according
to [Johnson, 1975, Corollary 1]. Note that such a derivation is invertible.
Definition 2.1.33. An automorphism of a real Lie algebra is called expanding
automorphism if it is semisimple5 with eigenvalues greater than 1 in absolute
value.

5Here semisimple refers to a group and means it has no non-trivial normal abelian sub-
groups.
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According to [Dyer, 1970], quasi-cyclic Lie algebras admits expanding au-
tomorphisms, but the converse is false (see Example 5.1.3). In fact, real quasi-
cyclic Lie algebras are those Lie algebras that admit grading automorphisms
(see [Johnson, 1975]). And following [Deré, 2017, Theorem 3.1 and Theorem
3.3] (see also [Cornulier, 2016]), the class of real Lie algebras admitting ex-
panding automorphisms is just the class of positive graded Lie algebras (pos-
itive naturally graded onwards) which is bigger than the quasi-cyclic class. In
the realm of nilpotent Lie groups, the existence of an expandingmap (respec-
tively a non-trivial self-cover) in an infra-nilmanifold modeled on a Lie group
G is equivalent to the fact that the real algebra Lie(G) admits a positive grad-
ing (respectively a naturally and non-trivial grading). Expanding automor-
phisms of real Lie algebras are hyperbolic (maps without eigenvalues ±1),
and Lie algebras admitting hyperbolic automorphisms are nilpotent (see [Smale,
1967, Proposition 3.6] and Definition 3.2.1). Some naturally graded paramet-
ric families of Lie algebras will be constructed in our Chapter 5.

2.1.3 Structure results

Wewill start explaining twomain results that are equivalent to the nilpotency
or solvability of a Lie algebra. The essence of both results is the existence of
common eigenvectors for Lie algebra endomorphisms as it is established in
the two lemmas preceding the main theorems. The second theorem requires
the field to be algebraically closed in order to guarantee it contains all required
eigenvalues.

Lemma 2.1.13. Let L be a subalgebra of gl(V ). If L consists of nilpotent endomor-
phisms and V ̸= 0, then there exists a nonzero v ∈ V for which x(v) = 0 for all
x ∈ L.

Theorem 2.1.14 (Engel’s Theorem). A Lie algebraL is nilpotent if and only if adx
is nilpotent for every element x ∈ L.

In general, ρ(x) is nilpotent for any element x ∈ [L,RadL] for any rep-
resentation ρ : L → gl(V ). Thus, we can find the next result which relates
radical and nilradical and appears in [Jacobson, 1979, Theorem 13, p. 51].

Theorem 2.1.15. Let L be a finite dimensional Lie algebra with radical R and nil-
radical N , then [L,R] ⊆ N .
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Even more,

R2 ⊆ [L,R] = L2 ∩R = R(L2) ⊆ N ⊆ R. (2.9)

Ideal [L,R] coincideswith the Jacobson radical andwill be denoted asJ (L).
We have that L is solvable if and only if J (L) = L2. This radical is originally
defined in [Marshall, 1967], which also gives a short proof of expression (2.9),
as

J (L) =
⋂
{I : I is a maximal ideal of L}.

Theorem 2.1.15 and equation (2.9) can also be seen as a consequence of
Lie’s Theorem, which applies in combination with the following lemma over
algebraically closed fields of characteristic zero.

Lemma 2.1.16. Let ρ : L → gl(V ) be a representation of a solvable Lie algebra L.
Then, there exists a nonzero element v ∈ V such that ρ(x)(v) ∈ span⟨v⟩ for any
x ∈ L.

Remark 2.1.17. Previous lemma is valid even if the field is not an algebraically
closed, as long as the minimum polynomial of ρ(x) splits over it. In this case,
ρ is said to be a split representation.

Theorem 2.1.18 (Lie’s Theorem). Let ρ : L→ gl(V ) be a split representation of a
solvable Lie algebra L. Then, there exists a basis of V such that the coordinate matrix
of any ρ(x) for x ∈ L is upper triangular.

Also as a consequence of Lie’s Theorem we have the next lemma:

Lemma 2.1.19. L is solvable if and only if L2 is nilpotent.

Although, solvable Lie algebras can also be characterized thanks to Car-
tan’s criterion based on the traces of inner derivations.

Theorem 2.1.20 (Cartan’s Criterion for solvability). A Lie algebra L in charac-
teristic zero is solvable if and only if κ(x, y) = 0 for all x ∈ L and y ∈ L′.

Here κ(x, y) is theKilling form, which is defined as κ(x, y) = Tr(ad x◦ad y)
where Tr denotes the trace.

This sameKilling form serves us to characterize semisimple algebras using
another Cartan’s criterion:
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Theorem 2.1.21 (Cartan’s Criterion for semisimplicity). A Lie algebraL in char-
acteristic zero is semisimple if and only if the Killing form κ of L is non-degenerate.

As a consequence of these criteria, we have the following properties:

• A Lie algebra is semisimple if and only if it is a direct sum of simple
ideals.

• All ideals and quotients of semisimple Lie algebra are also semisimple

• All derivations of semisimple Lie algebras are inner derivations. So
DerL = InnerL = {adx : x ∈ L}.

In view of the previous Cartan’s criteria, the Killing form is extremely im-
portant. It is also symmetric, bilinear, and satisfies an associative property

κ([x, y], z) = κ(x, [y, z]). (2.10)

The study of the representation theory of the semisimple Lie algebras is
one of the most important areas of research in Lie algebras. An important
result in this field is the next one:

Lemma 2.1.22 (Schur’s lemma). Let ρ : L → gl(V ) over an algebraically closed
field of characteristic zero be an irreducible representation. Then, the only endomor-
phisms of V commuting with all ρ(x) for x ∈ L are the scalars.

Using the notation introduced after equation (2.6), Schur’s lemma can be
rewritten as HomL(V, V ) = F IdV . Moreover, note L itself is an L-module
using the adjoint representation. Here an L-submodule is just an ideal, so it
follows that a simple algebraL is irreducible asL-module, while a semisimple
algebra is completely reducible as stated in the following theorem:

Theorem 2.1.23 (Weyl’s Theorem). Let L be a semisimple Lie algebra. Then, each
finite dimensional representation is completely reducible. Moreover, the number of
irreducible submodules in every decomposition is invariant and, up to reorder, those
submodules are isomorphic.

Lemma 2.1.24. Let ρ : L→ gl(V ) be a representation of a semisimple Lie algebra L,
then ρ(L) ⊆ sl(V ). In particular, L acts trivially on 1-dimensional L-modules.
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Once explained these initial results, and known the two big families of
Lie algebras (semisimple and solvable), we are ready to see how everything
is connected. One of the important consequences of Weyl’s Theorem is the
Levi Theorem that provides the Levi’s decomposition of any Lie algebra which
is finite-dimensional.

Theorem 2.1.25 (Levi Theorem). Let L a Lie algebra of finite dimension over a
field of characteristic zero, then there exists a subalgebra S ⊆ L such that L = S ⊕R
where R is the radical of L.

In this decomposition S is referred as Levi’s factor or Levi subalgebra. But
there are still some results to introduce before completely understanding this
result. First, let us focus on the Levi’s factor. Despite, not being unique, the
following result from [Jacobson, 1979] indicates all possible factors are iso-
morphic.

Theorem 2.1.26 (Maltsev-Chandra’s Theorem). Let L be a finite dimensional Lie
algebra over a field of characteristic zero with Levi’s decomposition L = S ⊕ R. For
each semisimple Lie algebra S1 of L there exists φ ∈ IntL such that φ(S1) ⊆ S.

Here, IntL denotes the subgroup ofAutL generated by internal automor-
phisms, i.e. elements of the form

exp(adx) =

∞∑
n=0

(adx)n

n!

for x ∈ NilL.
And, these Levi factors are semisimple Lie algebras as they are isomorphic

to L/RadLwhich is semisimple.
Finally, along this work we will use the following notion

Definition 2.1.34. We would say a Lie algebra L is mixed when in its Levi’s
decomposition L = S ⊕R both S and R are not null.

Levi Theorem and previous notions on solvability and semisimplicity lead
to the deconstruction of Lie algebras summarize in Figure 2.1. Here, we ob-
serve the deconstruction L = R⋊ad S following Definition 2.1.20.
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Lie algebras

Semisimple Solvable

Simple

Nilpotent

Abelian

Mixed

⊕

Figure 2.1: Schema of general Lie algebras types and decomposition.

2.2 Quadratic Lie algebras

The global structure of invariant Lie groups is encoded in the algebraic struc-
ture of their (real) metric Lie algebras. In 1985, Medina (see [Medina, 1985,
Lemma 2.1 and Corollary 2.2]) provides the following equivalent conditions
on the existence of bi-invariant metrics on Lie groups:

For a given Lie groupG and its Lie algebra Lie(G) = g, the follow-
ing statements are equivalent:

(a) The group G is endowed with a bi-invariant metric.
(b) The algebra g has a metric such that the adjoint action of G

on g is given by isometries.
(c) The adjoint and coadjoint representations of g are isomor-

phic by means of an isomorphism ψ : g → g∗ that satisfies
ψ(a)(b) = ψ(b)(a).

Moreover, if G is a connected group, condition (a) is also equiva-
lent to,

(d) The algebra g has a quadratic form q : g → R and for every
x ∈ g, the linear transformations adx is skew-adjoint with
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respect to the bilinear φ form attached to q, i.e. φ(x, y) =

q(x+ y)− q(x)− q(y).

These statements have been previously established in [Milnor, 1976, Lem-
mas 7.1 and 7.2]. Since adx(y) = [x, y] is the left product on g, condition
(d) is equivalent to

φ([x, y], z) + φ(y, [x, z]) = 0,

for all x, y, z ∈ g.

2.2.1 Basic facts

Definition 2.2.1. Let A be a non-associative6 algebra A with product xy, and
let φ : A×A→ F be a bilinear form. The pair (A,φ) is named pseudo-quadratic
whenever

• φ is invariant, i.e. φ(xy, z) = φ(x, yz),

• and φ is non-degenerated, which means

kerφ( · , y) := {x : φ(x, y) = 0 ∀ y} = 0.

And, if φ is also symmetric (A,φ) is metric or quadratic.

In the literature they also appear named as metrized, metrizable (usual
names for algebras over the real field), orthogonal, regular quadratic, quasi-
classical or symmetric self-dual. Along this thesis we use mostly the term
quadratic.
Remark 2.2.1. In [Hilgert and Neeb, 1996, Lemma 1] it is proved that for real
Lie algebras pseudo-metric and metric notions are equivalent.

Given any Lie algebra L with product [x, y], since it is skew-symmetric
the invariant condition, also named associative as in equation (2.10), of the
bilinear form φ can be rewritten as

φ([x, y], z) + φ(y, [x, z]) = 0,

6Non-associative includes associative. This remarkwill be useful when defining associative
quadratic algebras combined with quadratic Lie algebras.
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or using the adjoint representation

φ(ad(x)(y), z) + φ(y, ad(x)(z)) = 0.

This is equivalent to check if for some φ

InnerL ⊆ so(L,φ). (2.11)

As Λ2V ∼= so(V, φ) using the map a ∧ b→ φa,b, we can see so(L,φ) is linearly
spanned by the linear maps φa,b = φ(a, ·)b−φ(b, ·)a for a, b ∈ L. This algebra
is formed by the φ-skew endomorphisms. Also, at this point, we can define

Derφ(L) := DerL ∩ so(L,φ), (2.12)

theφ-skew derivations, whichwill serve us later. This is a subalgebra ofDerL

that contains the inner derivations ideal.
Once we have a definition of being quadratic, we will see how it applies

over semisimple Lie algebras.
Example 2.2.1. Any semisimple Lie algebra with its Killing form is quadratic.

In fact, the non-degeneration of this form characterizes (in characteristic
zero) the class of semisimple Lie algebras according to Cartan’s Criterion (see
Theorem 2.1.21).

Andwhich ismore important, every bilinear symmetric nondegenerate in-
variant form associated to any semisimple Lie algebra is a linear combination
of the Killing form of its simple ideals.

Proposition 2.2.2. Let (L,φ) be a simple quadratic Lie algebra over a field of char-
acteristic zero which is algebraically closed. Then φ is a scalar multiple of the Killing
form of L.

Proof. If L is simple, L is an irreducible L-module via the adjoint represen-
tation. Let φ : L × L → F be a bilinear from we can define the L-module
isomorphism

φ̂ : L→ L∗

x 7→ φ(x, ·).

Thus, we can define κ̂ and κ̂−1. This way, φ̂ ◦ κ̂−1 ∈ HomL(L,L) = F IdL

applying Schur’s Lemma. Therefore, φ̂ ◦ κ̂−1 = λ IdL for λ ∈ F so φ = λκ.
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As the decomposition in simple ideals of a semisimple algebra is orthog-
onal respect to the Killing form, we also have the following result:

Corollary 2.2.3. Let (L,φ) be a semi-simple quadratic Lie algebra over a field F of
characteristic zero which is algebraically closed. If L decomposes as a sum of simple
ideals L1 ⊕ · · · ⊕ Ln, then for ai ∈ F

φ =
n⊕
i=1

ai · κLi ,

where κLi denotes the Killing form of Li.

On the other hand, for abelian Lie algebras the symmetric nondegener-
ate invariant bilinear form could be anyone which is symmetric and non-
degenerated, as all bilinear forms are invariant. If we see an abelian Lie al-
gebra simply as a vector space, this form will be any scalar product over it.
And, as scalar products, this form introduces the orthogonality concept in
Lie algebras.

Definition 2.2.2. Let S be a subspace of a quadratic Lie algebra (L,φ)we de-
fine naturally the orthogonal of S as

S⊥ = {x ∈ L : φ(x, y) = 0 ∀ y ∈ S}.

Thanks to the φ-invariance if I is an ideal, then I⊥ is another ideal, al-
though this is not true for subalgebras. And using non-degeneration we have

dim I + dim I⊥ = dimL and (I⊥)⊥ = I.

Definition 2.2.3. Let I be an ideal of a quadratic Lie algebra (L,φ). We say I
is non-degenerate if Radφ|I×I = 0.

Here, in contrast to a Lie algebra radical, the radical of a bilinear form
φ : L× L→ F denotes

Rad(φ) = {x ∈ L : φ(x, y) = 0 ∀ y ∈ L} = L⊥.

Proposition 2.2.4. Let (L,φ) be a quadratic Lie algebra and I an ideal of L. Then
L = I ⊕ I⊥ if and only if I is non-degenerate.

This non-degeneration for ideals is not so common for invariant forms.
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Proposition 2.2.5. Let (L,φ) be a nilpotent Lie algebra and φ invariant. Then Lk

are degenerate ideals for k ≥ 2.

Proof. If L is t-step nilpotent φ(Lk, Lt) = φ(Lk−1, Lt+1) = 0 as Lt+1 = 0.

Also, with orthogonality, other concepts appear:

Definition 2.2.4. A subspace V of some quadratic Lie algebra (L,φ) is called
isotropic if V ⊆ V ⊥.

Remark 2.2.6. Some authors called these subspaces totally isotropic, while for
them isotropic are simply those ones which contain an isotropic element (x ̸=
0 such that φ(x, x) = 0).

Definition 2.2.5. An isotropic subspace is called lagrangian if it is a maximally
isotropic subspace. And its dimension is calledWitt index, which is an algebra
invariant.

Remark 2.2.7. Let V be an isotropic subspace of a quadratic Lie algebra (L,φ)
over an algebraically closed field of characteristic different from two. If L is fi-
nite dimensional, then V is a lagrangian subspace if and only if the dimension
of V equals ⌊dimL

2 ⌋.

Later on, we will be studying algebras in which there exist a lagrangian
subspace which is an ideal.

Coming back to the classification of quadratic Lie algebras, apart from
semisimple and abelian Lie algebras, the structure is not so clear. In order
to turn down the complexity, we can limit our study using the concept of re-
ducibility which appears in the next definition. First, as stated in [Tsou and
Walker, 1957], we need to see that

Z(L)⊥ = L2 (2.13)

or equivalently
(L2)⊥ = Z(L) (2.14)

Hence,
dimL = dimL2 + dimZ(L). (2.15)

The dimension of Z(L) ∩ L2 is called the isotropic index of L. Moreover, this
orthogonal relation can be extended through central series obtaining (Ak)⊥ =
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Zk−1(A) (see [Bordemann, 1997, Proposition 2.1], [Medina and Revoy, 1985]
or [Keith, 1984, Theorem 3.27]). This property is also covered in Proposi-
tion 5.3.6.

Now we are ready for the reducibility definition.

Definition 2.2.6. A Lie algebra L is said to be reduced in case Z(L) ⊆ L2. And
the pair (r, s), where r = dimL2 and s = dimZ(L), is called the bi-type of L.

Remark 2.2.8. If the Lie algebra is quadratic, by orthogonality, its dimension
is just r + s. Also, this bi-type, defined in [Tsou and Walker, 1957], is quite
similar to the general type introduced in Definition 2.1.26.

In the 2-step case, being reduced is equivalent to Z(L) = L2 as the other
inclusion comes from its nilpotency.

And, non-reduced algebras can be decomposed as expected following the
next theorem (see [Tsou and Walker, 1957, Theorem 6.2]).

Theorem 2.2.9. Any non-reduced and non-abelian quadratic Lie algebra (L,φ) de-
composes as an orthogonal direct sum of proper ideals for L = g⊕ a, and φ = φ1 ⊥
φ2. Where (g, φ1) is a quadratic reduced Lie algebra and (a, φ2) is a quadratic abelian
algebra. In particular, L2 = g2 and Z(L) = Z(g)⊕ a.

Proof. LetM = Z(L) ∩ L2, let a be a subspace complementary ofM in Z(L),
let g a complement to a in L containing L2. Note this is possible as a∩L2 = 0.
Now, a is an abelian ideal of L as a ⊆ Z(L), and g is an ideal of L as L2 ⊆ g,
and together L = g ⊕ a. We just need to check g is reduced. This happens as
Z(g) ⊆ Z(L), thus Z(g) = g ∩ Z(L). Also g2 = L2, so Z(g) ⊆ g2 = L2.

We nowneed to see ifφ1 = φ|g andφ2 = φ|a are symmetric nondegenerate
invariant bilinear forms. Symmetry and invariant are clearly transferred, so
we just need to check they are nondegenerated. Let V = Rad(φ1), then V ⊆
Z(L) ∩ g = Z(g) ⊆ L2, as L2 ⊆ g. Let us consider x1 + x2 ∈ L with x1 ∈ g

and x2 ∈ a ⊆ Z(L). Then φ(V, x1 + x2) = φ(V, x1) + φ(V, x2) but both terms
are zero, the first because of V definition, and the second because V ⊆ L2 =

Z(L)⊥. Therefore, as φ(V,L) = 0, V must be zero as φ is nondegenerate.

Remark 2.2.10. This proof is constructive as it also gives us amethod of finding
that decomposition.
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This is the reason why we limit our classification to this type of algebras.
It is important not to confuse reduced with indecomposable.

Definition 2.2.7. Aquadratic algebra (A,φ) is called decomposable if it contains
a proper ideal I that is non-degenerated (i.e. φ |I×I is non-degenerate), and
indecomposable otherwise.

Remark 2.2.11. Equivalently, (A,φ) is decomposable if and only A can be ex-
press as a direct sum of two orthogonal non-degenerate proper ideals, i.e.
A = I ⊕ I⊥.

So, every abelian algebra of dimension greater than one or non-reduced al-
gebra is decomposable. And also, any quadratic Lie algebra is the orthogonal
direct sum of indecomposable quadratic Lie algebras. This assertion, which
we can see in [Astrakhantsev, 1978], follows easily from the fact that I is an
ideal of A if and only if its orthogonal space I⊥ also is.

Other examples of decompositions we can find come from semisimple Lie
algebras as they can be viewed as a sum of its simple ideals. These algebras
are a subfamily of a bigger class formed by the orthogonal sum of both an
abelian and a semisimple algebra, known as reductive.

Definition 2.2.8. A Lie algebra L is called reductive if RadL = Z(L). More
concretely, a Lie algebra is reductive if it is a direct sum as ideals of a semisim-
ple Lie algebra and an abelian Lie algebra.

Example 2.2.2. Lie algebra gl(n,F) is reductive. We can decompose

gl(n,F) = sl(n,F)⊕ FIn = gl(n,F)2 ⊥ Z(gl(n,F)).

Here gl(n,F)2 = sl(n,F) is a simple Lie algebra, and

Rad(gl(n,F)) = Z(gl(n,F)) = FIn,

the scalar matrices, form an abelian Lie algebra of dimension 1.

Reduced quadratic Lie algebras are a big family, in fact, in [Tsou, 1962,
Theorem 5.1] we find the following result:

Theorem 2.2.12 (Tsou, 1962). There exist reduced quadratic Lie algebras of arbi-
trary bi-type (r, s) r ≥ 3 except for (5, 0), (7, 0) and (4, s), 0 ≤ s ≤ 4.
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The proof of this theorem, based on multilinear arguments and tools, does
not make it clear how to build them. However, these techniques will inspire
the quadratic family method and its constructions in Chapter 3.

Some general properties all quadratic Lie algebras share are gather in the
following proposition:

Proposition 2.2.13. Let (L,φ) a quadratic Lie algebra, U any subspace and I an
ideal. Then:

(a) dimL = dimU + dimU⊥ and, if U is non-degenerate, g = U ⊕ U⊥.

(b) U is an ideal of L if and only if [U⊥, U ] = 0.

(c) Any minimal and non-degenerate ideal of L is simple or one-dimensional.
Minimal degenerated ideals are isotropic and abelian.

(d) The algebra L decomposes as the orthogonal direct sum, as ideals, of a reduced
quadratic Lie algebra and an abelian Lie algebra.

(e) If L is indecomposable and I is proper, then I ∩ I⊥ ̸= 0 and Z(L) ⊆ L2. In
particular, L is a reduced algebra and has no simple ideals.

(f) The centre of a nonzero solvable quadratic algebra is nonzero. Even more,
Z(L) ∩ L2 ̸= 0 and, in particular, N⊥ ⊆ N .

(g) If L is indecomposable, then either L is one-dimensional or simple or can be
obtained up to isometrically isomorphisms using a technique called double
extension of some quadratic Lie algebra by another one-dimensional or simple.

(h) For any subalgebra S, [S, S⊥] ⊆ S, in particular, S ∩ S⊥ is an ideal of S.

Proof. A detailed proof of items (b), (c) and (g) can be found in [Figueroa-
O’Farrill and Stanciu, 1996]. Item (d) is just Theorem 2.2.9 and (e) follows
easily from previous items. For item (f), apply equation (2.15) and L2 ̸= L

because of L is nonzero and solvable. Now, observe that if Z(L)∩L2 = 0 then
L = L2 ⊕ Z(L) and in that case L′ = L2 = [L2, L2] = L(2) which contradict
the solvability of L. Lastly, as Z(L) + L2 ⊆ N so by orthogonality

N⊥ ⊆ (Z(L) + L2)⊥ = L2 ∩ Z(L) ⊆ N.
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The final case (h) is also true as

φ([S, S⊥], S) = φ(S⊥, [S, S]) = φ(S⊥, S) = 0,

and [S ∩ S⊥, S] ⊆ [S, S] ∩ [S⊥, S] ⊆ S ∩ S⊥.

Remark 2.2.14. The double extension procedure mentioned in item (g) will be
described in Section 2.2.2.1.

Now, we can question ourselves which are the smallest quadratic Lie al-
gebras we can have:

Lemma 2.2.15. The smallest non-zero-dimensional indecomposable Lie algebra is:

• of dimension 1, when it is abelian;

• of dimension 3, when it is simple;

• of dimension 4, and isomorphic to Fa⋉ h3 described in equation (2.16), when
it is non-simple and non-abelian, in particular when it is solvable; and

• of dimension 5 and isomorphic to n2,3, when it is nilpotent non-abelian.

So, there are no nilpotent quadratic indecomposable Lie algebras of dimension two,
three or four.

Proof. All abelian and simple Lie algebras are quadratic. So, using [Jacobson,
1979, Chapter 1], the smallest simple Lie algebra is 3-dimensional proving the
first two items.

For L solvable non-abelian, we see dimL ≥ 4. This happens because we
need a reduced Lie algebra in order not to be decomposable. There are three
options when considering 0 ̸= Z(L) ⊆ L2 ⊊ L and dimL = 3.

• Z(L) = L2 both 1-dimensional. This is the Heisenberg algebra which is
not quadratic as dimZ(L)+dimL2 ̸= dimL as equation (2.15) imposes.

• Z(L) = L2 both 2-dimensional. It is contradictory as dimL/Z(L) = 1 so
L is abelian.

• Z(L) ⊊ L2. Again impossible as L = span⟨x, y, z⟩ and Z(L) = span⟨z⟩
implies L2 = span⟨[x, y]⟩ is 1-dimensional.
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Now that we know dimL ≥ 4, we can distinguish again two cases:

• Z(L) = L2: Using equation (2.15), dimL = 2d with d = dimZ(L).
Case d = 2 does not work as L = span⟨x, y⟩ ⊕ Z(L), so L2 should be
1-dimensional. When d = 3 we have the free nilpotent Lie algebra n3,2

which is quadratic as we will see in Example 2.2.5.

• Z(L) ⊊ L2: In this case, dimL = n + 2d, where n = dimL2/Z(L) and
d = dimZ(L)with d, n ≥ 1 in order not to be abelian.

– When n = 1 the smallest valid d is 2 producing the quadratic nilpo-
tent algebra n2,3 from Example 2.2.4.

– When n = 2 and d = 1 the algebra is of the form L = Fa ⊕ L2,
Z(L) = Fz and

L2 = span⟨x, y, z⟩ = span⟨[a, x], [a, y], [x, y]⟩.

Observe 0 ̸= [x, y] ∈ Z(L) because L2 ∼= h3 using Lemma 2.1.19.
This way we have products

[a, x] = α1x+ α2y + α3z, [a, y] = β1x+ β2y + β3z,

with α1β2 − α2β1 ̸= 0 in order L2 to have dimension 3. Without
loss of generality, we can rescale the basis to have products

[a, x] = y, [a, y] = αx+ βy, [x, y] = z. (2.16)

Applying the Jacobi identity

0 = [a, z] = [a, [x, y]] = −[x, [y, a]]− [y, [a, x]] = βz,

so β = 0. The resulting algebra admit a symmetric invariant bilin-
ear given by the matrix

λ1 0 0 λ2

0 −λ2
α 0 0

0 0 λ2 0

λ2 0 0 0


in basis {a, x, y, z}. When λ1 = 0 and λ2 = −α = 1 we obtain the
oscillator algebra from next Example 2.2.3.
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Example 2.2.3. The oscillator algebra (d4, φ), mentioned in previous lemma, is
the smallest solvable non-abelian quadratic algebra. We can define it taking
basis {d, x, y, z}with nonzero products

[d, x] = y, [d, y] = −x, [x, y] = z,

and bilinear form φ(d, z) = 1 = φ(x, x) = φ(y, y) = 1. Its derived algebra
d24 = [d4, d4] = h3 is the Heisenberg Lie algebra (see Definition 2.2.9). An
easy computation yields Derφ d4 = Inner d4. This algebra arises over the reals
in the quantum mechanical description of a harmonic oscillator and φ is a
Lorentzian7 form. More information is available at [Ovando, 2006] and in
Section 5.2.2.

In contrast to these examples, we can also find algebras which are not
quadratic. For instance, the Heisenberg algebra h3 which have just appeared as
the square of d4 in Example 2.2.3. This is a 3-dimensional algebra with basis
{x, y, z} and Lie product [x, y] = z = Z(h). From equality (2.15), it is imme-
diate that h3 is not quadratic. But this algebra does not appear alone, we can
define Generalized Heisenberg Algebras (GHA) in a similar way. This family
will take an important role later in Section 5.2.2.

Definition 2.2.9. The generalized Heisenberg algebra series, following [Dixmier,
1996], is determined through the property h2 = Z(L) = span⟨z⟩. For such al-
gebra, the Lie bracket [x, y] = bz(x, y)z provides an alternating bilinear form
bz : h × h → F and (h)⊥ = h2 = F · z. Note that bz is non-degenerate on any
complement summandW of the centre Z(h) in h. HenceW is a vector space
of dimension even and bz|W×W has a canonical basis {x1, . . . , xn, y1, , . . . , yn}
such that bz(xi, yi) = 1 = −bz(yi, xi). Then, Heisenberg algebras have odd
dimension and, for any natural n ≥ 1, there is a unique Lie algebra of Heisen-
berg type of dimension 2n+1 that we call h2n+1. Therefore, the algebra h2n+1

has a standard basis {x1, . . . , xn, y1, . . . yn, z}with nonzero brackets [xi, yi] = z.

Note that equation (2.15) fails, as for h = h3, so h2n+1 are not quadratic.
According to [del Barco and Ovando, 2012], the 5-dimensional algebra

n2,3 and the 6-dimensional n3,2 are the unique quadratic free nilpotent Lie
algebras. Any algebra in the free nilpotent series nd,t (d ≥ 2 and t ≥ 2) satisfies

7A Lorentzian form is a non-degenerate bilinear form in a n-dimensional vector space such
that its signature is n− 2.
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d = codim n2d,t and the centre, Z(nd,t) = (nd,t)
t has dimension 1

t

∑
a|t µ(a)d

t/a,
where µ the is Möbius function (see Example 2.1.7 or [Gauger, 1973]). Then,
the assertion is a corollary of item (a) in Proposition 2.2.13.
Example 2.2.4. The quadratic structure of n2,3 is given in (Hall) basis {ai}5i=1 by
nonzero products [a2, a1] = a3, [a3, a1] = a4, [a3, a2] = a5 and the symmetric
form φ(ai, aj) = (−1)i−1 for i ≤ j and i+ j = 6 and zero otherwise.
Example 2.2.5. For n3,2, we can take (Hall) basis {ai}6i=1 and nonzero products
[a2, a1] = a4, [a3, a1] = a5, [a3, a2] = a6 with symmetric form ϕ(ai, aj) =

(−1)i−1 for i ≤ j and i+ j = 7 and zero otherwise.
Remark 2.2.16. The structure mentioned in Example 2.2.4 is unique over alge-
braically closed fields, while the one from Example 2.2.5 is unique over any
field of characteristic zero (see [Benito et al., 2017]).

We come back now to items (c) and (d) of themultiple characterisation re-
sult of Lie groups with bi-invariant metrics and their Lie algebras (see [Med-
ina, 1985]) that we have mentioned at the beginning of this section. Both
items highlight the natural relationship between invariant bilinear forms on
Lie algebras and homomorphisms of their adjoint and coadjoint represen-
tations. As vector spaces, the set of invariant bilinear forms, Biinv(L), and
HomL(L,L

∗), are isomorphic:

∆: Biinv(L)→ HomL(L,L
∗), ∆(f)(x) = f(x, ·) = ψf (x), (2.17)

and ∆−1(ψ) = fψ, with fψ(x, y) = ψ(x)(y). Even more, ∆ sends a non-
degenerate invariant form into a L-module isomorphism and conversely.

On the other hand, for any bilinear form φ of L, we can set the bilinear
form φt(x, y) := φ(y, x). From the anticommutativity of L, it is easily checked
that φt is invariant if and only if φ so is. This way, over fields of characteristic
not 2, the usual decomposition of φ as sum of its symmetric part and its skew-
symmetric part

φ =
1

2
(φ+ φt) +

1

2
(φ− φt)

preserves the invariance. Therefore, Biinv(L) decomposes as the direct sum
of the vector spaces of symmetric invariant forms, Bisinv(L), and that of the
skew-symmetric forms Biasinv(L):

Biinv(L) = Bisinv(L)⊕ Biasinv(L).
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So for invariant forms, at matrix level, we recover the natural decomposition
of a matrix as sum of a symmetric matrix and a skew-symmetric matrix.

Our next result restates and expands Lemma 1 in [Hilgert andNeeb, 1996]
and clarifies the equivalent assertions for Lie algebras attached to Lie gropus
with bi-invariant metrics given by Medina and Milnor.

Proposition 2.2.17. Let L be a Lie algebra over a field of characteristic different
from 2. Then it is equivalent:

(a) There exists a nondegenerate form φ ∈ Biinv(L).

(b) There exists a nondegenerate form φ ∈ Bisinv(L).

(c) The adjoint and coadjoint representations of L are isomorphic.

Moreover, over fields that have more than dimL elements, the vector space Bisinv(L)
is linearly generated by the set of invariant and non-degenerate symmetric bilinear
forms and previous assertions are also equivalent to:

(d) dimBisinv(L) is greater or equal than one.

Proof. Let us assume (a) and, using [Bordemann, 1997, Proposition 2.4], (b)
follows. From (b) we get (c) taking into account that the isomorphism ∆ in
expression (2.17) sends any non-degenerate invariant form f into the isomor-
phism φf : L → L∗, φf (x) = f(x, ·). This map is one-to-one because f is
nondegenerate and, since L and L∗ are equidimensional, it is bijective. More-
over as f is invariant, for all x, y ∈ L:

φf ([x, y]) = f([x, y], ·) = −f(y, (adx)( ·)) = −f(y, ·) ◦ adx = −φf (y) ◦ adx.

This is just equation (2.6), soφf ∈ HomL(L,L
∗) and adjoint and coadjoint rep-

resentations are isomorphic. Finally, for any bijective map ψ ∈ HomL(L,L
∗),

fψ(x, y) = ψ(x)(y) is a bilinear form and fψ(x, L) = 0 implies that ψ(x) is a
null map, so x = 0 because ψ is one-to-one. Thus fψ is nondegenerate. More-
over fψ([x, y], z) = ψ([x, y])(z) and from equation (2.6), ψ([x, y]) = −ψ(y) ◦
adx and ψ([x, y])(z) = −ψ(y)([x, z]) = −fψ(y, [x, z]). Hence fψ ∈ Biinv(L),
and item (a) follows. According to Lemma2.1 in [Bajo and Benayadi, 1997],
Bisinv(L) = span⟨φ ∈ Bisinv(L) : φ is non-degenerate⟩ over the real field. The
arguments in the proof of this lemma are also valid for fields that have more
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than dimL elements. Therefore, the equivalence of the four statements is
proved.

In Figure 2.2 we can find a diagram representing how ∆ mapping from
equation (2.17) works.

Biinv(L) HomL(L,L
∗)

non-degenerate L-isomorphism

f symmetric ψ(a)(b) = ψ(b)(a)

∆−1(ψ)(x) = fψ(x, ·)

∆(f)(x) = f(x, ·) = ψf (x)

Figure 2.2: ∆ isomorphism between Biinv(L) and HomL(L,L
∗).

At the end of previous proposition appeared the dimension of the vector
spaceBisinv(L). This plays an important role in quadratic Lie algebras as it tells
us how many appear.

Definition 2.2.10 (See [Tsou andWalker, 1957]). Wecall quadratic dimension or
metric index to the number of linearly independent symmetric nondegenerate
invariant bilinear forms some algebra admits. For a given Lie algbra L we
write

m(L) = dimBisinv(L).

If the algebra is not quadratic its quadratic dimension is zero. If the al-
gebra is abelian of dimension n, then its quadratic dimension is n(n+1)

2 . But
there is an important lemma when we look for dimension one. Although, for

45



Chapter 2. Background

good basis and low dimensions we will be able to compute these quadratic
dimensions using algorithms from Chapter 6.

Lemma 2.2.18. Every non-abelian algebra with quadratic dimension one is simple.
Over algebraically closed fields the reverse also holds. And, over the reals, if an algebra
is simple its quadratic dimension is

• one if its complex extension8 is simple,

• or two if its complex extension is not simple.

This lemma appears first in [Tsou and Walker, 1957] for R and C and for
more general fields in [Bajo and Benayadi, 1997].

The reasonwhy for some real simple Lie algebras the quadratic dimension
is two is related to the fact that over the complex field they are semisimple and
decompose as two simple conjugate Lie algebras. This lemma also serves as
a proof that only the Killing form or scalar multiples of it work as a quadratic
form for complex simple Lie algebras (see Proposition 2.2.2).

Also, in [Tsou and Walker, 1957, 9.2], the authors state that for an ideal
decomposition L1 ⊕ L2 we have

m(L1 ⊕ L2) = m(L1) +m(L2) + dimZ(L1) · dimZ(L2).

This formula is compatible with the semisimple case. In those algebras the
decomposition in simple ideals has trivial centres, and m(S1 ⊕ · · · ⊕ Sn) =

m(S1) + · · · +m(Sn) ≥ n. This last inequality turns into an equal sign when
we are over an algebraically closed field or, in the real case, when every simple
ideal has a simple complex extension. If k ≤ n ideals have no simple complex
extension, are central simple, thenm(S1 ⊕ · · · ⊕ Sn) = n+ k.

Apart from abelian or semisimple Lie algebras, and following [Hofmann
and Keith, 1986, Proposition A], we can generate quadratic Lie algebras with
arbitrary quadratic dimension. First, we consider the tensor product (g⊗a, φ⊗
q) where (g, φ) is quadratic Lie with bracket [x, y] and (a, q) is an associative
and commutative algebra with invariant symmetric and nondegenerate form
q and product ab produces the quadratic algebra

[x⊗ a, y ⊗ b] = [x, y]⊗ ab,
8An algebra over the complex field which has the same structural constants.
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under the form
(φ⊗ q)(x⊗ a, y ⊗ b) = φ(x, y)q(a, b).

Example 2.2.6. As a remarkable example we point out the algebra g = s⊗ F[t]
⟨tn⟩

for any n ≥ 1, with s simple. This algebra as seen in [Bajo and Benayadi,
1997, Proposition 2.2] is non-semisimple, irreducible, perfect andm(g) ≥ n.

Also, for generic non-abelian quadratic algebras we can get bounds for its
quadratic dimension:

Lemma 2.2.19. See [Tsou and Walker, 1957, Section 9.2] If L is non-abelian and
quadratic, and dimZ(L) = c, then in C

m(L) ≥ 1 +
c(c+ 1)

2
.

With all these results, and using computational software from Chapter 6,
we can easily find the quadratic multiplicity in all previous examples:

• m(d4) = 2,

• m(n2,3) = 4,

• andm(n3,2) = 7.

2.2.2 Classical constructions

The early work of Tsou and Walker makes use of multilinear algebra to es-
tablish the existence of quadratic algebras. Although the description of these
algebras is not explicit, multilinear tools point theway to reduce the classifica-
tion of 2-step quadratic Lie algebras to trivectors (see [Noui and Revoy, 1997]
andChapter 4). In the 1980s and 1990s, methods of double extensions and T ∗-
extensions appeared. They allow us to construct finite dimensional quadratic
algebras in a more explicit way. The first method is used in the realm of Lie
algebras, mainly characteristic zero. According to [Rodríguez-Vallarte and
Salgado, 2018], the double extension process also lets us produce Lie algebras
with the same type of geometric (quadratic, symplectic or contact) structures.
The T ∗-extension technique can be applied to the variety of non-associative al-
gebras (characteristic not two), but only generates quadratic algebras of even
dimension. Since the end of the ’90s and up to now, related to quadratic con-
structions, there have appeared bi-extensions and inflactions in [Keith, 1984]
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and [Hofmann and Keith, 1986], amalgamated products in [Favre and San-
tharoubane, 1987] and two-fold or quadratic extensions in [Kath andOlbrich,
2004] among other notions and procedures. In the case of quadratic nilpo-
tent Lie algebras a classification scheme has been proposed in [Benito et al.,
2017] based on free nilpotent Lie algebras and their invariant forms. Other
techniques to produce examples of quadratic Lie algebras are given by ten-
sor products, the so called current Lie algebras (see [Zusmanovich, 2014]), or
representations of simple Lie algebras. This technique will appear in our last
chapter and it was also used in [Benayadi and Elduque, 2014].

Both classical methods, double extensions and T ∗-extensions, present dif-
ficulties when dealing with the classification problem, but we will tackle this
task later. Despite this problem, as we will show along the thesis, they are
good at producing examples.

2.2.2.1 Double extension

Chronologically, the double extension process appears first (see [Figueroa-
O’Farrill and Stanciu, 1996] for a nice presentation). It was developed during
the 1980s and was introduced in several independent works from Keith and
Hofmann (see [Keith, 1984]), Favre and Santharoubane (see [Favre and San-
tharoubane, 1987]), and Medina and Revoy (see [Medina and Revoy, 1985]).
This procedure, according to [Favre and Santharoubane, 1987], follows the
main ideas that V. G. Kac had written in several exercises for his students
(see [Kac, 1983, Exercise 2.10 and 2.11]). In Exercise 2.10, the double one-
dimensional extension is defined, and the fact that every indecomposable
solvable quadratic Lie algebra of dimension n + 2 can be obtained from a
quadratic Lie algebra of dimension n is established in Exercise 2.11 (see [Favre
and Santharoubane, 1987, Proposition 2.9] for a complete proof).

The double extension method consists in an iterative process that allows
us to find new quadratic Lie algebras starting from a smaller dimensional one.
The formal description we present here follows from [Bordemann, 1997, The-
orem 2.2]), but slightly changed to match our notation. From now on,B∗ will
denote the dual space of B.
Theorem 2.2.20. Let (A, f) be a finite-dimensional quadratic Lie algebra over a field
F. Let B be another finite-dimensional Lie algebra over F and suppose there is a Lie
homomorphism ϕ : B → Derf (A) from B onto the space of all f -skew-symmetric
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derivations of A. Denote by w : A × A → B∗ the bilinear skew-symmetric map
(a, a′) 7→ (b 7→ f(ϕ(b)(a), a′)). Take the vector space direct sumAB := B⊕A⊕B∗

and define the following multiplication for b, b′ ∈ B, a, a′ ∈ A, and β, β ∈ B∗:

[b+ a+ β, b′ + a′ + β′] := [b, b′]B + ϕ(b)(a′)− ϕ(b′)(a) + [a, a′]A

+ w(a, a′) + ad∗(b)(β′)− ad∗(b′)(β). (2.18)

Moreover, define the following symmetric bilinear form fB on AB :

fB(b+ a+ β, b′ + a′ + β′) := β(b′) + β′(b) + f(a, a′). (2.19)

Then the pair (AB, fB) is a quadratic Lie algebra over F and is called the double
extension of (A, f) by (B,ϕ).

Now that once the method is explained we can understand where the
name comes from. As it suggests, it consists of two extensions. First, over
(A, f) we find B such that ϕ : B → Derf (A) exists. From here, we define the
2-cocycle w and obtain the vector space A⊕B∗ endowed with product

[a+ β, a′ + β′] = [a, a′]A + w(a, a′).

This is the central extension of A by means of w. Now, we can define the Lie
algebra homomorphism

ϕ̂ : B → Der(A⊕B∗)

b 7→ ϕ̂ : A⊕B∗ → A⊕B∗

a+ β 7→ ϕ̂(b)(a+ β) = ϕ(b)(a) + ad*(b)(β),

to obtain the semidirect productB⋉ϕ̂ (A⊕B∗), which is the double extension.
It is worth mentioning that this construction, when B is abelian, also ap-

pear in the literature as a particular case of bi-extensions (see [Keith, 1984]).
One crucial property of this method is that every quadratic Lie algebra in

characteristic zero can be obtained this way. So, it covers every possible case
and allows us to deconstruct Lie algebras in Chapter 3. Note that, as it pre-
serves dimension parity (it adds an even dimension to the extended algebra),
we need to start the process in an algebra of the same parity as the one we
want to end up.

To illustrate this method we are going to show how to obtain the oscillator
algebra from Example 2.2.3 as a double extension by a 1-dimensional algebra.
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Example 2.2.7 (Oscillator as one-dimensional double extension). Startingwith
the R-vector spaceW2 of dimension 2 with a bilinear symmetric and nonde-
generate form φ, and being {x, y} an orthonormal basis. The set Endφ(W2)

of linear maps that satisfy expression (2.12) is a one-dimensional subspace
generated by the linear isomorphism ϕ(x) = y and ϕ(y) = −x. Then, the Lie
algebra obtained as double extension of the abelian quadratic algebra (W2, φ)

by (span⟨d⟩, ϕ̂) where ϕ̂(d) = ϕ has the same product and bilinear form as
in Example 2.2.3. Note, span⟨d, d∗⟩ is an hyperbolic subspace and we obtain
the real algebra d4(R), the harmonic oscillator algebra, with metric signature
(3, 1). This algebra is also known as diamond or Nappi-Witten Lie algebra
(see [Casati et al., 2010] and references therein) and it can also be obtained as
the central extension of the Poincaré Lie algebra in two dimensions.

This construction, in Section 5.2.2, will let us define generalized oscilla-
tor algebras. For other examples of double extensions, we can find them dis-
tributed through the following chapters.

2.2.2.2 T*-extension

In 1997, Bordemann (see [Bordemann, 1997]) introduced another method for
contructing these algebras: the T ∗-extension. This technique can be applied
to all known classes of non-associative algebras over fields of characteristic
different from 2. The method produces quadratic algebras of dimension 2n

(even) and Witt index n (half of its dimension). This is proved in [Borde-
mann, 1997, Theorem 3.2], where we can see T ∗-extensions are just quadratic
non-associative algebras of dimension 2n that contain an isotropic subspace
U of dimension n such that U2 = 0.

This is a one-step method, in contrast to the multistep double extension.
We are focused on the study of Lie algebras, so we will only see its defini-
tion applied on these algebras (for a general definition we can see the original
method in [Bordemann, 1997]).

Along this subsection, (B, [x, y]B)will be a Lie algebra. Let V aB-module
given by the representation ρ : B → gl(V ) (indeed a Lie algebra homomor-
phism as we saw gl(V ) denotes the general Lie algebra of endomorphisms
over the vector space V ). In order to reach the definition of T ∗-extension we
need the following basic cohomology notions.
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Definition 2.2.11. Let w : B ×B → V be a bilinear map, V a B-module given
by the representation ρ, and a, b, c arbitrary elements of B. Then we say:

• w is non-degenerate if its radical is zero, i.e.
Radw = {b ∈ B : w(b, ·) = 0} = 0;

• w is cyclic if
w(a, b)(c) = w(c, a)(b) = w(b, c)(a); (2.20)

• and w is a 2-cocycle if w is skew-symmetric and∑
⟳

a,b,c

w([a, b], c) =
∑
⟳

a,b,c

ρ(a)w(b, c).

The vector space of 2-cocycles with values in V is denoted by Z2(B, V ).
Remark 2.2.21. In our constructionwewill workwith a 2-cocyclewwith values
in B∗ using the coadjoint9 representation, i.e. w ∈ Z2(B,B∗). Despite this
structure, we can also see it like a 3-cocyclewith values inF. Givenw : B×B →
B∗, we can define the trilinear map ϕw : B × B × B → F as ϕw(a, b, c) =

w(a, b)(c). It is straightforward to infer w is cyclic, w ∈ Z2(B,B∗) where V =

B∗ by the coadjoint representation if and only if ϕw is a 3-cocycle. This means
it is a 3-alternating form such that

ϕw([b0, b1], b2, b3) + ϕw([b1, [b0, b2], b3) + ϕw([b1, b2, [b0, b3]) =

ϕw(b0, [b1, b2], b3) + ϕw(b0, b2, [b1, b3])− ϕw(b0, b1, [b2, b3]).

The vector space of scalar 3-cocycles is denoted as Z3(B,F). Here, V = F
comes from the trivial representation.

Consider now an arbitrary bilinear form w : B × B → B∗, and define the
multiplication on the vector space B ⊕B∗ for b, b′ ∈ B and for β, β′ ∈ B∗ as

[b+ β, b′ + β′] := [b, b′]B + w(b, b′) + ad∗(b)(β′)− ad∗(b′)(β), (2.21)
where ad∗ is the coadjoint representation. So for any β : B → F, β ∈ B∗ and
b, b′ ∈ B

ad∗(b)(β)(b′) = −β([b, b′]) = −β ◦ ad b(b′). (2.22)
Moreover, we construct the symmetric bilinear form qB as:

qB(b+ β, b′ + β′) := β(b′) + β′(b). (2.23)
9See definition in equation (2.22).
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Proposition 2.2.22. Let B, B∗, w, and qB be as above. Then:

(a) The vector space B ⊕B∗ with the binary product given in equation (2.21) is
a Lie algebra if and only if B is a Lie algebra and w ∈ Z2(B,B∗).

(b) The form qB defined in equation (2.23) is an invariant bilinear form of the Lie
algebra B ⊕B∗ if and only if w is cyclic.

So, (B⊕B∗, qB) is a quadratic Lie algebra if and only if the bilinear formw is a cyclic
2-cocycle and (B, [x, y]B) is a Lie algebra.

Proof. Assertion (a) follows from [Bordemann, 1997, p. 177]. Herewe can see
Jacobi identity is satisfied if and only if B is a Lie algebra and w is a 2-cocycle.
On the other hand, product in equation (2.21) is skew-symmetric if and only
if [x, y]B and w are skew, which also comes from being a 2-cocyle. Finally,
to prove assertion (b) about the T ∗ construction, we use [Bordemann, 1997,
Lemma 3.1], which adds us the cyclic condition in order to be quadratic.

Definition 2.2.12. Let w : B × B → B∗ be cyclic 2-cocycle and B Lie algebra.
The quadratic algebra (B⊕B∗, qB), with product and quadratic form defined
in equations (2.21) and (2.23) respectively, is called the T ∗-extension of B by
w, and we denote it as (T ∗

wB, qB).

Finally, we have the following theorem (check [Bordemann, 1997, Theo-
rem 3.2]) which gives us conditions about when we can build a quadratic Lie
algebra using T ∗-extensions.

Theorem 2.2.23. Let (A, f) be a quadratic Lie algebra of finite dimension n over
a field F of characteristic not equal to two. Then (A, f) will be isometric to a T ∗-
extension (T ∗

wB, qB) if and only if n is even and A contains an isotropic ideal I of
dimension n/2. In this case, as a Lie algebra, B is isomorphic to the quotient A/I .

Remark 2.2.24. As seen in the proof, any isotropic ideal of dimension n/2will
work. We also note that, any isotropic subspace V of A whose dimension is
dimA/2, also named lagrangian, is an ideal of A if and only if it is abelian, in
other words, V 2 = 0. This assertion follows from V = V ⊥ and item (d) in
Proposition 2.2.13.

As a consequence, we can summarize and say:
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Corollary 2.2.25. The class of T ∗-extensions is just the class of quadratic Lie algebras
of dimension 2n with a lagrangian n-dimensional ideal.

Although at first glance T ∗-extensions only work for even dimensional al-
gebras, [Bordemann, 1997] says we can use them to end up obtaining odd
dimensional Lie algebras applying 1-dimensional quotients afterwards.

Some examples of Lie algebras we can obtain through this technique are
the following:
Example 2.2.8. T ∗-extensions of Lie algebras by the null 2-cocycle, T ∗

0B are just
split extensions of that Lie algebraB bymeans of its coadjoint representation.
And evenmore, any invariant bilinear form f : B×B → F let us define another
invariant quadratic form QqB ,f on (T ∗

0B, qB):

QqB ,f (a+ α, b+ β) = qB(a+ α, b+ β) + f(a, b) = α(b) + β(a) + f(a, b).

The resulting quadratic Lie algebra (T ∗
0B,QqB ,f )was introduced in [Hofmann

and Keith, 1986] as the inflaction of B with respect to the forms qB and f . Ac-
cording to [Hofmann and Keith, 1986, Lemma 2.9], inflactions occur promi-
nently in the structure of quadratic mixed Lie algebras.
Remark 2.2.26. Let B a Lie algebra, T ∗

0B coincides with the double extension
of the trivial Lie algebra of dimension zero by B.

Our next example follows ideas in [Bordemann, 1997, Example 4.2].
Example 2.2.9. Let h = span⟨x, y, z⟩ be the Heisenberg 3-dimensional Lie alge-
bra given by the non-zero products [x, y] = z. Apart from the 6-dimensional
2-step Lie algebra T ∗

0 h, we can construct a 6-dimensional 3-step Lie algebra
taking the cyclic 2-cocyle w defined as

w(v1, v2)(v3) =

∣∣∣∣∣∣∣
λ1 λ2 λ3

β1 β2 β3

γ1 γ2 γ3

∣∣∣∣∣∣∣ ,
where vi = λix + βiy + γiz. This produces a Lie algebra T ∗

wh with basis
{x, y, z, x∗, y∗, z∗} and the following non-null multiplication table

[x, y] = z + z∗, [x, z] = [x, z∗] = −y∗, [y, z] = [y, z∗] = x∗.

This way, (T ∗
wh)

2 = span⟨z + z∗, x∗, y∗⟩ and (T ∗
wh)

3 = span⟨x∗, y∗⟩. This alge-
bra does not appear directly in quadratic nilpotent classifications like the one
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in [Benito et al., 2017] as it is non-reduced. It decomposes in ideals as

T ∗
wh = span⟨x, y, x∗, y∗, z + z∗⟩ ⊕ span⟨z − z∗⟩,

where the second term in abelian and the first one is isomorphic to n2,3.

2.3 Chronology

Since quadratic Lie algebras appeared on 1955, there have been several ad-
vances. Hereunder, we list chronologically which have been the major events
in the timeline until this memoir have been written. These articles have some-
how inspired this work.

Note not all the articles in this chronology appear in the final bibliography.
Instead, only the most used ones are referenced. Additionally, in this list, we
have marked with symbol■ those articles key to the development of this the-
sis, and with symbol ♦ our own articles included, and sometimes expanded,
to form this memoir.

1955 · · · · · ·• Tsou PhD: On Metrisable Lie groups and algebras.

1957 · · · · · ·■

Tsou-Walker: Metrisable Lie groups and algebras.
Definitions of real metrizable algebra (quadratic),
reduced, type and metric multiplicity (quadratic
dimension). Techniques based on metric tensors and
structure constants. Proof of the existence of arbitrary
type (except for 7). Proof of Z(L) = (L2)⊥. Real and
complex algebras of quadratic dimension 1.
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1957 · · · · · ·■
Ruse: On the geometry of metrisable Lie algebras.
Properties of quadratic Lie algebras in terms of
projective spaces geometry. Low dimensional examples.

1962 · · · · · ·■

Tsou: On the Construction of Metrisable Lie Algebras.
Proved the existence theorem of specific types of
quadratic real Lie algebras announced in the previous
article without proof.

1962 · · · · · ·•
Walker: Note on metrisable Lie groups and algebras.
Example of metrisable Lie groups and Lie algebras of
quadratic dimension two..

1976 · · · · · ·•

Milnor: Curvatures of left invariant metrics on Lie
groups. Outline of classical theory on bi-invariant
metrics. Definition of bi-invariant metric on real Lie as
inner derivations being skew-adjoint. Metric Lie
decomposition as orthogonal sum of ideals. Ricci
curvatures.

1978 · · · · · ·•
Astrakhantcev: On the decomposability of Lie algebras.
Uniqueness of orthogonal ideal decomposition of
quadratic Lie.

1984 · · · · · ·■

Keith PhD: On invariant bilinear forms of f-d Lie
algebras. Structure and selfduality of Lie algebras with
invariant metrics. Definition of bi-extensión as tool to
build metric algebras. Self-duality of ideal lattices.
Orthogonality among the terms of upper and lower
central series. Structure of metric mixed.

1984 · · · · · ·•
Kac: Infinite-dimensional Lie algebras, Birkhauser.
Definition of one-dimensional double extension (two
exercices).

1985 · · · · · ·•
Hilgert-Hofmann: Lorentzian cones in real Lie algebras.
Discovery of a whole countable series of solvable real
Lie algebras that support invariant Lorentzian forms
(oscillator algebras).
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1985 · · · · · ·•

Medina: Groupes de Lie munis de métriques
bi-invariantes. One-dimensional double extension
construction. Orthogonality among the terms of upper
and lower central series. Properties of ideals in
quadratic Lie.

1985 · · · · · ·■

Medina-Revoy: Algèbres de Lie et produit scalaire
invariant. Indecomposable quadratic Lie as double
extensions of either simple quadratic or 1-dimensional
quadratic (characteristic zero).

1986 · · · · · ·■

Keith-Hofmann: Invariant quadratic forms on f.d. Lie
algebras. Tensor products of Lie quadratics by
commutative to enrich the examples of quadratic
nilpotent (arbitrary nilindex) and mixed. Inflaction
construction. Indecomposable mixed quadratic:
Rad(L)⊥ ⊂ Rad(L) and Rad(L)⊥⊕S, being S a Levi
factor, is isomorphic to the inflaction of the Levi factor.

1987 · · · · · ·■

Favre-Santharoubane: On invariant bilinear forms on f.d.
Lie algebras. Indecomposable solvable quadratic: centre
non-null and totally isotropic. One-dimensional double
construction (solvable case; Kac’s ideas). Quadratic
nilpotent as amalgamated products.

1996 · · · · · ·•
Figueroa O’Farrill-Stanciu: On the structure of
symmetric self-dual Lie algebras. Pretty outline of
double extension method. Applications to Conformal
field Theory.

1996 · · · · · ·•
Hilgert-Neeb: Orthogonal Lie algebras with cone
potential. Root decomposition for some solvable
quadratic indecomposable Lie algebras.

1997 · · · · · ·■
Noui-Revoy: Algébres de Lie algebras orthogonales et
formes trilineaires alaternées. Reduced quadratic 2-step
nilpotent Lie and trivectors. Equivalent classifications.

56



2.3. Chronology

1997 · · · · · ·■
Bajo-Benayadi: Lie algebras admitting a unique quadratic
structure. Examples of mixed quadratic of arbitrary
quadratic dimension.

2002 · · · · · ·•
Eberlein: Riemannian submersions and lattices in 2-step
nilpotent Lie groups. Introduction of standard real
metrics (inner product, not necessarily invariant) Lie
algebras. Relations to metric 2-step nilpotent algebras.

2003 · · · · · ·•
Baum-Kath: Doubly extended Lie groups-curvature,
holonomy and parallel spinors. Geometry of doubly
extended Lie groups with their natural bi-invariant
metric.

2004 · · · · · ·•
Kath-Olbrich: Metric Lie algebras with maximal isotropic
center. Real quadratic algebras through orthogonal
representations. Two-fold quadratic extensions.

2006 · · · · · ·•
Ovando: Small oscillations on R2 and Lie theory. The
real Lie oscillator 4-dim algebra as a model for the
simple harmonic oscillator.

2006 · · · · · ·•
Kath-Olbrich: Metric Lie algebras and quadratic
extensions. Building real quadratic without simple
ideals. Radical descending and socle ascending series of
ideals as tool (Bergery’s idea).

2007 · · · · · ·•

Ovando: Small oscillations and the Heisenberg Lie
algebra. Classical mechanical systems with a quadratic
hamiltonian on R2n. Real oscillator algebras and
(2n+ 2)-dimensional Lie motion of n Harmonic
oscillators.

2007 · · · · · ·•
Kath: Nilpotent quadratic Lie algebras of small
dimension. Classification of real nilpotent quadratic up
to dimension 10.

2007 · · · · · ·■
Ovando: Two-step nilpotent Lie algebras with
ad-invariant metrics and a special kind of skew-symmetric
maps.
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2007 · · · · · ·■
Bajo-Benayadi: Lie algebras with quadratic dimension 2.
This type of algebras are local: admits a unique
maximal ideal and a unique minimal.

2007 · · · · · ·•
Bajo-Benayadi-Medina: Symplectic structures on
quadratic Lie algebras. Structure of quadratic algebras
admitting non-degenerate skew-forms. Examples of
Manin algebras.

2008 · · · · · ·•

Andrada-Barberis-Ovando: Lie bialgebras of complex
type and associated Poisson Lie groups. Lie bialgebras
arising from Hermitian structures on Lie algebras with
ad-invariant metrics. Double procedure to build Lie
algebras.

2009 · · · · · ·• Kath-Olbrich: Structure of pseudo-Riemannian
symmetric spaces.

2012 · · · · · ·• Dat-Duong-Vu: Solvable quadratic Lie algebras in low
dimensions. Quadratic classification up to dimension 6..

2012 · · · · · ·• Duong-Pinczon-Ushirobira: A new invariant of quadratic
Lie algebras.

2012 · · · · · ·•
del Barco-Ovando: Free nilpotent Lie algebras admitting
ad-invariant metrics. (Real) Quadratic free nilpotent Lie
algebras: n2,3, 3-step 5-dimensional and n3,2 2-step
6-dimensional.

2013 · · · · · ·■
Duong: Two-Step Nilpotent Quadratic Lie Algebras and
8-Dimensional Non-commutative Symmetric Novikov
Algebras.

2014 · · · · · ·•
Benayadi-Elduque: Classification of quadratic Lie
algebras of low dimension. Mixed quadratic up to
dimension 13.

2014 · · · · · ·•
Zusmanovich: A Compendium of Lie Structures on
Tensor Products. Invariant bilinear forms on tensor
product Lie algebras, also named current Lie algebras.
Existence of Poisson structures.
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2016 · · · · · ·•
Cornullier: On the Koszul map of Lie algebras. A
12-dimensional quadratic nilpotent with non-zero
Koszul map. Current Lie algebras 2-cohomology group
description.

2016 · · · · · ·• Ovando: Lie Algebras with ad-invariant metrics: a
survery-guide.

2017 · · · · · ·■

Benito-de la Concepción-Laliena: Free nilpotent and
nilpotent quadratic Lie algebras. General classification
scheme of nilpotent quadratic. Scheme based on
invariant forms of free nilpotent Lie algebras.

2017 · · · · · ·•
Duong-Ushirobira: Solvable quadratic Lie algebras of
dimensions ≤ 8. arXiv preprint, no journal publication
reference found.

2018 · · · · · ·•
Autenried-Furutani et al: Pseudo-metric 2-step nilpotent
Lie algebras. Generalizations of definitions and results of
Eberlein (2002) to pseudo-metric Lie algebras.

2018 · · · · · ·•
Rodriguez-Salgado: Geometric structures on Lie algebras
and double extensions. Quadratic, symplectic and
contact structures on one-dimensional extensions of
central extensions of real and complex Lie algebras.

2019 · · · · · ·♦ Benito-Roldán López et al: Quadratic 2-step Lie algebra:
Computational algorithms and classification.

2019 · · · · · ·•
Camacho-Kaminjarov-Ladra-Omirov: Leibniz algebras
constructed by representations of general diamond Lie
algebras. Diamond (also named as oscillator) algebras:
solvable quadratic attached to Lorentzian cones.

2020 · · · · · ·•
García Delgado-Salgado-Sánchez: Invariant metrics on
central extensions of quadratic Lie algebras. Structural
properties.

2020 · · · · · ·♦ Benito-Roldán López: Derivations and Automorphisms
of Free Nilpotent Lie Algebras and Their Quotients.
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2021 · · · · · ·•
Albuquerque-Barreiro-Benayadi et al.: Poisson algebras
and symmetric Leibniz bialgebra structures on oscillator
Lie algebras.

2021 · · · · · ·•
Zusmanovich: On regular Lie algebras. Quadratic
regular algebras and a question formulated by Amitsur
and Rowen in 1994.

2021 · · · · · ·•
Conti-del Barco-Rossi: Uniqueness of ad-invariant
metrics and Ad-invariant metrics on non-nice nilpotent
Lie algebras.

2022 · · · · · ·♦ Benito-Roldán López: Lie algebras with a finite number
of ideals.

2022 · · · · · ·• Benayadi-Lebzioui: Flat left-invariant
pseudo-Riemannian metrics on quadratic Lie groups.

2022 · · · · · ·•
García Delgado: Invariant metrics on current Lie
algebras. Quadratic structures on tensor products of
generalized oscillator algebras.

2023 · · · · · ·♦ Benito-Roldán López: Equivalent constructions of
nilpotent quadratic Lie algebras.

2023 · · · · · ·•
Bachaou-Bajo-Louzari: On pseudo-Hermitian quadratic
nilpotent Lie algebras. Inductive description of Lie
algebras with complex and quadratic structures.

2023 · · · · · ·♦ Benito-Roldán López: Examples and patterns on
quadratic Lie algebras. In press.

202x · · · · · ·♦ Benito-Roldán López: Lie structures and chain ideal
lattices. Accepted for publication.

202x · · · · · ·♦ Benito-Roldán López: Metrics related to oscillator Lie
algebras. Under review, preprint available in arXiv.
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CHAPTER

3Deconstructing quadratic
Lie algebras

long previous chapter, we have seen some basic families of Lie alge-
bras which are always quadratic: abelian, simple and semisimple.
Non-degenerate invariant bilinear forms in the abelian case are sim-

ply non-degenerate bilinear forms, or scalar products over the vector space.
When considering simple and semisimple Lie algebras. The possibilities for
their forms are greatly reduced as indicated by their quadratic dimension. In
fact, over algebraically closed fields, they are just linear combinations of the
Killing forms of their simple ideals in algebraically closed fields. So all these
three families are full studied.

In this chapter, we will be focused on studying quadratic mixed Lie alge-
bras. We will see we can reduce their study, first, to the solvable algebras and,
later, to the nilpotent ones. This deconstruction will end up in the study of
the two-step nilpotent case. It is precisely, on this variety of algebras, where
a new approach to obtain them will arise. This leads to some computational
algorithms to build quadratic algebras. All these last sections are based on
the published paper [Benito et al., 2019].
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Chapter 3. Deconstructing quadratic Lie algebras

3.1 From mixed quadratic to nilpotent

According to Levi’s Theorem, any Lie algebra appears as the direct sum of a
semisimple subalgebra and a solvable ideal. Thanks to previous works from
Lie, Killing and Engel; at 1894, Cartan achieved the classification of complex
(semi)sim-ple Lie algebras. But the analogous problem for the solvable type
is wild. In 1945, Anatoly I. Maltsev reduced this problem to the classification
of nilpotent Lie algebras, their derivation algebras, automorphismgroups and
some other invariants. This idea is the starting point of this section changing
Lie for quadratic Lie.

3.1.1 Mixed Lie algebras

First, we need to define some important ideals in our algebra:

Definition 3.1.1. Given a Lie algebra Lwe define

• the socle of L, soc(L), as the sum of the minimal ideals,

• the simple socle of L, ssoc(L) as the sum of the minimal simple ideals,

• the abelian socle of L, asoc(L) as the sum of the minimal abelian ideals.

Notice, using Proposition 2.2.13, we have

soc(L) = ssoc(L)⊕ asoc(L).

And some general structure results:

Proposition 3.1.1. Let L = S ⊕R a Levi decomposition, then

(a) L2 = S ⊕ J (L).

And, when (L,φ) is quadratic, we also have for N = N(L)

(b) J (L)⊥ = R⊥ ⊕ Z(L) = soc(L),

(c) Z(R) = asoc(L) ⊆ N ,
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(d) R⊥ = ssoc(L) ⊕ (asoc(L) ∩ R⊥) with R ∩ R⊥ = asoc(L) ∩ R⊥ and
R+R⊥ = ssoc(L)⊕R,

(e) N⊥ = ssoc(L) ⊕ (asoc(L) ∩ N⊥) with N ∩ N⊥ = asoc(L) ∩ N⊥ and
N +N⊥ = ssoc(L)⊕N .

Proof. First item can be proved directly by computation and applying Jacob-
son radical definition introduced in Theorem 2.1.15. This way

L2 = [S ⊕ R,S ⊕ R] = [S, S] + [L,R] = S2 ⊕ J (L) = S ⊕ J (L).

For the second, we need to use the last equality from Jacobson radical defini-
tion in equation (2.9) which says J (L) = L2 ∩R = [L,R]. Then, by orthogo-
nality,

J (L)⊥ = (L2)⊥ +R⊥ = Z(L) +R⊥.

But this sum is direct, as if x ∈ Z(L) ∩R⊥ then x ∈ Radφ because

φ(x, L) = φ(x, S +R) = φ(x, S) = φ(x, [S, S]) = φ([x, S], S) = 0.

For the final equality in item (b) we can observe that J (L) is the intersection
of the maximal ideals, so its orthogonal must be soc(L).

Now, in order to prove item (c) first we notice asoc(L) ⊆ N trivially as
asoc(L) is abelian, so nilpotent. Next, we are going to prove the equality by
double inclusion. First,Z(R), which is an abelian ideal, can be decompose as a
direct sumof irreducible adS-modules using Theorem 2.1.23. Each summand
is aminimal abelian ideal as [Z(R), R] = 0, thusZ(R) ⊆ asoc(L). On the other
hand, let I be a minimal abelian ideal, applying item (b) and asoc(L) ⊆ N ⊆
R, we obtain

I ⊆ asoc(L) ⊆ soc(L) ∩R = J (L)⊥ ∩R. (3.1)
Moreover, [I, L] = 0 or [I, L] = I by minimality, in that second case

φ(I,R) = φ([I, L], R) = φ(I, [L,R]) = φ(I,J (L)) = 0,

by the inclusion chain in expression (3.1). So, in this case I ⊆ R⊥ and, using
Proposition 2.2.13 item (b), we conclude [I,R] = 0 in both cases. As I ⊆ R

then I ⊆ Z(R) proving asoc(L) ⊆ Z(R).
Lastly, items (d) and (e) can be determined together. We start with the

relation J(L) ⊆ N ⊆ R given in Theorem 2.1.15. By orthogonality, and in
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combination with previous item, R⊥ ⊆ N⊥ ⊆ J(L)⊥ = soc(L) = asoc(L) ⊕
ssoc(L). Notice ssoc(L) ⊆ R⊥ ⊆ N⊥ as

φ(ssoc(L), R) = φ([ssoc(L), ssoc(L)], R) = φ(ssoc(L), [ssoc(L), R]) = 0,

using ssoc(L) = ssoc(L)2 as it is semisimple and both ssoc(L) andR are ideals.
Therefore,

R⊥ = ssoc(L)⊕ (asoc(L) ∩R⊥)

N⊥ = ssoc(L)⊕ (asoc(L) ∩N⊥)

Finally, employing asoc(L) ⊆ N ⊆ R we obtain all the values of R + R⊥,
N + N⊥, R ∩ R⊥, N ∩ N⊥. Alternatively, we can see R⊥ ⊆ soc(L) using
Theorem 2.1.23 to express R⊥ =

∑t
i=1 Ui with Ui irreducible adS-modules.

Observe [S,Ui] ⊆ Ui and [R,Ui] = 0, as R is an ideal so [R,R⊥] = 0 by Propo-
sition 2.2.13. Therefore, Ui are minimal ideals of L.

Now, let (L,φ) be a finite dimensional mixed quadratic Lie algebra over a
field of characteristic zero. Then L can be decomposed in an orthogonal1 sum
of ideals

L = L0 ⊕ L1 (3.2)
with L0 = ssoc(L). The resulting algebra L1 is quadratic and has no simple
ideals.

Using now Theorem 2.1.26 we obtain L0 ⊆ S for any S Levi factor of L,
in particular, S = L0 ⊕ S1 with S1 Levi factor of L1 such that L1 = S1 ⊕ R.
Moreover, (L1, φ|L1) as any quadratic Lie algebra can be decomposed using
Theorem 2.2.9 as the orthogonal sum of ideals

L1 = a⊕ L2,

where a is abelian and L2 is quadratic reduced.
At this point we can list some properties of the algebras obtained in this

decomposition:

Lemma 3.1.2. Let L = L0 ⊕ L1 = L0 ⊕ a⊕ L2 be as above, then:

(a) R(L) = R(L1) = R = a⊕R(L2),
1Not confuse this notation with gradations.
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(b) N(L) = N(L1) = N = a⊕N(L2),

(c) J (L) = J (L1) = J (L2),

(d) Z(L) = Z(L1) = a⊕ Z(L2) ⊆ a⊕ L2
2,

(e) L2
1 = L2

2 and L2 = L0 ⊕ L2
1.

Proof. Most items can be obtained directly by applying L and Li definitions,
by using a ⊆ Z(L) ⊆ R(L) ⊆ L1, that L0 and L1 are ideals with null bracket
between them, or that L2 is reduced. Just as an example,

J (L) = [L,R] = [L1, R] = J (L1) = [L2, R(L2)] = J (L2)

is the proof of the third item, wherewe have also applied equation (2.9)which
describes properties of the Jacobson radical.

This way, all these ideals follow the content relationships among ideals
shown in Figure 3.1. The study of ideals will take a leading role in Section 5.3.

L

R+R⊥

N +N⊥
asoc(L)⊥

soc(L) = J (L)⊥ N⊥

R⊥

ssoc(L) = L0

L1

R

N

Z(R) = asoc(L)

J (L)

N ∩N⊥

R ∩R⊥

0

Figure 3.1: Structure of ideals in a mixed Lie algebra. Here L/(R + R⊥) is
isomorphic to S1 Levi factor of L1 as observed in equation (3.2). Every ideal
is contained in those that appear connected above or to their left.

So, from themathematical development above including Proposition 3.1.1
and Lemma 3.1.2, we get our desired result:
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Chapter 3. Deconstructing quadratic Lie algebras

Theorem 3.1.3. Any quadratic mixed Lie algebra decomposes as an orthogonal direct
sum of ideals in a reductive quadratic Lie algebra and a reduced quadratic Lie algebra
with no simple ideals.

This theorem goes beyond Theorem 2.2.9 and its decomposition, in combi-
nationwith propertiesmentioned above, results in amuch simpler ideal struc-
ture. At this point we can suppose without loss of generality that L = S ⊕ R
is mixed quadratic without simple ideals and reduced. In this case

asoc(L) = soc(L) ⊆ N ⊆ R ⊆ L,

and the other way around,

R⊥ ⊆ N⊥ ⊆ J (L)⊥ = soc(L) = asoc(L).

This way, we have the ideal structure shown in Figure 3.2.

L2

R(L2)

N(L2)

asoc(L2)

J (L2)

N(L2)
⊥

R(L2)
⊥

0

Figure 3.2: Structure of ideals in the reduced Lie algebra L = L2. Every ideal
is contained in those that appear connected above or to their left.

Before starting the decomposition, we need to see first a couple results in
order to be able to determine when we can obtain a Lie algebra through a
double extension process.

Proposition 3.1.4. Let (L,φ) be a quadratic Lie algebra, I an ideal andM a subal-
gebra such that L =M ⊕ I , then

Ω: I →M∗

x 7→ φx : M → F

y 7→ φ(x, y)
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3.1. From mixed quadratic to nilpotent

is anM -module homomorphism, via the adjoint and coadjoint representations respec-
tively, whose kerΩ =M⊥ ∩ I .

Proof. First, Ω is linear as φ is bilinear. Now,

kerΩ = {x ∈ I : φ(x,M) = 0} = I ∩M⊥.

Let see it respects the module actions. Let x ∈M , y ∈ I and z ∈M then

Ω(x · y)(z) = Ω(ad(x)(y))(z) = Ω([x, y])(z) = φ[x,y](z)

= φ([x, y], z) = −φ(y, [x, z]) = −φy([x, z]) = (−φy ◦ ad(x))(z)
= (ad∗(x)(φy))(z) = (ad∗(x)(Ω(y)))(z) = (x⊙ Ω(y))(z).

Here · and ⊙ represent respectively the adjoint and coadjoint actions.

Remark 3.1.5. From now on, extending this notation, φx = φ(x, ·) for x ∈ L.

Analogously, we can see I⊥ ∼= (L/I)∗ as L-modules (also M -modules)
using

Ω̂ : I⊥ → (L/I)∗

x 7→ φ̂x : L/I → F

y+I 7→ φ(x, y)

Lemma 3.1.6. Let (L,φ) be a quadratic Lie algebra, and I and ideal of L such that
I⊥ ⊆ I . In that case, (I/I⊥, φ̃) is a quadratic Lie algebra with

φ̃(x+ I⊥, y + I⊥) = φ(x, y).

In particular, for any ideal J we can take I = J+J⊥ to obtain a quadratic Lie algebra.

Proof. First, observe φ̃ is bilinear and it is well defined as φ(I, I⊥) = 0. So, we
just need to check is non-degenerate

Rad φ̃ = {x+ I⊥ : φ(x, I) = 0} = {x+ I⊥ : x ∈ I⊥} = 0.

Let (L,φ) be a quadratic Lie algebra, I an ideal such that I⊥ ⊆ I , andM
subalgebra. We can define the Lie algebra homomorphism

ΦM : M → Derφ̃(I/I
⊥)

x 7→ΦM (x) : I/I⊥ → I/I⊥

y + I⊥ 7→ [x, y] + I⊥
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Chapter 3. Deconstructing quadratic Lie algebras

where φ̃ is the bilinear form induced over the quadratic algebra (I/I⊥, φ̃) us-
ing Lemma 3.1.6.

And, finally we need to see double extensions admit other invariant forms
apart from the one defined in the method itself.

Proposition 3.1.7. Let (AB, fB) be the double extension of (A, f) by (B,ϕ). Then
(AB, fB + φ) is a quadratic Lie algebra for any φ bilinear symmetric such that
φ|B×B ∈ Bisinv(B) and φ|(A+B∗)×AB

= 0.

Proof. The proof is a straightforward computation and consists on checking
fB + φ remains being non-degenerate and fB + φ ∈ Bisinv(AB). Observe the
matrix structure of this new bilinear form is Q 0 I

0 P 0

I 0 0

 =

 0 0 I

0 P 0

I 0 0

+

 Q 0 0

0 0 0

0 0 0

 ,

where 0 represent null submatrices, I the identity, P is the matrix associated
to f and Q is the matrix associated to φ|B×B .

Now, with all previous results proved, we are ready to introduce ourmain
deconstruction theorem.

Theorem 3.1.8. Let (L,φ) a quadratic Lie algebra, I and ideal which contains its
orthogonal, i.e. I⊥ ⊆ I , and M a subalgebra of L such that L = M ⊕ I . In that
case L is isomorphic to ((I/I⊥)M =M ⊕ I/I⊥ ⊕M∗, φ̂M ) the double extension of
(I/I⊥, φ̂) by (M,ΦM ). And isometrically isomorphic to ((I/I⊥)M , φ̂M +ϕ) where
ϕ is bilinear symmetric such that ϕ|M×M = φ|M×M and ϕ|(I/I⊥⊕M∗)×(I/I⊥)M

= 0.

Proof. Denote E the Lie algebra obtained in that double extension, i.e. E =

M ⊕ I/I⊥ ⊕M∗. Now, as L = M ⊕ I we have L⊥ = M⊥ ∩ I⊥ = 0. So, using
I⊥ ∩M⊥ = 0 and I ∩M = 0, we have

(I⊥ ⊕M) ∩ (I⊥ ⊕M)⊥ = (I⊥ ⊕M) ∩ I ∩M⊥ = 0.

In addition, I⊥ ⊕M is a non-degenerate subalgebra which splits L as

L = (I⊥ ⊕M)⊕ (I⊥ ⊕M)⊥ =M ⊕ (I ∩M⊥)⊕ I⊥
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3.1. From mixed quadratic to nilpotent

This decomposition of L allows us to define Ψ: L→ E as

Ψ|M = IdM ,

Ψ|I∩M⊥(x) = x+ I⊥,

Ψ|I⊥ = Ω|I⊥ ,

where Ω is the one defined in Proposition 3.1.4. ThisΨ is a Lie algebra homo-
morphism as form,m′ ∈M , x, x′ ∈ I ∩M⊥ and y, y′ ∈ I⊥ we have

• asM is a subalgebra Ψ([m,m′]L) = [m,m′]M = [Ψ(m),Ψ(m′)]E ,

• The trickiest case appears when combining two elements x, x′. Its prod-
uct can have parts both in the intersection or in I⊥. Therefore, we de-
compose [x, x′]L = a+ bwhere

πI∩M⊥([x, x′]L) = a ∈ I ∩M⊥

πI⊥([x, x
′]L) = b ∈ I⊥

First,

Ψ([x, x′]L) = Ψ(a+ b) = (a+ I⊥) + φb = (a+ b+ I⊥) + (φa + φb)

= ([x, x′] + I⊥) + φ[x,x′],

as φa(m) = φ(a,m) = 0 for all a ∈M⊥. Next

[Ψ(x),Ψ(x′)]E = [x+I⊥, x′+I⊥]E = ([x, x′]+I⊥)+ω(x+I⊥, x′+I⊥)

= ([x, x′] + I⊥) + φ[x,x′],

since

ω(x+ I⊥, x′ + I⊥)(m) = φ̃(ΦM (m)(x+ I⊥), x′ + I⊥)

= φ̃([m,x] + I⊥, x′ + I⊥) = φ([m,x], x′) = φ([x, x′],m) = φ[x,x′](m).

• Onone hand, [Ψ(m),Ψ(x)]E = [m,x+I⊥]E = ΦM (m)(x+I⊥) = [m,x]+

I⊥. On the other hand, Ψ([m,x]L) = [m,x] + I⊥ as [m,x] ∈ I ∩ M⊥

because x ∈ I and I is an ideal, and φ([m,x],m′) = −φ(x, [m,m′]) = 0

since x ∈M⊥ andM is subalgebra.
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Chapter 3. Deconstructing quadratic Lie algebras

• ForM against I⊥, it also works as

[Ψ(m),Ψ(y)]E = ad∗(m)(φy) = −φy ◦ ad(m) = −φ(y, [m, · ])
= φ([m, y], ·) = φ[m,y] = Ψ([m, y]L).

• Finally, both [Ψ(y),Ψ(y′)]E and [Ψ(x),Ψ(y)]E equal zero by definition of
the double extension product. In the first case we have

Ψ([y, y′]L)(m) = φ[y,y′](m) = φ([y, y′],m) = φ(y, [y′,m]) = 0,

using I⊥ is an ideal and I⊥ ⊆ I . While in the second, analogously,

Ψ([x, y]L)(m) = φ[x,y](m) = φ([x, y],m) = −φ(y, [x,m]) = 0.

And, to see it is bijective we can observe both dimensions coincide and

kerΨ = {x ∈ I ∩M⊥ : x ∈ I⊥} = 0.

Finally, to check the isometry wemust check it preserve the bilinear forms
for the elements in each part. Let f = φ̂M + ϕ be the bilinear form of the
double extension,m,m′ ∈M , x, x′ ∈ I ∩M⊥ and y, y′ ∈ I⊥.

f(Ψ(m),Ψ(m′)) = f(m,m′) = ϕ(m,m′) = φ(m,m′),

f(Ψ(m),Ψ(x)) = f(m,x+ I⊥) = φ̂M (m,x+ I⊥) = 0 = φ(m,x),

f(Ψ(m),Ψ(y)) = f(m,φy) = φ̂M (m,φy) = φy(m) = φ(y,m) = φ(m, y),

f(Ψ(x),Ψ(x′)) = f(x+ I⊥, x′ + I⊥) = φ̂M (x+ I⊥, x′ + I⊥)

= φ̂(x+ I⊥, x′ + I⊥) = φ(x, x′),

f(Ψ(x),Ψ(y)) = f(x+ I⊥, φy) = φ̂M (x+ I⊥, φy) = 0 = φ(x, y),

f(Ψ(y),Ψ(y′)) = f(φy, φy′) = φ̂M (φy, φy′) = 0 = φ(y, y′).

Remark 3.1.9. This theorem allows us to obtain some quadratic Lie algebras
as double extensions. After reducing the algebra to a quotient of ideals and
double extending it again by a subalgebra, we obtain the original Lie algebra,
but its bilinear form can differ unlessM ⊆M⊥. In those cases, we can obtain
an isometric double extension using Proposition 3.1.7 by adding a summand
to the bilinear form to control it overM ×M .
Remark 3.1.10. Any algebra obtained from a double extension is of this form.
InB⋉ (A⊕B∗)we can distinguish an idealA⊕B∗, containing its orthogonal
B∗, and a subalgebra B.
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3.1. From mixed quadratic to nilpotent

All these decompositions work not only for ideals I such that I ⊆ I⊥, but
for any ideal J considering I = J+J⊥ with I⊥ = J ∩J⊥ ⊆ I (see Figure 3.3).

L

J + J⊥ = I

J J⊥

J ∩ J⊥ = I⊥

0

Figure 3.3: Diagram showing how to obtain an ideal containing its orthogonal.
Every ideal is contained in those that appear above.

We can observe the Levi decomposition L = S ⊕ R satisfies, in our re-
duced algebras with no simple ideals, that R⊥ ⊆ R. Therefore, we can apply
Theorem 3.1.8.

Corollary 3.1.11. Let (L,φ) be a quadratic reduced Lie algebra with no simple ideals.
Then L is isomorphic to the double extension ((R/R⊥)S = S ⊕ R/R⊥ ⊕ S∗, φ̂S)

of (R/R⊥, φ̂) by (S,ΦS). And it is isometrically isomorphic to ((R/R⊥)S , φ̂S + ϕ)

where ϕ is bilinear symmetric with ϕ|S×S = φ|S×S and ϕ|(R/R⊥⊕S∗)×(R/R⊥)S
= 0.

This result appears as Theorem 2.2 (iii) in [Bordemann, 1997] without
proof and avoiding isometric isomorphisms.

Thanks to the result from Corollary 3.1.11, we can reduce the study of
generic quadratic Lie algebras to just the semisimple, abelian and solvable-
reduced ones separately. In conclusion,

(L,φ)︸ ︷︷ ︸
Any mixed

= (L0, φ0)︸ ︷︷ ︸
Semisimple ideal

⊥ (a, φ1)︸ ︷︷ ︸
Abelian ideal

⊥ (L1, φ2)︸ ︷︷ ︸
Double extension of a solvable

As semisimple and abelian cases are completely known, as mentioned before,
we are now going to focus just on the solvable one.
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Chapter 3. Deconstructing quadratic Lie algebras

3.1.2 Solvable Lie algebras

At this point, we are working with solvable reduced Lie algebras. This way,
Z(L) ∩ L2 = Z(L) ̸= 0 seeing Proposition 2.2.13 item (f). So we can take an
isotropic element z ∈ Z(L), which can define a one-dimensional ideal I⊥ =

Fz contained in its orthogonal I . Using dimensions, this I has codimension
one, so we can decompose

L =M ⊕ I,

whereM = Fx is a subalgebra, I is an ideal and I⊥ ⊆ I . These are exactly the
conditions required by Theorem 3.1.8.

Corollary 3.1.12. Any solvable, quadratic and reduced Lie algebra (L,φ) is isomet-
rically isomorphic to the double extension of (I/I⊥, φ̂) by means (X = Fx,ΦX)
where I⊥ = Fz for some z ∈ Z(L) and X is a complement (as a vector space) of I
such that φ(x, x) = 0 and φ(x, z) = 1.

Proof. Observe that x exists as for some y complement of I , if φ(y, y) ̸= 0 we
can consider x = z − 2φ(y,z)

φ(y,y) y up to scalars.

Remark 3.1.13. This corollary is just 2.7 Lemma in [Favre and Santharoubane,
1987]. In addition, this same result can be extended to non-solvable Lie alge-
braswhenZ(L)∩L2 ̸= 0. Indeed, this is similar to the form of the result which
appears in [Bordemann, 1997], but specifying the double extension process
we must follow to obtain our algebra.

This result allows us to obtain any solvable quadratic Lie algebra through-
out a chain of double extensions. Each algebra in this chain has dimension
two less than its predecessor. An idea like the one in this corollary appears
in [Favre and Santharoubane, 1987, 2.8 Lemma], which acts as a source of
motivation along this section. Thanks to this result, we could obtain any solv-
able Lie algebra from successive double extensions starting at the zero or 1-
dimensional Lie algebra, depending or whether its dimension is even or odd.
This chain of double extensions by 1-dimensional algebras serves as an inspi-
ration for our chain in Figure 4.1 found later in Chapter 4. But this result does
not reduce our classification problem to some other smaller family, they are
all still solvable. To fix this problem, we can take the following approach.
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3.1. From mixed quadratic to nilpotent

Let L = R be a reduced solvable quadratic Lie algebra. In this case we
have the chain of ideals

0 ⊊ Z(R) ⊆ R2 ⊆ N ⊆ R = L.

By orthogonality
0 ⊆ N⊥ ⊆ Z(R) ⊆ R2 ⊊ R.

So we have the chain

0 ⊆ N⊥ ⊆ Z(R) ⊆ R2 ⊆ N ⊆ R = L,

which results in a simplified version of Figure 3.2 shown in Figure 3.4.

R

N

J (R) = R2

asoc(R) = Z(R)

N⊥

0

Figure 3.4: Ideals in a solvable reduced Lie algebra, where an ideal is con-
tained within those to its left. Here we have used J (R) = [L,R] = [R,R] and
J (R)⊥ = asoc(R) = (R2)⊥ = Z(R).

Proposition 3.1.14. Let (R,φ) be a solvable non-nilpotent quadratic reduced Lie
algebra, we can obtain a chain of quadratic Lie algebras

R = R0, R1, . . . , Rn,

such that Ri is isometrically isomorphic to the double extension of Ri+1 by a 1-
dimensional Lie algebra, Rn is nilpotent and n = codimRN .

Proof. Let us proceed by induction on n = codimRN . If n = 1, then there
exists x /∈ N soR = N ⊕Fx. Here Fx is a subalgebra, andN an ideal contain-
ing its orthogonal. So, effectively, we can apply Corollary 3.1.12 obtaining the
chain with two algebras R0 = R, R1 = N/N⊥.

Let us assume this is satisfied for every n and see what happens for n+1.
Since R is not nilpotent, N ̸= R and N⊥ ̸= 0. In this case, every z ∈ N⊥ ⊆
Z(R) ⊆ R2 = Z(R)⊥ is isotropic. If we consider I⊥ = Fz ⊆ I , I would
have codimension one, and we can decompose R = I ⊕ Fx for some x /∈ I .
Again, employing Corollary 3.1.12, R is the double extension of R1 = I/I⊥.
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Chapter 3. Deconstructing quadratic Lie algebras

Moreover, N(R1) = T/I⊥ for some T , thus T k ⊆ I⊥ ⊆ Z(R). This way,
T k+1 = 0, so T is nilpotent.

Note that J (R) = R2 ⊆ I because I is a maximal ideal. Then, R2/I⊥ is a
nilpotent ideal of I/I⊥ and, by definition of nilpotent radical, R2/I⊥ ⊆ T/I⊥
and R2 ⊆ T . Therefore, T is an ideal of R ([T,R] ⊆ R2 ⊆ T ) and, as it
is nilpotent, T ⊆ N . But I⊥ = Fz ⊆ N⊥, so T ⊆ N ⊆ I and T = N by
maximality of the nilradical T/I⊥ of R1.

Moreover, as

codimR1 N(R1) = dimR1 − dimN(R1) = dimR− 2− dimN + 1

= dimR− dimN − 1 = codimRN − 1,

we can apply our induction hypothesis over R1. In order to apply induction,
we must check R1 = I/I⊥ is reduced. As I2 is an ideal of R, (I2)⊥ ⊆ I2

because R is reduced. Then, from R2 ⊆ I , we obtain

I⊥ ⊆ (R2)⊥ = Z(R) ⊆ (I2)⊥ ⊆ I2 ⊆ R2 ⊆ I.

On the other hand,

R2
1 =

(
I

I⊥

)2

=
I2 + I⊥

I⊥
=
I2

I⊥

and

Z(R1) = (R2
1)

⊥ = {x+ I⊥ : x ∈ I ∩ (I2)⊥ = (I2)⊥} = (I2)⊥

I⊥
⊆ I2

I⊥
= R2

1.

This result gives us a shorter path of double extensions when looking for
a nilpotent algebra at the end of our chain.

Whenwriting about reducing the study to just nilpotent Lie algebras, there
is another result worth mentioning from [Keith, 1984, Proposition 5.61]. We
recall that from Proposition 2.2.13 item (f) N⊥ ⊆ N and then we have.
Proposition 3.1.15. If (L,φ) is a quadratic solvable Lie algebra over a field F of
characteristic zero, then (L,φ) is a central bi-extension of (N/N⊥, φ|N×N ) where
N = N(L).

Remark 3.1.16. Bi-extension is the name given in [Keith, 1984, Definition 5.60]
to those algebras which contain an ideal I such that I⊥ ⊆ I . In that same the-
sis, the author obtained some of those bi-extensions using a procedure equiv-
alent to the double extension by an abelian Lie algebra, but the question of
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how to obtain the rest remain opened. Moreover, the term central refers to
N⊥ ⊆ Z(L).

Anyway, thanks to Proposition 3.1.14, we are leddirectly into the following
section: the study of those nilpotent quadratic algebras.

3.1.3 Nilpotent Lie algebras

Thanks to all the previous deconstruction, nilpotent Lie algebras remain being
one of the main fields of study of quadratic Lie algebras. And its complete
classification is still an open problem. In this section we will see different
results for these algebras.

To begin with, as nilpotent algebras are solvable, Corollary 3.1.12, which
we have previously seen, can be applied over any nilpotent Lie algebra to ob-
tain it from successive double extensionswith one-dimensional algebras (vec-
tor spaces) starting from the zero or the abelian one-dimensional Lie algebra.

At this point, where we cannot reduce our nilpotent family of study to
a smaller one, we should start studying these algebras. As this is a wild
problem, research in this line has focused on more restrictive subvarieties,
for instance: low dimensional in [Kath, 2007], 2-step in [Ovando, 2007b]
or [Duong, 2013], free nilpotent in [del Barco and Ovando, 2012] or even
solvable withmaximal isotropic centre in [Kath andOlbrich, 2004]. However,
these are just specific approaches with no technical generalization.

In [Benito et al., 2017], a classification scheme based on free nilpotent al-
gebras and their invariant forms was introduced. Here, a new technique for
constructing quadratic nilpotent Lie algebras out of invariant symmetric bilin-
ear forms on free nilpotent Lie algebras appears. In the sequel, we summarize
briefly some of the results we will use along the next section. The following
lemma comes from [Benito et al., 2017, Proposition 4.1].

Lemma 3.1.17. Let n be the factor Lie algebra nd,t/I where I is an ideal of nd,t such
that ntd,t ̸⊆ I ⊆ n2d,t. Then, there exists a symmetric, invariant and non-degenerate
bilinear form φ on n if and only if there exists a symmetric and invariant bilinear form
ψ on nd,t such that I = n⊥d,t. The relation between φ and ψ is given by ψ(a, b) =

φ(a+ I, b+ I) for all a, b ∈ nd,t.
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Previous lemma reduces the classification of quadratic nilpotent Lie alge-
bras to that of invariant bilinear forms on free nilpotent Lie algebras. More-
over, we can establish a categorical approach. We distinguish two categories:

• NilpQuadd,t stands for the category whose objects are the quadratic t-
nilpotent Lie algebras (n, φ) of type d. Morphisms f : (n, φ) → (n′, φ′)

are isometric Lie homomorphisms, that means f([x, y]) = [f(x), f(y)] and
φ(x, y) = φ′(f(x), f(y)).

• Sym0(d, t) is the category whose objects are the symmetric invariant bi-
linear forms ψ on nd,t for which kerψ ⊆ n2d,t and ntd,t ⊈ kerψ. The mor-
phisms are isometric Lie homomorphisms of nd,t moduli the relation of
equivalence

f1 ∼ f2 ⇐⇒ (f1 − f2)(nd,t) ⊆ ker(ψ2),

where fi : (nd,t, ψ1)→ (nd,t, ψ2) for i = 1, 2.

• Qd,t : Sym0(d, t) → NilpQuadd,t is the functor that associates to each
object ψ in the category Sym0(d, t), the object in NilpQuadd,t:

Qd,t(ψ) = (nd,t/ kerψ,φ), φ(a+ kerψ, b+ kerψ) = ψ(a, b).

In [Benito et al., 2017] it is proved that the functorQd,t provides an equiv-
alence between the categories Sym0(d, t) and NilpQuadd,t. Moreover, there is
a natural action of Aut nd,t, the group of automorphisms of nd,t, on the set of
objects of the category Sym0(d, t),

Aut nd,t ×Obj(Sym0(d, t))→ Obj(Sym0(d, t)) given as (θ, ψ) 7→ ψθ (3.3)

whereψθ(x, y) = ψ(θ(x), θ(y)). Using the functorQd,t and the action θ·ψ = ψθ

introduced in expression (3.3), from [Benito et al., 2017, Corollary 4.3 and
Lemma 4.4] we get:

Lemma 3.1.18. For every ψ1, ψ2 ∈ Obj(Sym0(d, t)), the following assertions are
equivalent:

• ψ1 and ψ2 are isomorphic objects in the category Sym0(d, t).

• Qd,t(ψ1) and Qd,t(ψ2) are isometrically isomorphic Lie algebras.

• There exists an isometric automorphism θ : (nd,t, ψ1)→ (nd,t, ψ2).
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Lemma 3.1.19. The orbit set OrbAut nd,t(ψ) = {ψθ : θ ∈ Aut nd,t}, for all ψ ∈
Obj(Sym0(d, t)), equals to the set of bilinear invariant symmetric forms that are iso-
morphic to ψ in the category Sym0(d, t). Therefore, the number of orbits of the action
θ · ψ = ψθ given in equation (3.3) is exactly the number of quadratic t-nilpotent Lie
algebras of type d up to isometric isomorphisms.

Thanks to all these results, the authors were able to study up to isometric
isomorphisms, the indecomposable quadratic nilpotent Lie algebras over any
algebraically closed filed F of characteristic zero whose type is 1, or 2 when
the nilindex is less than 6; or type 3 for nilindex less than 4. They end up with
7 algebras all of different dimension. For the real case they addmore algebras.
All these can be found summarized in Table 3.1, and in an extended way in
the original paper (see [Benito et al., 2017]).

Type Nilindex Dimension

1 1 1, 1−

3 5, 5−
2

5 7, 7−, 8, 8−, 8∗

3
2 6
3 8, 8−, 8∗, 9, 9−, 9∗

Table 3.1: Quadratic Lie algebras of small type classified in [Benito et al.,
2017]. Here, n∗ denotes an algebra of dimension n which only appears in
the real case, n− refers to an algebra (n,−φ) of dimension n which belongs
also to R for some algebra (n, φ)which exists in both R and C and appears in
this list simply as n.

Moreover, we observe the real algebra n2,3(R) admits two non-isometric
invariant metrics, the metric in Example 2.2.4 and its opposite. In fact, the
number of non-isometrically isomorphic quadratic structures on n2,3(F) is
equal to the cardinality of the quotient groupF×/(F×)2, whereF× is themulti-
plicative group of the field F as it is established in [Benito et al., 2017, Theorem
5.2 and Corollary 5.3]. So, there is only one quadratic structure on the com-
plex algebra n2,3(C) and infinite in case n2,3(Q), where Q is the rational field.
In contrast, up to isometric isomorphisms, there is only one indecomposable
and quadratic 2-step Lie algebra of type 3 over any field of characteristic zero.
This algebra is the 6-dimensional free nilpotent n3,2(F) according to [Benito
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et al., 2017, Corollary 5.7], see Example 2.2.5. In fact, [del Barco and Ovando,
2012] proved that n3,2(F) and n2,3(F) are the only free nilpotent Lie algebras
that admit a quadratic structure.

Recall at the endof Section 2.2.1, just before Section 2.2.2, we saidm(n2,3) =

4 andm(n3,2) = 7 despite there are all isometrically isomorphic in C.

3.2 Quadratic 2-step nilpotent Lie algebras

Nilpotent Lie algebras are a huge family to be analyzed thoroughly. This is
why we are going to focus on the 2-step case. A Lie algebra n, as seen in
Definition 2.1.25, is said to be 2-step when n3 = 0 but n2 ̸= 0. These are the
first nilpotent algebras we can study that are not trivial (abelian).

Along this section, we are recombining ideas and results in [Benito et al.,
2017] and [Ovando, 2007b] to get an explicit classification of quadratic 2-step
nilpotent Lie algebras.

The real Lie groups associated to quadratic 2-step real Lie algebras provide
examples of compact pseudo-Riemannian nilmanifolds. According to [Noui
and Revoy, 1997, Corollary 3.6], there is a finite number (up to isometric iso-
morphisms) of quadratic and reduced 2-step nilpotent Lie algebras of dimen-
sion up to 17. Following that same reference, the classification of those alge-
bras is equivalent to the classification of alternating trilinear forms, which is
an open problem. Ovando (see [Ovando, 2007b]) shows the existence of real
quadratic 2-step Lie algebras of arbitrary type d ≥ 3 with d = 4 as the only
exception. In [Ovando, 2007b], it is proved that the algebras in this class can
be achieved from any injective homomorphism ρ : v → so(v, ⟨ · , · ⟩) of a real
vector space v equipped with an inner product ⟨ · , · ⟩. In addition, the map ρ
must satisfy the relation ρ(v)(v) = 0 for all v ∈ v. This last condition can be
rewritten as,

ρ(v)(u) + ρ(u)(v) = 0. (3.4)

From now on, the rest of the chapter, based on the published article [Ben-
ito et al., 2019], is aimed to introduce a new method to construct any 2-step
nilpotent quadratic algebra of d generators or type d. We are going to estab-
lish some alternative results on the existence and isomorphisms of quadratic
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2-step nilpotent Lie algebras over arbitrary fields of characteristic 0. Along it,
we will show that the key of the structure and classification of this class of
metric algebras relies on certain families of skew-symmetric matrices. More-
over, we will give some computational examples for d up to 8.

3.2.1 Basic examples

The smallest example of a reduced 2-step nilpotent Lie algebra is the free
nilpotent n3,2 of dimension 6. Its metric was defined in Example 2.2.5. We
note that Z(n3,2) is an isotropic subspace of dimension half of the algebra,
3 in this case. So this space is a lagrangian (see Definition 2.2.5) and φ is
a metabolic metric (equivalently hyperbolic symmetric). This motivates the
following general definition, included in [Elman et al., 2008, Chapter I, Sec-
tion 1 and 1C], which is remarkable for the explicit description of quadratic
2-step Lie algebras on the real field.
Definition 3.2.1. Let v denotes a vector space over an arbitrary field F and
λ = ±1. We define the hyperbolic λ-bilinear form on v to be the form φλv on
H(v) = v⊕ v∗, where

φλv (v1 + f1, v2 + f2) = f1(v2) + λf2(v1),

for all v1, v2 ∈ v and f1, f2 ∈ v∗. If λ = 1, the form φ1
v is symmetric, and

if λ = −1, it is alternating (skew-symmetric). A bilinear form ψ is called a
hyperbolic bilinear form if it is isometric to φλv for some vector space v and some
λ = ±1.
Definition 3.2.2. A non-degenerate bilinear form φ : V × V → F is called
metabolic if there is an isotropic subspace W of V of half its dimension, i.e.
there is a lagrangian subspace.

In characteristic different from two, following [Elman et al., 2008, Corol-
lary 1.26], hyperbolic symmetric and metabolic forms are equivalent. This
metrics are the basement for the following general example.
Example 3.2.1. Let (v, ⟨ · , · ⟩, ρ) be the a triple where (v, ⟨ · , · ⟩) is a metric vector
space over R (so ⟨ · , · ⟩ is an inner product on v) and ρ : v → so(v) denotes
an injective linear map that satisfies condition (3.4). For every u, v ∈ v, let
fu,v : v→ R be defined as

fu,v(w) = ⟨ρ(w)(u), v⟩ =
(3.4)
−⟨ρ(u)(w), v⟩

79



Chapter 3. Deconstructing quadratic Lie algebras

for all w ∈ v. Consider now the vector space n(v, ρ) = v ⊕ v∗ endowed with
the canonical hyperbolic metric

φ1
v(v1 + f1, v2 + f2) = f1(v2) + f2(v1).

In n(v, ρ)we define the bracket product

[u+ g, v + h] = [u, v] = fu,v,

for u, v ∈ v and g, h ∈ v∗. Since ρ(a) ∈ so(v), the product [ · , · ] is skewsym-
metric. It is also clear that [[u, v], w] = 0. Hence, n(v, ρ) is a 2-step Lie alge-
bra. From condition (3.4) of ρ, we get that φ1

v is an invariant bilinear form.
Therefore (n(v, ρ), φ1

v) is a quadratic 2-step Lie algebra named as the modi-
fied cotangent of v. In fact n(v, ρ)2 = v∗ = Z(n(v, ρ)) because of ρ is injec-
tive. So the Lie algebra n(v, ρ) is reduced (equivalently, its corank, defined as
dimZ(n)− dim n2, is zero).

Theorem 3.2 in [Ovando, 2007b] establishes that for every integerm ≥ 1,
if we provide Rm (consider as an abelian Lie algebra) with a metric Φm, the
real quadratic 2-step nilpotent Lie algebras (up to isometries) are of the form
(Rm ⊕ n(v, ρ),Φm ⊥ φ1

v). In [Ovando, 2007b, Theorem 3.6], she describes the
isomorphisms between 2-step nilpotent real quadratic algebras. We will see
that these results are also valid for arbitrary fields of characteristic zero.

3.2.2 Theoretical support

The existence of a quadratic structure on a Lie algebra imposes strong con-
ditions on its algebraic structure. For real 2-step nilpotent Lie algebras this
structure has been completely described by [Ovando, 2007b] by means of the
construction of the modified cotangent of a real vector space v. According to Ex-
ample 3.2.1, three ingredients are needed for this construction:

• a metric vector space (v, ⟨ · , · ⟩),

• an injective linear map ρ : v→ so(v, ⟨ · , · ⟩) satisfying ρ(a)(a) = 0 and

• the canonical hyperbolic metric φ on the vector space v⊕ v⋆.

In this section, we will rewrite this construction throughout the notion of d-
quadratic family of matrices which let us to present the modified cotangent in
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terms of basis, structure constants and canonical metabolic bilinear forms. In
this way, we will escape from the initial metric ⟨ · , · ⟩ and the map ρ (both are
integrated in the notion of a d-quadratic family of matrices) and we will open
the construction to anyfield of characteristic zero, not only the reals. Although
the notion of modified cotangent is deeper from an algebraic and geometric
point of view, this new approach is available for generic fields and more use-
ful for our computational purposes. We will recover and extend results on
structure and existence established in [Ovando, 2007b]. And, by using tech-
niques introduced in [Benito et al., 2017], wewill give a condition of isometric
isomorphisms between quadratic 2-step Lie algebras.

For a given quadratic and reduced 2-step nilpotent Lie algebra (n, φ) we
have that Z(n) = n2 = (n2)⊥ because of equality (2.13). Therefore n2 is
an isotropic subspace of n of dimension 1

2 dim n. It follows that any non-
degenerate invariant bilinear form attached to a quadratic and reduced 2-step
nilpotent Lie algebra is metabolic.

Let (n, φ) be a quadratic and reduced 2-step nilpotent Lie algebra of type
d over the field F. Since φ is metabolic, for a given basis {z1, z2, . . . , zd} of n2,
there exists a set {v1, v2, . . . , vd} of orthogonal vectors such that φ(zi, vj) = δij .
Therefore, B = {v1, v2, . . . , vd, z1, z2, . . . , zd} is an ordered basis of n and φ, in
the basis B, is determined by the matrix

B(d) =

(
0d×d Id×d
Id×d 0d×d

)
. (3.5)

Here 0d×d denotes the null matrix of dimension d × d and Id×d refers to the
identity matrix of order d. In the sequel we will also use the following no-
tations and facts. The decomposition n = v ⊕ n2, v = span⟨v1, v2, . . . , vd⟩
induces a natural Z2-graduation in the algebra so(n, φ) by declaring as even
part so0(n, φ) = {h ∈ so(n, φ) : h(v) ⊆ v, h(n2) ⊆ n2} and so1(n, φ) = {h ∈
so(n, φ) : h(v) ⊆ n2, h(n2) ⊆ v} as odd part. From the description of so(n, φ)
given in expression (2.8) and the previous decomposition n = v⊕n2, we have

so(n, φ) = span⟨φx,y = φ(x, ·)y − φ(y, ·)x : x, y ∈ n⟩
= span⟨φx,y : x, y ∈ v ∪ n2⟩.

Since φx,y = −φy,x and v and n2 are isotropic, we get

so(n, φ) = φv,v ⊕ φv,n2 ⊕ φn2,n2 = so0(n, φ)⊕ so1(n, φ), (3.6)
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with
so0(n, φ) = φv,n2 and so1(n, φ) = φv,v ⊕ φn2,n2 ,

where φp,q = span⟨φx,y : x ∈ p, y ∈ q⟩. Hence, any h ∈ so(n, φ) can be
decomposed as h = h0 + h1 where hi ∈ soi(n, φ). This lets us describe and
manage the orthogonal map h and any Lie product [h, h′] = hh′ − h′h in an
easier way.

On the other hand, φ is related to some invariant form of the 2-step free
nilpotent algebra nd,2 because of Lemma 3.1.17. We will use as model of nd,2:

nd,2(F) = Fd ⊕ Λ2Fd, [a+ b ∧ c, a′ + b′ ∧ c′] = a ∧ a′,

which is given in [Gauger, 1973]. If we take a basis {v1, . . . , vd} of Fd, the set
{vi, [vi, vj ] = vi∧ vj : 1 ≤ i ≤ d, i < j} is a basis of nd,2(F) calledHall basis (see
Section 6.2.1 for a definition, algorithm and examples).

Definition 3.2.3. For any d ≥ 2, a family {M1, . . . ,Md} of square matrices of
order d with entries in F is called d-quadratic if the following properties are
satisfied:

(1) EverymatrixMi is skewsymmetric (M t
i = −Mi, whereM t

i is the trans-
pose matrix ofMi).

(2) The jth column ofMi is the additive inverse of the ith column ofMj .

LetMi<j denote the submatrix ofMi given by the set of all jth columns ofMi

such that i < j. In case the matrix

F(M1, . . . ,Md) = [M1<jM2<j . . .Md−1<j ], (3.7)

of order d× d(d−1)
2 , has rank dwe say this is a non-degenerate d-quadratic family.

Remark 3.2.1. From item (2) we can observe the ith column of everyMi is null.

The next theorem gives us an alternative formulation (and proof) of the
structure result established in Theorem 3.2 in [Ovando, 2007b] for quadratic
and reduced 2-step algebras. The current formulation given here is the key of
the computational algorithms we will develop in the next Section. The algo-
rithms are based on a description of any quadratic and reduced 2-step algebra
through basis and structure constants.
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Theorem 3.2.2. For any d ≥ 2, the following assertions are equivalent:

(a) (n, φ) is a quadratic and reduced 2-step nilpotent Lie algebra of type d.

(b) There exists a basis B = {v1, . . . , vd, z1, . . . , zd} of n for which the structure
constants are determined by a family of non-degenerate d-quadratic matrices
{Mi = (mijk) : 1 ≤ i ≤ d} in the following way: [zi, n] = 0 and [vi, vj ] =∑d

k=1mijkzk.

In this case, the bilinear form φ is metabolic and, in the ordered basis B, φ is given by
the canonical matrix B(d) described in equation (3.5).

Proof. First, assume that (n, φ) is quadratic and reduced. From equality (2.13)
we get Z(n) = n2 = (n2)⊥. Hence, we can take a minimal set of generators
{v1, . . . , vd} of n and a basis {z1, . . . , zd} of n2 such that φ(vi, zj) = δij . There-
fore, n decomposes as the direct sum,

n = v⊕ n2,

where v denotes the linear span of {v1, . . . , vd} and the matrix of φ attached
to the basis B = {v1, . . . , vd, z1, . . . , zd} is the matrix B(d) described in equa-
tion (3.5). Now, the inner derivation algebra of n, Inner n ∼= n/Z(n) according
to equation (2.5), is generated by the set {ad vi : 1 ≤ i ≤ n}. Since n2 ⊆ Z(n),
this algebra is abelian and its dimension is d because of v∩Z(n) = 0 (the map
v→ Inner n, v 7→ ad v is one-one).

From the inclusion given in expression (2.11), the form φ is invariant if
and only if Inner n is a subalgebra of the orthogonal Lie algebra so(n, φ). As it
is explained in the decomposition (3.6), the algebra so(n, φ) isZ2-gradedwith
even and odd parts, so0(n, φ) = φv,n2 and so1(n, φ) = φv,v⊕φn2,n2 respectively.
Therefore, any h ∈ Inner n decomposes as h = h0 + h1 where hi ∈ soi(n, φ).
Since h is an inner derivation and n is 2-nilpotent we have

h(v) ⊆ n2, and h(n2) = 0.

Hence h0 = 0 and the matrix representation of h = h1 with respect to the
basis B is

M̂(h) =

(
0d×d 0d×d
M 0d×d

)
. (3.8)
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Now, h ∈ so(n, φ) if and only if

φ(h(x), y) + φ(x, h(y)) = 0⇐⇒ M̂(h)tB(d) +B(d)Â(h) = 0. (3.9)

Note that the assertion (3.9) is equivalent to M t = −M . Let Mi denote the
skewsymmetric matrix of order d × d attached to M̂(ad vi) for i = 1, . . . , d.
We claim that {M1, . . . ,Md} is a family of non-degenerate d-quadratic matri-
ces. Conditions (1) and (2) in Definition 3.2.3 follow from assertion (3.9) and
the anticommutativity of the Lie product of n. Non-degenerate condition in
Definition 3.2.3 follows from the basic fact that span⟨h(vi) : i = 1, . . . , d, h ∈
Inner n⟩ = n2. This implies that the rank of F(M1, . . . ,Md) is exactly d.

For the converse, we note that the Lie bracket given in item (b) from The-
orem 3.2.2 is anticommutative by using property (2) in Definition 3.2.3 of d-
quadratic matrices. The triple product [[x, y], z] is null in n, so, the Jacobi iden-
tity is trivial. Therefore, (n, [·, ·]) is a Lie algebra. From the non-degenerate
condition of a d-quadratic family, we have 0 ̸= n2 = span⟨z1, . . . , zd⟩. Hence,
n is a 2-step nilpotent Lie algebra of type d. The structure constants mijk of
n show us that the matrix representation of M̂(ad vi) is determined by the
matrix Mi. According to condition (1) in Definition 3.2.3, every matrix Mi

is skewsymmetric. Hence, the non-degenerate bilinear form φ(vi, zj) = δij

and φ(vi, vj) = φ(zi, zj) = 0 is invariant because of the equivalence estab-
lished in condition (3.9). In order to prove that n is reduced, we will test that
Z(n) ∩ v = 0, where v = span⟨v1, . . . , vd⟩. Let u = x1v1 + · · · + xdvd (xi
scalars) and assume u ∈ Z(n). Denote u = (x1, . . . , xn) and note thatMiu = 0

for i = 1, . . . , d. Since M t
i = −Mi, we have [M1, . . . ,Md]

tu = 0. From the
non-degenerate condition of a d-quadratic family, the rank of [M1, . . . ,Md] is
d. Therefore u = 0which proves that Z(n) ∩ v = 0.

From now on, we denote as (n(M1, . . . ,Md), φ) the quadratic Lie algebra
attached to the family of d-quadratic matrices {M1, . . . ,Md} as it is described
in item (b) of Theorem 3.2.2. For any n ≥ 1, we also denote (Fn,Φn) the
quadratic abelian Lie algebra of type nwhere Φn is the non-degenerate bilin-
ear form given by Φn(u, v) =

∑n
i=1 uivi (standard inner product).

Remark 3.2.3. Summarizing Theorem 3.2.2, the Lie algebra (n(M1, . . . ,Md), φ)

satisfies:

• n(M1, . . . ,Md) = span⟨v1, . . . , vd, z1, . . . zd⟩ has type d and dimension 2d.
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• The invariant bilinear form φ is given by the formulas φ(vi, vj) = 0 =

φ(zi, zj) and φ(vi, zj) = δij . The matrix of φ is B(d) as described in
equation (3.5).

• F(M1, . . . ,Md) determines completely the Lie product of n(M1, . . . ,Md)

from the matrix equation:

([v1, v2], . . . , [v1, vd], [v2, v3], . . . , [v2, vd], [v3, v4], . . . , [vd−1, vd])

= (z1, . . . , zd) · F(M1, . . . ,Md).

In the following examples we give the whole set of non-degenerate d-
quadratic families of matrices for 2 ≤ d ≤ 4. When d = 2, 4 there is none
d-quadratic family, while for d = 3 there is a one-parametric family. For other
arbitrary values of d, it is possible to get examples of this type of families using
the computationalmethods found next in Section 3.3. The quadratic 2-step Lie
algebras of type 3 attached to 3-quadratic families of Example 3.2.3 are given
in [Ovando, 2007b], [del Barco and Ovando, 2012] and [Benito et al., 2017].
Example 3.2.2. The 2× 2 skewsymmetric matrices are of the form(

0 a

−a 0

)
, a ∈ F.

So, there are no non-degenerate 2-quadratic families of matrices. Hence, in
characteristic zero, there are no 2-step quadratic Lie algebras of type 2.
Example 3.2.3. The non-degenerate 3-quadratic families of matrices are of the
form {M1,M2,M3}where

M1 =

0 0 0

0 0 a

0 −a 0

 , M2 =

0 0 −a
0 0 0

a 0 0

 , M3 =

 0 a 0

−a 0 0

0 0 0

 .

and 0 ̸= a ∈ F. As there are no 2-step quadratic nilpotent Lie algebras of type
2, any quadratic 2-step of type 3 is reduced. Therefore the class of quadratic
2-step Lie algebras of type 3 are of the form (n(M1,M2,M3), φ). From Re-
mark 3.2.3, we obtain the one-parametric family of Lie algebras (na, φ) de-
scribed by the basis {v1, v2, v3, z1, z2, z3}, the bilinear form φ given by the ma-
trix B(3) and non-zero products [v1, v2] = −az3 = −[v2, v1], [v1, v3] = az2 =
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−[v3, v1] and [v2, v3] = −az1 = −[v3, v2] obtained from

([v1, v2], [v1, v3], [v2, v3]) = (z1, z2, z3) ·

 0 0 −a
0 a 0

−a 0 0

 .

All of them are isometrically isomorphic. So, up to isometries, we get that
(n1, φ) is the unique quadratic 2-step nilpotent Lie algebra of type 3. Follow-
ing [Benito et al., 2017], the algebra (n1, φ) is just the quadratic Lie algebra
(n3,2(F),Ψ), where n3,2(F) = F3 ⊕ Λ2F3 and the matrix of Ψ with respect to
the basis {ei, ei ∧ ej} is (here e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is the
classic canonical basis of F3):

0 0 0 0 0 −1
0 0 0 0 1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0


Example 3.2.4. For d = 4, the existence of quadratic and reduced 2-step Lie
algebras is equivalent to the existence of a 4 × 6 matrix of rank 4 with the
following shape:

F(M1,M2,M3,M4) =


0 0 0 −a −b −c
0 a b 0 0 −d
−a 0 c 0 d 0

−b −c 0 −d 0 0

 .

Any minor of order 4 of this type of matrices is null. So,

rankF(M1,M2,M3,M4) ≤ 3,

and, therefore, in characteristic zero there are no 2-step reduced quadratic Lie
algebras of type 4. Up to isometric isomorphisms the non-reduced are of the
form (n3,2(F)⊕ F,Ψ ⊥ Φ1).

From now on, our goal is to investigate, the existence problem of quadratic
Lie algebras (n(M1, . . . ,Md), φ) for any arbitrary d ≥ 5. We will also study
the problem of isometric isomorphisms. The first problem is a simple exer-
cise of linear algebra. For the second one, we will use the functorial relation
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introduced in Section 3.1.3. Our next result ensures the existence of quadratic
and reduced 2-step algebras of arbitrary type d different from 1, 2 and 4, and
over any field F of characteristic zero. This result has also been established
in [Ovando, 2007b, Proposition 3.3]. We provide here an alternative proof.

Proposition 3.2.4. For any d ̸= 1, 2, 4, there exist non-degenerate d-quadratic fam-
ilies of matrices.

Proof. Assume first d is odd and d > 3 and choose a d × d skewsymmetric
matrixM1 of rank d−1, with its first row and its first column being null. Then,
U1 = {u ∈ Fd : uM1 = M1u

t = 0} = F · e1 where e1 = (1, 0, · · · , 0). As d > 1,
we can take a second skewsymmetric matrixM2 such that its first row is the
additive inverse of the second row ofM1. Clearly, e1 /∈ {u ∈ Fd : uM2 = 0}.
Therefore, {u ∈ Fd : u[M1,M2] = 0} = 0. This implies that [M1,M2] is a
matrix of maximal rank d. We can now extend the set {M1,M2} to a non-
degenerate d-quadratic family {M1,M2, . . . ,Md} in an easy (and not unique)
way.

If d is even and d > 4, take a d × d skewsymmetric matrixM1 with rows
r1 = rd = (0, . . . , 0) and rows r2, . . . , rd−1 being a set of linearly independent
row vectors of Fd. Therefore, the rank of M1 is d − 2. It is clear that U1 =

{u ∈ Fd : uM1 = 0} = F · e1 ⊕ F · ed. Now, choose a second matrixM2 with
first row−r2 = −(0, 0,−s3, . . . ,−sd) ̸= 0 and its second row being null. Since
d > 4, we can take the 3rd and 4th rows of M2 as p3 = (s3, 0, 0, 0, . . . , 1) and
p4 = (s4, 0, 0, 0, 0, . . . , a)where a ̸= s4/s3 if s3 ̸= 0 or a = 0 otherwise. Finally
we add jth rows for j = 5, . . . , d just to get M2 as a skewsymmetric matrix.
For the pairM1,M2, we claim that U2 = {u ∈ Fd : u[M1M2] = 0} = 0.

Suppose there is 0 ̸= u ∈ U2. Since u ∈ U1 we can write u = t · e1 + s · ed
for some (0, 0) ̸= (t, s) ∈ F × F. We note that u ̸= e1 because of the first row
of M2 is not null. Rescaling if necessary, we can assume u = t0 · e1 + ed. In
particular, we have that

u · pt3 = t0s3 + 1 = 0 = u · pt4 = t0s4 + a.

Hence, s3 ̸= 0 and t0 = − 1

s3
which implies a =

s4
s3

, a contradiction. This
proves our claim. Now, U2 = 0 implies that [M1M2] is a matrix of maximal
rank d and, reasoning as in the odd case, we get our result.

87



Chapter 3. Deconstructing quadratic Lie algebras

An element ψ ∈ Sym0(d, 2) is called reduced if and only ifQd,2(ψ) =
nd,2
kerψ

is a reduced Lie algebra. This assertion is equivalent to

n2d,2 = {x ∈ nd,2 : [x, nd,2] ⊆ kerψ}.

For any d-quadratic family {M1, . . . ,Md}, we denote

Q(M1, . . . ,Md) =

(
0d×d F(M1, . . . ,Md)

F(M1, . . . ,Md)
t 0 d(d−1)

2
× d(d−1)

2

)
, (3.10)

where F(M1, . . . ,Md) is defined as in equation (3.7) from Definition 3.2.3).
Following Proposition 3 in [Satô, 1971], for a given {v1, . . . , vd} basis of

a d-dimensional vector space v, any linear map f : v → nd,2(v) = v ⊕ Λ2v,
for which the vectors f(v1), . . . , f(vd) are linearly independent, extends to the
automorphism τf of nd,2 by defining

τf ([vi, vj ]) = τf (vi ∧ vj) = f(vi) ∧ f(vj) = [f(vi), f(vj)]. (3.11)

Even more, any automorphism of nd,2 is of this form. Hence, in the Hall basis
Hv = {vi, vi ∧ vj : i = 1, . . . , d, i < j}, the automorphisms of nd,2(v) are
represented by matrices of the form

τ(Q,X) =

(
Q 0

d× d(d−1)
2

X Q̂

)
,

where X is a any matrix of order d(d−1)
2 × d, Q is a regular matrix of order

d× d, and Q̂ is a matrix completely determined from Q by the rule (3.11). In
case Q = (bij), from a straightforward computation we get that

τf (vi ∧ vj) =
∑

1≤r<s≤n
det

(
bri brj

bsi bsj

)
vr ∧ vs. (3.12)

The formula in equation (3.12) provides the entries of the matrix Q̂ in terms
of the entries of the matrix Q.
Theorem 3.2.5. Let {M1, . . . ,Md} and {N1, . . . , Nd} be two families of non-degen-
erate d-quadratic matrices and let (n(M1, . . . ,Md), φ) and (n(N1, . . . , Nd), ψ) be the
quadratic Lie algebras attached to them as it is described in Theorem 3.2.2. Then, the
Lie algebras (n(M1, . . . ,Md), φ) and (n(N1, . . . , Nd), ψ) are isometrically isomor-
phic if and only if there exists a regular d× d matrix Q such that

B(N1, . . . , Nd) = QtF(M1, . . . ,Md)Q̂,
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3.2. Quadratic 2-step nilpotent Lie algebras

where Q̂ is given in terms of Q = (bij) through the formula in equation (3.12) and
F(N1, . . . , Nd),F(M1, . . . ,Md) are matrices of order d× d(d−1)

2 which are described
in the general form (R =M or N)

F(R1, . . . , Rd) = [R1<jR2<j . . . Rd−1<j ],

where Ri<j denotes the submatrix of Ri given by the set of all jth columns of Ri such
that i < j.

Proof. Along the proof we will denote n(M1, . . . ,Md) and n(N1, . . . , Nd) as
nM and nN respectively. According to Lemma 3.1.17, (nM , φ) is isometrically
isomorphic to (nd,2/ ker φ̂, φ̂) for some bilinear form φ̂ ∈ Sym0(d, 2) which is
reduced and invariant. Then, from Theorem 3.2.2, there exists a minimal gen-
erator set u = {u1, . . . , ud} of nd,2 of isotropic vectors and an isotropic central
ideal z = span⟨z1, . . . , zd⟩ such that

nd,2 = u⊕ ∧2u = span⟨u1, . . . , ud⟩ ⊕ (z⊕ ker φ̂),

[ui, uj ] = ui ∧ uj ≡
d∑

k=1

mijkzk (mod ker φ̂),

φ(ui, zj) = δij ,

and the set {mijk} of structure constants is determined by the non-degenerate
d-quadratic family {M1, . . . ,Md}. So, if we fixed a basis B of ker φ̂ = n⊥d,2, the
matrix of φ̂ attached to B′ = {u1, . . . , ud, z1, . . . , zd} ∪ B is

M =


0d×d Id×d 0

d× d(d−3)
2

Id×d 0d×d 0
d× d(d−3)

2

0 d(d−3)
2

×d 0 d(d−3)
2

×d 0 d(d−3)
2

× d(d−3)
2

 .

For every i = 1, . . . , d, the inner derivation adui is represented by amatrix
(respect to the basis B′) of the form 0d×d 0d×d 0

Mi 0d×d 0

Ci 0 0

 .

Let Ci<j be the submatrix of Ci given by the set of all jth columns of Ci such
that i < j. Denote as D the matrix F(C1, . . . , Cd) = [C1<jC2<j . . . Cd−1<j ],
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Chapter 3. Deconstructing quadratic Lie algebras

and let P be the matrix

P =


Id×d 0

d× d(d−1)
2

0d×d F(M1, . . . ,Md)

0 d(d−3)
2

×d D


Clearly P is a regular matrix because of n2d,2 = span⟨h(ui) : h ∈ Inner nd,2⟩. In
fact, P provides the change of basis from theHall basisHu = {ui, ui∧uj} toB′.
Therefore, the matrix of φ attached to Hu is P tMP = Q(M1, . . . ,Md) just as
defined in (3.10). In an analogousway, the Lie algebra (nN , ψ) is isometrically
isomorphic to (nd,2/ ker ψ̂, ψ̂) for some reduced bilinear form ψ̂ ∈ Sym0(d, 2).
From this isomorphism we get a Hall basis Hv = {vi, vi ∧ vj} and a regular
matrix R such that RtMR = Q(N1, . . . , Nd) is the matrix of ψ attached toHv.
The change of basis fromHu toHv provides the automorphism τ(Q,X) of nd,2
and the matrix that represents φ in the basisHv is

τ(Q,X)tQ(M1, . . . ,Md)τ(Q,X) =

(
XtF tMQ+QtFMX QtFM Q̂

Q̂tF tMQ 0 d(d−1)
2

× d(d−1)
2

)
,

where FM = F(M1, . . . ,Md). Now, (nN , ψ) and (nM , φ) are isometrically iso-
morphic if and only if φ̂ and ψ̂ are isomorphic in the category Sym0(d, 2).
From Lemma 3.1.19, the latter assertion is equivalent to the existence of an
isometric automorphism θ : (nd,2, ψ̂) → (nd,2, φ̂). Hence, ψ̂ = φ̂θ. In the Hall
basisHv, the automorphism θ is of the form τ(S, Y ). Then,

τ(S, Y )tτ(Q,X)tQ(M1, . . . ,Md)τ(Q,X)τ(S, Y ) = Q(N1, . . . , Nd).

and

τ(QS,XS + Q̂Y )tQ(M1, . . . ,Md)τ(QS,XS + Q̂Y ) = Q(N1, . . . , Nd).

This implies (QS)tFM Q̂S = FN which proves the result.

Finally, the next corollary describes the class of non-reduced (i.e. not nec-
essarily reduced) quadratic 2-step Lie algebras (see Theorem 3.2 in [Ovando,
2007b]; the corank here is d2).
Corollary 3.2.6. For every d ≥ 3, there exist quadratic 2-step Lie algebras of type d
over any field of characteristic zero. Up to isometric isomorphisms the algebras in this
class are of the form (n(M1, . . . ,Md1)⊕ a, φ ⊥ ϕ) where d = d1 + d2, 4 ̸= d1 ≥ 3,
{M1, . . . ,Md1} is a non-degenerate d1-quadratic family of matrices and (a, ϕ), is a
quadratic and abelian Lie algebra of dimension d2 ≥ 0.
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Proof. The result follows from Theorem 2.2.9, Theorem 3.2.2 and Proposi-
tion 3.2.4.

Theorem 3.2.5 and Corollary 3.2.6 extend to arbitrary fields of character-
istic zero Theorem 3.6 and Theorem 3.2 respectively in [Ovando, 2007b]. Our
approach for these results is more algorithmic and let us develop computa-
tional methods in the following section.

3.3 Computational algorithms for quadratic families

Up to this point, we have introduce a new approach for constructing reduced
2-step quadratic nilpotent Lie algebras of type d ≥ 3. This method, which re-
lies in the theoretical results developed in previous Section 3, Theorem 3.2.2
and Corollary 3.2.6, can be computationally addressed. The theorem itself
provides the algorithms and the corollary assures that they will be success-
ful. According to Definition 3.2.3, we will design several algorithms in order
to build d-quadratic families of matrices (Algorithms 1, 2 and 3) and a final
algorithm to obtain the multiplication table of the quadratic Lie algebra (Al-
gorithm 4). Along the section we will use the following notation:

• M [a, b] denotes the entry in row a and column b for a given matrixM ;

• M [a :: b, c :: d] denotes the submatrix obtained from A by using the
whole set of rows from a up to b and the set of columns from c up to d,
both included.

Moreover we consider the first row/column is the one numbered as 1.
The matrices of a d-quadratic family {M1, . . . ,Md} are skew-symmetric.

From Theorem 3.2.2 and its proof, eachmatrixMi determines an inner deriva-
tion ad vi (adjoint derivation) of the quadratic Lie algebra n(M1, . . . ,Md). The
set {v1, . . . , vd} is a minimal generator set of

n(M1, . . . ,Md) = span⟨v1, . . . , vd, z1, . . . , zd⟩ = span⟨vi, [vi, vj ]⟩,

and the adjoint ad vi is represented by thematrix M̂(ad vi) as it is described by
thematrix in (3.8). The computational procedure to obtain quadratic reduced
Lie algebras splits into three steps:
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Chapter 3. Deconstructing quadratic Lie algebras

• First, we need to build the skew-symmetric family of matrices M1,. . . ,
Md satisfying conditions (1) and (2) of Definition 3.2.3 and the matrix
F(M1, . . . ,Md) = [M1<jM2<j . . .Md−1<j ] associated to this family.

• Secondly, we need to verify that the rank of F(M1, . . . ,Md) is maximal,
so the rank must be d, which is precisely the non-degenerate condition.

Any rank dmatrix F(M1, . . . ,Md) gives the non-degenerate d-quadratic fam-
ily {M1, . . . ,Md}. Then:

• Finally we build the multiplication table of the quadratic algebra at-
tached to {M1, . . . ,Md}.

The algebraswill be introduced using the basis {v1, . . . , vd, z1, . . . zd}. In all
cases, and according to Theorem 3.2.2 and Remark 3.2.3, the invariant bilinear
form is the canonical metabolic form φ defined by the formulas:

φ(vi, vj) = φ(zi, zj) = 0 and φ(vi, zj) = δij .

3.3.1 General algorithms for quadratic 2-step Lie algebras

Algorithm 1 Skewsymmetric(d, s) algorithm
Input: A natural d indicating the dimension of the square matrix to generate.
Input: An integer s indicating the initial subindex of the variables to use.
Output: A skewsymmetric d× dmatrix whose variables are as, as+1, . . .

1: LetM be a empty d× dmatrix
2: Let num = s ▷ num keeps the current variable value
3: for i = 1 to i = d do
4: Let v = (anum, . . . , anum+d+i−1) a vector
5: M [i, i+ 1 :: d] = v

6: M [i+ 1 :: d, i] = −v.
7: num = num+ d− i
8: end for
9: returnM
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3.3. Computational algorithms for quadratic families

Example 3.3.1. Algorithm 1, for values d = 4 and s = 1, returns the matrix,

Skewsymmetric(4, 1) =


0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

−a3 −a5 −a6 0

 .

This is the general shape of a 4× 4 skew-symmetric matrix.

To build the adjoint matrices we will need to know how many subscripts
we have used before in order not to use them again. In a generic d× dmatrix

d∑
i=1

i =
d(d+ 1)

2

different variables are used. So, in themth adjoint matrix, due to the relation-
ships among them, we will have used

m∑
i=d

i(i+ 1)

2
=

(1 +m− nd)(2m+m2 + d+md+ d2)

6
.

variables. We call these quantities varIn(d) and varUntil(d,m) respectively.
Now, with this notation

varUntil(d,m) =
m∑
i=d

varIn(i).

Algorithm 2 Adjoint(d, i) algorithm
Input: A d ∈ N indicating the dimension of the square adjoint matrix to gen-
erate.
Input: An integer i, such that 1 ≤ i ≤ d indicating which adjoint is it, ad vi,
assuming i = 1 is the adjoint associated to the first element in the basis, and
i = d the one related to the last one.
Output: The adjoint matrix associated to the element vi of the chosen basis.
1: LetMi be a empty d× dmatrix
2: for j = 1 to j = i do ▷ The part deduced from previous adjoints
3: Mi[1 :: d, j] = −Skewsymmetric(d, j)[1 :: d, i]

4: Mi[j, j :: d] = −Mi[j :: d, j]

5: end for
6: Mi[i+ 1 :: d, i+ 1 :: d] = Skewsymmetric(d− i, 1 + varUntil(d− i, d− 2))

7: returnMi
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Note that this algorithm is defined calling several times similar functions.
Although it is not efficient, if it is needed an improved version can be easily
develop. In order to achieve it without too many changes, it is highly recom-
mended to store the already calculated adjoint matrices in order not to repeat
operations.

Example 3.3.2. Algorithm 2, for value d = 5, returns the skew matricesMi =

Adjoint(5, i) for i = 1, . . . , 5,

M1 =


0 0 0 0 0

0 0 a1 a2 a3

0 −a1 0 a4 a5

0 −a2 −a4 0 a6

0 −a3 −a5 −a6 0

 M2 =


0 0 −a1 −a2 −a3
0 0 0 0 0

a1 0 0 a7 a8

a2 0 −a7 0 a9

a3 0 −a8 −a9 0



M3 =


0 a1 0 −a4 −a5
−a1 0 0 −a7 −a8
0 0 0 0 0

a4 a7 0 0 a10

a5 a8 0 −a10 0



M4 =


0 a2 a4 0 −a6
−a2 0 a7 0 −a9
−a4 −a7 0 0 −a10
0 0 0 0 0

a6 a9 a10 0 0

 M5 =


0 a3 a5 a6 0

−a3 0 a8 a9 0

−a5 −a8 0 a10 0

−a6 −a9 −a10 0 0

0 0 0 0 0

 .

Once we are able to obtain the adjoint matrices we can construct our ma-
trix RankedMatrix(d) := F(M1, . . . ,Md). This matrix is the union of certain
columns of the adjoint matrices: from each adjoint, considering we are at the
ith adjoint, we take columns i+ 1, i+ 2, . . . , d.
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Algorithm 3 RankedMatrix(d) algorithm
Input: A natural d indicating the type of the algebra
Output: The matrix we use to check if the rank is maximal
1: Let C be a empty d× d2−d

2 matrix
2: for i = 1 to i = d− 1 do ▷ Obtaining the possible linearly idependant

columns
3: C[1 :: d, 2d(i−1)−i2+i+2

2 :: i(2d−i−1)
i ] = Adjoint(d, i)[1 :: d, 1 + i :: d]

4: end for
5: return C

Example 3.3.3. For d = 5 the matrix RankedMatrix(5) = F(M1, . . . ,Md), for
Mi = Adjoint(5, i) is


0 0 0 0 −a1 −a2 −a3 −a4 −a5 −a6
0 a1 a2 a3 0 0 0 −a7 −a8 −a9
−a1 0 a4 a5 0 a7 a8 0 0 −a10
−a2 −a4 0 a6 −a7 0 a9 0 a10 0

−a3 −a5 −a6 0 −a8 −a9 0 −a10 0 0


RankedMatrix(5) is obtained from columns 2, 3, 4 and 5 of M1, columns 3, 4
and 5 ofM2, columns 4 and 5 ofM3 and the final column 5 ofM4.

So far we can create F(M1, . . . ,Md) matrices for every dimension d. Now
we have to study forwhich values of the parameters ai the rank of thesematri-
ces is d. In order to generate examples, this can be done by using any symbolic
computational program (for example Mathematica or SageMath among oth-
ers).

One general way to compute the rank is choosing the minors of the matrix
of size d×d and getting all the conditions the variables ai have to satisfy to have
at least one minor whose determinant is not null, making the rank maximum.
Therefore, the problem is simply finding the ( d(d−1)

2
d

) minors and calculating
their determinants. Unfortunately, we are working with factorial complexity
so increasing the dimensionmakes the complexity extremely huge. For exam-
ple, in the case d = 5 we already have 252 minors. Other way is using Gauss
method, although the possible nullity of variables might make it difficult too.
However, as explained in the proof of Proposition 3.2.4, with only the first two
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adjoints, d − 1 + d − 2 = 2d − 3 columns, this can be always achieved. This
is much more efficient as we turn ( d(d−1)

2
d

) into (2d−3
d

)minors. For example, in
d = 5 this is just 21. Even more, as the first adjoint reaches rank d− 1 or d− 2

depending whether d is odd or even respectively. This gives us another im-
proved approach using ( d−1

⌊d/2⌋
)minors for the first adjoint, and (d−2

2

) or (d−2
1

)
for the second. In dimension five we reduce this way the number of minors
to 4 from (

10
5

)
= 252.

Finally, according to Theorem 3.2.2 and Remark 3.2.3, the complete table
of products attached to a d-quadratic family is obtained from the expression

([v1, v2], [v1, v3], . . . , [v1, vd], [v2, v3], . . . , [v2, vd], . . . , [vd−1, vd])

= (z1, . . . , zd) · RankedMatrix(d).

So, the table generation algorithm is easy to describe:

Algorithm 4 Product(i, j, d) algorithm
Input: A natural i indicating the vector vi where i < j

Input: A natural i indicating the vector vj
Input: A natural d indicating the type of the algebra
Output: The product [vi, vj ] expressed in basis {z1, . . . , zd}
1: Let Z be a 1× dmatrix whose entries are zi
2: return Z · RankedMatrix(d)

[
d(i−1)−i(i+1)+j

2

]

Therefore, assuming i < j we have that
[vi, vj ] = Product(i, j, d).

Example 3.3.4. Themultiplication table for a quadratic and reducedLie algebra
obtained from a 5-quadratic family of matrices {M1, . . . ,M5} in the standard
basis {v1, . . . , v5, z1, . . . , z5} is

[v1, v2] = −a1z3 − a2z4 − a3z5,
[v1, v3] = a1z2 − a4z4 − a5z5,
[v1, v4] = a2z2 + a4z3 − a6z5,
[v1, v5] = a3z2 + a5z3 + a6z4,

[v2, v3] = −a1z1 − a7z4 − a8z5,
[v2, v4] = −a2z1 + a7z3 − a9z5,
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[v2, v5] = −a3z1 + a8z3 + a9z4,

[v3, v4] = −a4z1 − a7z2 − a10z5,
[v3, v5] = −a5z1 − a8z2 + a10z4,

[v4, v5] = −a6z1 − a9z2 − a10z3.

Example 3.3.5. In the case d = 6, by applying Algorithms 1, 2 and 3, we arrive
at the matrix RankedMatrix(6) = F(M1, . . . ,M6):

0 0 0 0 0 −a1 −a2 −a3 −a4 −a5 −a6 −a7 −a8 −a9 −a10
0 a1 a2 a3 a4 0 0 0 0 −a11 −a12 −a13 −a14 −a15 −a16
−a1 0 a5 a6 a7 0 a11 a12 a13 0 0 0 −a17 −a18 −a19
−a2 −a5 0 a8 a9 −a11 0 a14 a15 0 a17 a18 0 0 −a20
−a3 −a6 −a8 0 a10 −a12 −a14 0 a16 −a17 0 a19 0 a20 0

−a4 −a7 −a9 −a10 0 −a13 −a15 −a16 0 −a18 −a19 0 −a20 0 0


From previous matrix and following , Algorithm 4 gives us all the quadratic
algebras (see Remark 3.2.3 for a complete description) described by the mul-
tiplication table (only those tables related to matrices RankedMatrix(6) such
that rankRankedMatrix(6) = 6 are valid):

[v1, v2] = −a1z3 − a2z4 − a3z5 − a4z6,
[v1, v3] = a1z2 − a5z4 − a6z5 − a7z6,
[v1, v4] = a2z2 + a5z3 − a8z5 − a9z6,
[v1, v5] = a3z2 + a6z3 + a8z4 − a10z6,
[v1, v6] = a4z2 + a7z3 + a9z4 + a10z5,

[v2, v3] = −a1z1 − a11z4 − a12z5 − a13z6,
[v2, v4] = −a2z1 + a11z3 − a14z5 − a15z6,
[v2, v5] = −a3z1 + a12z3 + a14z4 − a16z6,
[v2, v6] = −a4z1 + a13z3 + a15z4 + a16z5,

[v3, v4] = −a5z1 − a11z2 − a17z5 − a18z6,
[v3, v5] = −a6z1 − a1z2 + a17z4 − a19z6,
[v3, v6] = −a7z1 − a13z2 + a18z4 + a19z5,

[v4, v5] = −a8z1 − a14z2 − a17z3 − a20z6,
[v4, v6] = −a9z1 − a15z2 − a18z3 + a20z5,

[v5, v6] = −a10z1 − a16z2 − a19z3 − a20z4.
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3.3.2 Quadratic and reduced 2-step algebras of type 5, 6, 7 and 8

By applying Algorithms 1, 2 and 3, we get all possibleRankedMatrix(d) as we
have shown in the examples of subsection 3.3.1. Table 3.3 displays the whole
set of RankedMatrix(d) matrices for d = 5, 6, 7, 8. Then, from Theorem 3.2.2,
we arrive at the following classification result.

Theorem 3.3.1. The quadratic reduced 2-step Lie algebras of type d = 5, 6, 7, 8 over
a field F of characteristic zero are given as (n(a, d), φ) where n(a, d) = span⟨v1, . . . ,

vd, z1, . . . , zd⟩, φ is the metabolic canonical form of matrix B(d) =

(
0d Id

Id 0d

)
,

and the skewsymmetric Lie product of n(a, d) follows from the formula:

([v1, v2], [v1, v3], . . . , [v1, vd], [v2, v3], . . . , [v2, vd], . . . , [vd−1, vd])

= (z1, . . . , zd) · F(M1, . . . ,Md).

with F(M1, . . . ,Md) any matrix RankedMatrix(d) of rank d as described in Ta-
ble 3.3 and determined by some entries a = (ai) ∈ Fr(d), where r(5) = 10, r(6) =

20, r(7) = 35 and r(8) = 56.

Remark 3.3.2. In general, r(d) = VarUntil(1, d− 2).

The multiplication table for quadratic and reduced 2-step algebras for d =

5, 6 are explicitly given in Example 3.3.4 and Example 3.3.5. We miss out here
the product tables in the cases d = 7, 8; both tables are obtained from the
matrix expression (z1, . . . , z7) · RankedMatrix(7) if d = 7 and (z1, . . . , z8) ·
RankedMatrix(8) if d = 8. By using Theorem 3.2.5 for a given quadratic
algebra (n(a, d), φ), we can check the whole set of isometrically isomorphic
quadratic algebras as we illustrate in the next example.

Example 3.3.6. The matrices C1 and C2 are RankedMatrix(5) of rank 5 given
by α1, α2 ∈ F10 with

α1 = (−9,−60,−47,−15, 186,−53,−24,−174,−86,−206) and
α2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1).
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So,

C1 =


0 0 0 0 9 60 47 15 −186 53

0 −9 −60 −47 0 0 0 24 −174 86

9 0 −15 186 0 −24 174 0 0 206

60 15 0 −53 24 0 −86 0 −206 0

47 −186 53 0 −174 86 0 206 0 0

 ,

C2 =


0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1 0 0

 .

We have the matrix relation QtC2Q̂ = C1 where

Q =


2 −2 4 −1 −2
−4 −2 3 −3 5

3 3 0 3 4

−2 1 4 −4 0

3 −2 −1 −1 5

 .

and Q̂ is obtained fromQ by applying the formula (3.12). Even more, for any
regular matrix Q, so detQ ̸= 0),

Q =


q1 q2 q3 q4 q5

q6 q7 q8 q9 q10

q11 q12 q13 q14 q15

q16 q17 q18 q19 q20

q21 q22 q23 q24 q25

 .

we have thatQtC2Q̂ = RankedMatrix(5)with entries ai for 1 ≤ i ≤ 10, where
a1 = q2q8q11 − q18q22q11 − q1q8q12 + q3(q6q12 − q7q11)− q2q6q13 + q1q7q13

−q13q17q21 + q12q18q21 + q13q16q22 + (q11q17 − q12q16)q23
a2 = q2q9q11 − q19q22q11 − q1q9q12 + q4(q6q12 − q7q11)− q2q6q14 + q1q7q14

−q14q17q21 + q12q19q21 + q14q16q22 + (q11q17 − q12q16)q24
a3 = q2q10q11 − q20q22q11 − q1q10q12 + q5(q6q12 − q7q11)− q2q6q15 + q1q7q15

−q15q17q21 + q12q20q21 + q15q16q22 + (q11q17 − q12q16)q25
a4 = q3q9q11 − q19q23q11 − q1q9q13 + q4(q6q13 − q8q11)− q3q6q14 + q1q8q14

−q14q18q21 + q13q19q21 + q14q16q23 + (q11q18 − q13q16)q24
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a5 = q3q10q11 − q20q23q11 − q1q10q13 + q5(q6q13 − q8q11)− q3q6q15 + q1q8q15

−q15q18q21 + q13q20q21 + q15q16q23 + (q11q18 − q13q16)q25
a6 = q4q10q11 − q20q24q11 − q1q10q14 + q5(q6q14 − q9q11)− q4q6q15 + q1q9q15

−q15q19q21 + q14q20q21 + q15q16q24 + (q11q19 − q14q16)q25
a7 = q3q9q12 − q19q23q12 − q2q9q13 + q4(q7q13 − q8q12)− q3q7q14 + q2q8q14

−q14q18q22 + q13q19q22 + q14q17q23 + (q12q18 − q13q17)q24
a8 = q3q10q12 − q20q23q12 − q2q10q13 + q5(q7q13 − q8q12)− q3q7q15 + q2q8q15

−q15q18q22 + q13q20q22 + q15q17q23 + (q12q18 − q13q17)q25
a9 = q4q10q12 − q20q24q12 − q2q10q14 + q5(q7q14 − q9q12)− q4q7q15 + q2q9q15

−q15q19q22 + q14q20q22 + q15q17q24 + (q12q19 − q14q17)q25
a10 = q4q10q13 − q20q24q13 − q3q10q14 + q5(q8q14 − q9q13)− q4q8q15 + q3q9q15

−q15q19q23 + q14q20q23 + q15q18q24 + (q13q19 − q14q18)q25

By applying Theorem 3.2.5, quadratic Lie algebra (n(α1, 5), φ) and algebra
(n(α, 5), φ) for α = (a1, . . . , a10) are isometrically isomorphic to the quadratic
algebra (n(α2, 5), φ)with basis {v1, . . . , v5, z1, . . . , z5} and non-zero products:

[v1, v2] = −z3, [v2, v3] = −z1, [v3, v5] = z4,

[v1, v3] = z2, [v3, v4] = −z5, [v4, v5] = −z3.

3.3.3 Computational limitations

In previous Subsection 3.3.1 we have noted the limitations caused by the rank
calculus. In the following Table 3.2 we can see the minimum number of vari-
ables needed to obtain maximum rank for small values of d.

Dimension Condition to make the rank maximum
d = 1 Invalid
d = 2 Invalid
d = 3 There is just one variable, a1, and it has to be non-null.
d = 4 Impossible.
d = 5, 6 We need at least two non-null variables.
d = 7, 8, 9 We need at least three non-null variables.

Table 3.2: Minimum number of variables needed to get maximum rank in
RankedMatrix(d).
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For example if d = 6, among its 20 variables, only the couples (ai, a21−i)
(both variables being non-null)with the rest of themnull, make the rankmax-
imum. In the case d = 5 each variable appears in three possible couples that
makes the rank maximum, while in n = 7 there is no couples of variables,
we need at least three non-null parameters to get rank 7. For d = 7, 8, 9 the
non-null triples (a1, a10, a15), (a1, a12, a56) and (a1, a65, a85) provide quadratic
Lie algebras of types 7, 8 and 9 respectively. Our experimental work with
the software developed points out that the different isomorphisms classes of
quadratic 2-step of type up to 8 could be achieved by using RankedMatrix(d)

with at most three non-zero variables.

3.4 Summary

Along this chapter we have started seen how to build any mixed quadratic
Lie algebra as a double extension of a solvable one, and this solvable as a dou-
ble extension of a nilpotent algebra. Thanks to these results, we have been
able to reduce the problem of structure and classification of quadratic Lie
algebras to studying the nilpotent variety, as the semisimple case is already
completely solved. This reduction was achieved thanks to Theorem 3.1.8 in
combination with the ideals inclusion study at the beginning of Section 3.1.
These results give us a good starting point for finding double extensions by
means of isotropic ideals. This extends some previous known results of one-
dimensional and simple double extensions (see Corollaries 3.1.11 and 3.1.12).

From here, we have seen different ways of approaching the nilpotent case.
In this chapter we have presented the use of quotients of free nilpotent Lie al-
gebras. Thanks to the UMP, and the categorical approach, from Section 3.1.3,
all quadratic nilpotent Lie algebras can be obtained by means of bilinear in-
variant forms of free nilpotent Lie algebras.

The general problem of building a nilpotent quadratic Lie algebra with
arbitrary d generators is not easy, neither the construction of isometric iso-
morphisms. But classification results in some special families (small type d
or small index of nilpotency) could be of interest. This is the case of quadratic
2-step nilpotent Lie algebras.
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3.4. Summary

The complete finite list of quadratic 2-step algebras up to dimension 17, as
far as we know, was unknown. Although it will be solved in the next chap-
ter. In [Kath, 2007] we can find the classification of quadratic nilpotent Lie
algebras up to dimension 10. So, the reduced 2-step included in Kath’s classi-
fication (a finite number up to isomorphisms) are of type d = 3, 5.

In order to get a list for d = 5, 6, 7, 8, we present a new approach based
on d-quadratic family of matrices. This is a family of skewsymmetric matrices
{M1, . . . ,Md} of order d × d such that the jth column of Mi is the additive
inverse of the ith column ofMj . The entries of these families of matrices, let
us to described 2-step quadratic Lie algebras by means of basis and structure
constants and the attached non-degenerate bilinear form in terms of canoni-
cal metabolic invariant bilinear forms according to Theorem 3.2.2. And, using
the previous categorical approach, we identify the classes of isometric isomor-
phisms in Theorem 3.2.5. This way, we extend the results about structure and
existence given in [Ovando, 2007b].

Once the theoretical support of the new method is completely described,
we give a computational implementation of the algorithm induced from the
cotangent structure encoded in the quadratic family. This allows us to eas-
ily construct many examples of quadratic 2-step Lie algebras and leads us to
Theorem 3.3.1 which includes the structure of quadratic and reduced 2-step
nilpotent Lie algebras of dimension up to 17 are d = 3, 5, 6, 7, 8, and Exam-
ple 3.2.3 which provides the unique 2-step nilpotent reduced algebra of type
d = 3 up to isometries. But Theorem 3.3.1 does not contain a finite list because
of the isometric isomorphisms among the different Lie algebras. The isomor-
phism problem, a not easy task (see for example [Benito et al., 2017]), can be
treated by means of Theorem 3.2.5. This complex task will be tackled in the
next chapter.
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CHAPTER

4Equivalent constructions of
2-step quadratic Lie algebras

s we have seen along this memoir, when we are working with 2-step
quadratic Lie algebras, we have three main different approaches. In
Section 2.2.2, we introduced the classical general methods: double

extension and T ∗-extension. On the other hand, in the previous chapter, we
ended up explaining another technique based on quadratic families of ma-
trices that encode, as structure constants, our algebras. Once here, we are
ready to establish an equivalent characterization among these three different
construction methods using multilinear tools to provide a constructive equiv-
alence theorem (Theorem 4.2.1) that relates all three methods.

In 1962, S. T. Tsou (see [Tsou, 1962]) established an existence theorem
for real quadratic Lie algebras of arbitrary type. The proof of this result, that
was announced in [Tsou andWalker, 1957, Section 7]), involves structure con-
stants, trivectors and solutions of non-linear systems of equations, so multi-
linear algebra. These ideas are in the base of the proposed scheme, as well as
results on the structure and classification of quadratic nilpotent Lie algebras
given in [Benito et al., 2017] or previous chapters in this thesis.

Moreover, this equivalence reduces, in a direct and natural way, the clas-
sification up to isometries of quadratic 2-step nilpotent Lie algebras to that
of 3-alternating forms up to equivalence (Theorem 4.3.1) following the ideas
of [Noui and Revoy, 1997]. Our equivalence also shows that invariant forms
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of the subclass of reduced quadratic 2-step are metabolic. Even more, the
class of quadratic 2-step Lie algebras agree with the class of T ∗-extensions
of abelian Lie algebras given by non-degenerate (equivalently linearly surjec-
tive) 2-cocycles (Corollary 4.1.14). This assertion collects and expands Propo-
sition 11 in [Duong, 2013].

In addition, we will provide simple rules for switching among the four
different structures. The ideas and results of this chapter has been recently
published in [Benito and Roldán-López, 2023a].

4.1 Methods

Now we are going to recap the different methods for obtaining quadratic Lie
algebras, but restricted to the 2-step case.

4.1.1 Double extension

In Section 2.2.2.1, the double extension procedure was introduced. Just as a
remainder, given a quadratic Lie algebra (A, f)we define its double extension
by (B,ϕ) as the quadratic algebra (AB, fB) where AB = B ⊕ A⊕ B∗, the Lie
product is given by

[b1 + a1 + β1, b2 + a2 + β2] = [b1, b2]B + ϕ(b1)(a2)− ϕ(b2)(a1) + [a1, a2]A

+ w(a1, a2) + ad∗(b1)(β2)− ad∗(b2)(β1).

And the bilinear form is defined as

fB(b1 + a1 + β1, b2 + a2 + β2) = β1(b2) + β2(b1) + f(a1, a2)

for bi ∈ B, ai ∈ A and βi ∈ B∗.
But, when focusing in 2-step nilpotent Lie algebras the method has some

special properties and can be tuned a bit more. First, in general, when double
extending a nilpotent Lie algebra, in case the result is nilpotent, we always
keep or increase its nilpotency index as next lemma proves.

Lemma 4.1.1. Let (AB, fB) be the double extension of (A, f) by (B,ϕ). If AB is
t-step nilpotent then A is n-step with n ≤ t.
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Proof. The proof is straightforward. As every a ∈ A can be seen as even an
element ofAB , and [a, a′]AB

= [a, a′]A+w(a, a′). If [a, a′]AB
= 0, then [a, a′]A =

0, and w(a, a′) = 0 because the first part lays on A, while the second belongs
to B∗.

This result cannot be improved as an abelian quadratic Lie algebra can gen-
erate a n-step nilpotent one, for every n ∈ N. To see it, we have the following
examplewhich also serves as a contradiction of a statement found in [Ovando,
2007b, p. 913], which says 2-step nilpotent double extensions come always
from 2-step nilpotent algebras.
Example 4.1.1. Let us take the abelian quadratic Lie algebra (A, f) of dimen-
sion 2nwith basis {e−n, e−n+1, . . . , e−1, e1, . . . , en}, where

f(ei, ej) =

1 if |i− j| = n+ 1,

0 if |i− j| ̸= n+ 1.

Let us consider the f -skew-symmetric derivation d : A → A where d(e−i) =

e−i+1, d(ei) = −ei−1 for i = 2, . . . , n and d(e1) = d(e−1) = 0. Now, we can
build the double extension (AB, fB) of (A, f) by (ϕ,B) where B = Fb and
ϕ(b) = d. This new algebra satisfies

(AB)
t = span⟨e−n+t−1, . . . , e−1, e1, . . . , en−t+1⟩.

Thus, (AB)n is the bidimensional ideal linearly generated by {e−1, e1} and
(AB)

n+1 = 0. Therefore, AB is n-step nilpotent.

And even more, a nilpotent Lie algebra can be double-extended to pro-
duced a non-nilpotent algebra as we saw in Example 2.2.7 (oscillator), or as
in Examples 5.2.2 (mixed or solvable) found later.

Now, according toCorollary 3.1.12, in our nilpotent (solvable) non-abelian
quadratic algebra (L, f) we can find a non-zero element z ∈ L2 ∩ Z(L) such
that our algebra is a double extension of algebra(

(Fz)⊥

Fz
, f̂

)
,

which is also nilpotent quadratic of dimension dimL − 2. Iterating this one-
dimensional process, we get that the class of solvable (nilpotent) quadratic
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Lie algebras is a direct sum of abelian and one-dimensional double exten-
sions of solvable (nilpotent) ones. This result also appears in [Medina and
Revoy, 1985, Théorème III]. So, although Theorem 2.2.20 gives us the gen-
eral double extension method, for our goal, a subset of these extensions, the
one-dimensional ones, is enough. This leads us to the following definition.

Definition 4.1.1. We call (Ab, fb) the one-dimensional double extension of (A, f)
by (b, d) to the double extension (AB, fB) of (A, f) by (B,ϕ) where B = Fb
has dimension 1 and ϕ(b) = d.

Now, when considering the vector spaceAb = Fb⊕A⊕Fβ, where β(b) = 1

(dual 1-form of b), the Lie bracket from equation (2.18) turns into

[bib+ ai + βiβ, bjb+ aj + βjβ] := bid(aj)− bjd(ai) + [ai, aj ] + f(d(ai), aj)β,

for every scalar bi, bj , βi, bj ∈ F and ai ∈ A. While the symmetric bilinear form
from equation (2.19) can be written as

fb(bib+ ai + βiβ, bjb+ aj + βjβ) := biβj + bjβi + f(ai, aj).

This simplification also allows us to compute the derived algebra

A2
b = Im d+ span⟨[a1, a2]A + f(d(a1), a2)β : a1, a2 ∈ A⟩. (4.1)

As a consequence of Theorem 2.2.9, we are only interested in studying
reduced algebras. That is why we should be able to describe the centre and,
therefore, the reducibility ofAb depending on if d is either an inner or an outer
f -skew-symmetric derivation of A.

Lemma 4.1.2. Let (Ab, fb) be the one-dimensional double extension of (A, f) by
(b, d). Then

Z(Ab) = (Z(A) ∩ ker d)⊕B∗

if and only if d /∈ InnerA. Otherwise, d = adx for some x ∈ A and

Z(Ab) = (Z(A) ∩ ker d)⊕B∗ ⊕ F(b− x).
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Proof. If we calculate the centre we obtain

Z(Ab) = {b1b+ a1 + β1β : b1d(a2)− b2d(a1) + [a1, a2] = 0,

f(d(a1), a2) = 0 ∀ a2 ∈ A, b2 ∈ F}
= {b1b+ a1 + β1β : b1d(a2) + [a1, a2] = 0, d(a1) = 0 ∀ a2 ∈ A}
= {a1 + β1β : [a1, a2] = 0, d(a1) = 0 ∀ a2 ∈ A}

+ span

〈
b+

1

b1
a1 : d = − ad

(
1

b1
a1

)
, b1 ̸= 0

〉

=

(Z(A) ∩ ker d)⊕B∗ if d /∈ InnerA,

(Z(A) ∩ ker d)⊕B∗ ⊕ F(b− x) if d = adx.

Note that d = adx = ad y if and only if x− y ∈ Z(A) ∩ ker d.

Since A2
b ⊆ (Im d + A2) ⊕ B∗ then b − x /∈ A2

b when d = adx. Therefore
Z(A) ̸⊆ A2

b and our algebra is non-reduced.

Corollary 4.1.3. Let (Ab, fb) be the one-dimensional double extension of (A, f) by
(b, d). Then (Ab, fb) is non-reduced when d ∈ InnerA.

This direct consequence of our lemma is mentioned in [Figueroa-O’Farrill
and Stanciu, 1996, Proposition 5.1].

Corollary 4.1.4. Let (Ab, fb) be the one-dimensional double extension of (A, f) by
(b, d). Then (Ab, fb) is reduced if and only if d /∈ InnerA, A2

b = (Im d+ A2)⊕B∗

and Z(A) ∩ ker d ⊆ Im d+A2.

Proof. Since Ab is reduced if and only if Z(Ab) ⊆ A2
b , the result is straight

forward applying Lemma 4.1.2 and equation (4.1).

Now, as our aim in this chapter is to study the 2-step case, we will see
which restrictions A and d do need to satisfy in the following proposition.

Proposition 4.1.5. Let (Ab, fb) be the one-dimensional double extension of some
quadratic Lie algebra (A, f) by (b, d). Then Ab is 2-step if and only if

0 ̸= Im d+A2 ⊆ Z(A) ∩ ker d.

109



Chapter 4. Equivalent constructions of 2-step quadratic Lie algebras

Proof. First, we have that

A3
b = d2(A) + d(A2) + span⟨[d(a1), a2] + f(d2(a1), a2)β : ai ∈ A⟩

+ span⟨f(d([a1, a2]), a3)β : ai ∈ A}.

As this must be zero, we need
d(A) ⊆ Z(A),
d(d(A)) = d2(A) = 0,

d([A,A]) = d(A2) = 0.

(4.2)

The conditions in equation (4.2), as d is a derivation, can be expressed in one
line as

Im d+A2 ⊆ Z(A) ∩ ker d. (4.3)

At this point, A3
b = 0, and we need to check if A2

b ̸= 0 in case A is abelian.
This, using equation (4.1), translates into d ̸= 0 finishing the proof.

Remark 4.1.6. Note that every homomorphism d : A → A that satisfies condi-
tion (4.3) is indeed a derivation as Im d ⊆ Z(A) and A2 ⊆ ker d.

Corollary 4.1.7. Let (Ab, fb) be the one-dimensional double extension of an abelian
quadratic Lie algebra (A, f) by (b, d). Then Ab is 2-step if and only if d ̸= 0 and
d2 = 0.

As we have previously noted in the deconstruction of Chapter 3, solvable
Lie algebras can be obtained by iterating one-dimensional double extensions.
This multistep procedure can be implemented in a nested way, which is the
idea in our following construction.

Chained one-dimensional double extensions construction

Now, we are going to consider a chain of one-dimensional double extensions
{(Ak, fk)}nk=0. We start by introducing the following notation for every alge-
bra of our chain:

Ak+1 = Bk+1 ⊕Ak ⊕B∗
k+1,
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where Bk = Fbk and B∗
k = Fb∗k are 1-dimensional and dimAk = 2k. Now, we

can also define Ak+1 = Ak+1,1 ⊕Ak+1,2 where

Ak+1,1 = Bk+1 ⊕Ak,1,
Ak+1,2 = Ak,2 ⊕B∗

k+1.

Applying this definition recursively we obtain

Ak+1,1 =

k+1⊕
i=1

Bi, Ak+1,2 =

k+1⊕
i=1

B∗
i . (4.4)

All this algebras Ak are associated to an invariant bilinear form fk. Moreover,
over them, we define derivations dk : Ak → Ak such that dk ∈ Derfk(Ak) to
do the double extensions. Hence, (Ak+1, fk+1) is the one-dimensional double
extension of (Ak, fk) by (bk+1, dk), starting with A0 = {0} and f0 = 0. Note
this is a really convenient notation. First, it gives us a basis for Ak:

{bk, bk−1, . . . , b1, b
∗
1, b

∗
2, . . . , b

∗
k},

where the order of this basis is given by the chain itself. Even more, if we
divide the set separating bi from b∗j elements, we get the bases forAk,1 andAk,2
respectively. All together, we can see this build as a telescopic construction in
Figure 4.1.

Ai,1←−−−−−−−−−− Ai,2−−−−−−−−−−→

Bk ⊕ · · · ⊕
A2︷ ︸︸ ︷

B2 ⊕B1 ⊕B∗
1︸ ︷︷ ︸

A1

⊕B∗
2 ⊕ · · · ⊕B∗

k

︸ ︷︷ ︸
Ak

Figure 4.1: Telescopic view of the chained one-dimensional double extension.

Let us now define for k = 0, . . . , n− 1

wk+1 : Ak ×Ak → B∗
k+1

(a, b) 7→ fk(dk(a), b) b
∗
k+1.

(4.5)

So, in basis
{bk+1, bk, . . . , b1, b

∗
1, . . . , b

∗
k, b

∗
k+1},
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we can give the Lie bracket [ · , · ]k+1 of algebra Ak+1 which is

[b∗k+1, · ]k+1 = 0, [bi, bj ]k+1 = [bi, bj ]k + wk+1(bi, bj),

[bk+1, bi]k+1 = dk(bi), [b∗i , b
∗
j ]k+1 = [b∗i , b

∗
j ]k + wk+1(b

∗
i , b

∗
j ), (4.6)

[bk+1, b
∗
i ]k+1 = dk(b

∗
i ), [bi, b

∗
j ]k+1 = [bi, b

∗
j ]k + wk+1(bi, b

∗
j ),

for 1 ≤ i, j ≤ k. While the bilinear form satisfies
fk+1(bk+1, b

∗
k+1) = 1,

fk+1(bk+1, Bk+1 ⊕Ak) = fk+1(b
∗
k+1, Ak ⊕B∗

k+1) = 0,

fk+1

∣∣
Ak×Ak

= fk.

Remark 4.1.8. Note Ak+1,2 = (Ak+1,2)
⊥. So, Ak+1,2 is a lagrangian for fk+1,

and, therefore, fk+1 is a metabolic form.
Remark 4.1.9. From Lemma 4.1.1, we have Ak+1 can be t-nilpotent only if Ak
is n-nilpotent with n ≤ t. Hence, combining this result in the case t = 2 with
Proposition 4.1.5, we conclude that Ak+1 is 2-step if and only if

• Ak is abelian and 0 ̸= Im dk ⊆ ker dk, or

• Ak is 2-step, and Im dk ⊆ Z(Ak) ∩ ker dk and A2
k ⊆ ker dk.

This remark is useful when searching for 2-step quadratic Lie algebras,
and it leads us to the following definition:

Definition 4.1.2. Let {(Ak, fk)}nk=0 be a chain of algebras obtained from suc-
cessive one-dimensional double extensions from the previous one in the chain
by {bk+1, dk}n−1

k=0 starting fromA0 = {0} and f0 = 0. We say the chain satisfies:

• the non-null property (NNP) if there exists k such that dk ̸= 0,

• and the 2-step property (2SP) if Im dk ⊆ Ak,2 ⊆ ker dk for every k ≥ 1.

In any {(Ak, fk)}nk=0 chain of one-dimensional double extensions, we have
d0 = d1 = 0 and, therefore, A1 and A2 are abelian quadratic algebras of di-
mension 2 and 4 respectively. But for greater dimensions we can obtain 2-step
algebras. If our chain satisfies NNP and 2SP properties from Definition 4.1.2,
we can easily check it by applying 2SP inductively

A2
k ⊆ Ak,2 ⊆ Z(Ak).
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Therefore, every step or link of this chain satisfies equation (4.3). Hence, its
final quadratic Lie algebra (An, fn) for n ≥ 3 is 2-step by using the NNP as
observed in Remark 4.1.9. In addition, we have chosen these properties as
we want to end up with a reduced 2-step Lie algebra An whose square or
centre is An,2 and, as images and kernels determine its product, this is the
most natural way to obtain it. The important result we are going to prove later
in Theorem4.2.1 is thatwe can obtain all reduced quadratic 2-step Lie algebras
as the final quadratic Lie algebra (An, fn) of some chain of one-dimensional
double extensions that satisfies NNP and 2SP.

Proposition 4.1.10. Let {(Ak, fk)}nk=0 be a chain of one-dimensional double exten-
sions by {(bk+1, dk)}n−1

k=0 satisfying NNP and 2SP. And let define

Dijk := sgn(σ)fσ(k)−1(dσ(k)−1(bσ(i)), bσ(j))

for some permutation σ such that 1 ≤ σ(i) < σ(j) < σ(k) or Dijk = 0 if some
subindexes repeat. Then n ≥ 3 and

(a) (An, fn) is a 2n-dimensional 2-step quadratic Lie algebra such that An,2 ⊆
Z(An), [bi, bj ]n =

∑n
k=1Dijk b

∗
k, and the invariant bilinear form fn is given

by fn(bi, b∗j ) = δij and fn(bi, bj) = fn(b
∗
i , b

∗
j ) = 0.

(b) (An, fn) is reduced if and only if

An,2 = span

〈
n∑
k=1

ŵk(bi, bj) : 1 ≤ j < i ≤ n
〉

where ŵk is the alternating extension of wk defined in equation (4.5).

Proof. First of all, we can observe Dijk definition resembles the idea dk−1 is
fk−1-skew-symmetric because Dijk = −Dijk and Diik = 0 as fk−1(dk(bi), bj)

for i, j ≤ k in characteristic different from 2.
Next, fromprevious arguments afterDefinition 4.1.2, we have that (An, fn)

is a quadratic 2-step Lie algebra. Now, applying multiplication table in equa-
tion (4.6) recursively and using Ak,2 ⊆ ker dk by 2SP, we obtain[bi, bj ]k+1 = wk+1(bi, bj) + wk(bi, bj) + . . .+ wi+1(bi, bj) + di−1(bj),

[b∗i , · ]k+1 = 0,

(4.7)
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for 1 ≤ j < i ≤ k + 1. We also have for 1 ≤ i, j ≤ k + 1fk+1(bi, b
∗
j ) = δij ,

fk+1(bi, bj) = fk+1(b
∗
i , b

∗
j ) = 0.

Moreover, 2SP also implies that di−1(Ai−1) ⊆ Ai−1,2 = span⟨b∗1, . . . , b∗i−1⟩ and
for j < i,

di−1(bj) =
i−1∑
k=1

fi−1(di−1(bj), bk)b
∗
k =

i−1∑
k=1

Djki b
∗
k =

i−1∑
k=1

Dijk b
∗
k,

by usingDijk definition in the last equality. So product (4.7) in (An, fn) turns
into [bi, bj ]n =

∑n
k=1Dijk b

∗
k,

[b∗i , · ]n = 0.

And even more,
fn([bi, bj ]n, bk) = Dijk.

Now An is a 2-step nilpotent Lie algebra, thus being reduced is equivalent
to Z(An) = A2

n. Now if we define ŵk(bi, bj) = wk(bi, bj) when i, j < k and
ŵk(bi, bj) = sgn(σ)wσ(k)(bσ(i), bσ(j)) where σ is some permutation of {i, j, k}
such that σ(k) = max{i, j, k},

adAn bi(bj) =

n−1∑
k=0

ŵk+1(bi, bj).

Hence A2
n = span⟨∑n

k=1 ŵk(bi, bj) : 1 ≤ j < i ≤ n⟩ and applying equa-
tion (2.14) for k = nwe finish the proof.

All these relations and notationwill serve us later to prove the equivalence
between the different approaches for constructing these algebras.

4.1.2 T*-extension

As we have seen in Subsection 2.2.2.2, the T ∗-extension is a one-step method
that takes a non-associative algebra, which may be non-quadratic, and pro-
duces a quadratic algebra whose dimension is double the original. Applied
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to Lie algebras, let B be a Lie algebra, the quadratic Lie algebra (T ∗Bw, qB) is
defined as the vector space B ⊕B∗ with product

[b+ β, b′ + β′] := [b, b′]B + w(b, b′) + ad∗(b)(β′)− ad∗(b′)(β), (4.8)

where w is a cyclic 2-cocycle, ad∗ is the coadjoint representation, and with the
bilinear form

qB(b+ β, b′ + β′) := β(b′) + β′(b)

for b ∈ B and β ∈ B∗. Oncewe have remembered the general construction, we
can start by seeing what doB and w need to satisfy in order to obtain a 2-step
quadratic Lie algebra as we have already done in the double extension. First,
analogously to Lemma4.1.1, we have the following result about the nilpotency
order of the extension. It comes from [Bordemann, 1997, Theorem 3.1] but
adapting indices to our situation.

Proposition 4.1.11. If B is a k-step nilpotent Lie algebra, then for every cyclic 2-
cocyclew : B×B → B∗ theT ∗-extensionT ∗

wB isn-step nilpotentwhere k ≤ n ≤ 2k.

Remark 4.1.12. This result cannot be improved. Indeed, in the following sec-
tions, we build 2-step quadratic Lie algebras from abelian ones (see Corol-
lary 4.1.15).

Now, let us find which is the centre and the square of these algebras. In
general,

Z(T ∗
wB) = {b+ β : b ∈ Z(B) and w(b, b′) + β ◦ ad b′ = 0 ∀ b′ ∈ B},

and

(T ∗
wB)2 = span⟨[b, b′]B + w(b, b′) : b, b′ ∈ B⟩+ span⟨β ◦ ad b : b ∈ B, β ∈ B∗⟩,

(4.9)

Lemma 4.1.13. For any V subspace of B, let define V ◦ := {β ∈ B∗ : β(V ) = 0}
and V ⊥ its orthogonal subspace in T ∗

wB with respect to quadratic form qB . Then,
V ⊥ = B ⊕ V ◦ and (V ◦)⊥ = B∗ ⊕ V and:

(a) Z(B)◦ = span⟨β ◦ ad b : b ∈ B, β ∈ B∗⟩ ⊆ (T ∗
wB)2,

(b) (B2)◦ = {β ∈ B∗ : β ◦ ad b = 0 ∀ b ∈ B},

(c) Z(T ∗
wB) ∩B = Z(B) ∩ Radw and Z(T ∗

wB) ∩B∗ = (B2)◦,
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(d) span⟨w(b, b′) : b, b′ ∈ B⟩ ⊆ (Radw)◦.

Proof. Let X = span⟨β ◦ ad b : b ∈ B, β ∈ B∗⟩ and x ∈ B such that 0 =

qB(x, β ◦ ad b) = β([b, x]B), ∀β ∈ B∗, ∀ b ∈ B. Previous equality is equivalent
to [b, x]B = 0 ∀ b ∈ B, i.e., x ∈ Z(B). Hence Z(B) = X⊥ ∩ B and item
(a) follows from Z(B)⊥ = X ⊕B,X ⊆ Z(B)◦ and equation (4.9). Now, from
equation (2.14), (Z(T ∗

wB)∩B∗)⊥ = (T ∗
wB)2+B∗ = B2⊕B∗ = ((B2)◦)⊥ which

implies item (b) and second assertion in item (c). Note, the other equality in
item (c) is straightforward. Finally, if β ∈ (Radw)⊥ ∩ B∗, then β(a) = 0

∀ a ∈ B such that w(a, b) = 0,∀ b ∈ B. Since w is cyclic, for a fixed a ∈ B,
w(a, b)(b′) = w(b, b′)(a) and we get item (d) when a ∈ Radw.

From Lemma 4.1.13 we get immediately that Z(T ∗
0B) = Z(B)⊕ (B2)◦ and

(T ∗
0B)2 = B2 ⊕ Z(B)◦. So, T ∗

0B is reduced 2-step if and only if B is reduced
2-step. Even more, this lemma also shows that we can build quadratic 2-step
Lie algebras from abelian ones in an easy way:
Corollary 4.1.14. Let B be an abelian Lie algebra. Then (T ∗

wB)2 = span⟨w(b, b′) :
b, b′ ∈ B⟩ and Z(T ∗

wB) = Radw ⊕ B∗. So, T ∗
wB is 2-step if and only if w is not

null. Moreover, it is equivalent:

(a) (T ∗
wB, qB) is reduced,

(b) w is non-degenerate,

(c) B∗ = span⟨w(b, b′) : b, b′ ∈ B⟩.

Proof. The first part follows easily from B being abelian, item (d) of Lemma
4.1.13, and the general description of (T ∗

0B)2. Now, (T ∗
wB, qB) is reduced if

and only if (T ∗
wB)2 = B∗ = Z(T ∗

wB). Hence, items (a) and (c) are equiva-
lent. Finally, Z(T ∗

wB) = B∗ if w is non-degenerate, and then (T ∗B, qB)2 =

Z(T ∗
wB)⊥ = B∗ by using equation (2.14).

Corollary 4.1.15. Let (A, f) a quadratic Lie algebra over an arbitrary field of char-
acteristic zero. Then, A is 2-step reduced nilpotent if and only if A is isometrically
isomorphic to a T ∗

wB extension of an abelian Lie algebraB wherew is non-degenerate.

Proof. If A is 2-step and reduced, Z(A) = A2 = Z(A)⊥ is a lagrangian ideal
and, from Theorem 2.2.23, algebra A is isometrically isomorphic to T ∗

wB and
B ∼= A/A2, so B is abelian. The converse follows from Corollary 4.1.14.
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Remark 4.1.16. Corollary 4.1.15 expands and provides an alternatively proof
to [Duong, 2013, Proposition 11], which is restricted to C. It also shows the
condition ofw being non-degenerate can be changed by that of the dual space
B∗ being the linear span of the image of w.

It is precisely these abelian extensions the oneswe are going to use in order
to obtain our algebras. In this case, the product defined in equation (4.8) can
be simplified to

[b+ β, b′ + β′] := w(b, b′).

Remark 4.1.17. In [García-Delgado et al., 2020] the authors make a detailed
study of invariant metrics on central extensions of quadratic Lie algebras.

4.1.3 Quadratic families and Lie algebras

According to Section 3.1.3, the classification of quadratic nilpotent Lie alge-
bras can be reduced, in some categorical way, to the study of symmetric in-
variant bilinear forms on free nilpotent Lie algebras. Moreover, by the UMP,
any t-step nilpotent Lie algebra of type d is a homomorphic image of nd,t/I
with I an ideal such that ntd,t ⊊ I ⊊ n2d,t. This special relation allows us to
build quadratic nilpotent Lie algebras by means of free nilpotent as seen in
Lemma 3.1.17.

For 2-step quadratic Lie algebras, this classification process can be refor-
mulated by using the notion of n-quadratic family as seen in Section 3.2. This
is a special set of skew-symmetric matrices, see Definition 3.2.3, which en-
codes the structural constants of a quadratic 2-step Lie algebra of type n and
dimension 2n.

Let (A,φ) be a quadratic 2-step Lie algebra. SinceA2 ⊆ Z(A),A is reduced
if and only if Z(A) = A2, and, from equation (2.14), dimA = 2n and n =

codimA2 = dimA2. Otherwise, Theorem 2.2.9 tells us A decomposes as an
orthogonal sumof ideals n⊕awhere n is 2-step reduced (so evendimensional)
and a is abelian. We assume in the sequel (A,φ) is a quadratic 2-step Lie
algebra of dimension 2n.
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If even 2-step, as stated in Theorem 3.2.2, we can find a basis of the form
{v1, . . . , vn, z1, . . . , zn}, where the Lie bracket is

[vi, vj ] :=
n∑
k=1

mijk zk,

[zi, · ] := 0.

While the bilinear form satisfies

φ(vi, vj) = 0, φ(zi, zj) = 0, φ(vi, zj) = δij .

This means its structure constants are determined by a non-degenerate family
of n-quadratic matrices {Mi : 1 ≤ i ≤ n}. Here,mijk is the entry (k, j) ofMi,
which is the same as saying mijk is the entry (n + k, j) of the matrix of the
inner derivation ad vi. And, by properties of the inner derivations or of the
n-quadratic family, we have

mijk = mjki = mkij = −mikj = −mjik = −mkji.

Even more, φ([vi, vj ], vk) = mijk, and the non-degeneration of the family is
equivalent to

k∑
i=1

Im ad vi = A2 = span⟨zi : i = 1, . . . , n⟩ = Z(A).

And, we can recover the Lie product of A from the matrix equation:

([v1, v2], . . . , [v1, vn], [v2, v3], . . . , [v2, vn], . . . , [vn−1, vn]) =

(z1, . . . , zn) · F(M1, . . . ,Mn). (4.10)

In this construction, we also have Theorem 3.2.5 to solve the problem of
isomorphisms of quadratic 2-step reduced algebras in terms of matrix rela-
tions between the non-degenerate n-quadratic families attached to them.

4.2 Equivalence theorem

Despite the methods double-extension and T ∗-extension, introduced in the
Section 2.2.2, andn-quadratic families fromSection 3.2.2 are apparently totally
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different at first glance, all three of them end up constructing the same type of
algebras and, therefore, it makes sense they are equivalent in some way. The
relationship among them appears in the following theorem.

Theorem 4.2.1. Let B be a vector space with basis B = {b1, . . . , bn}, n ≥ 3 and, let
w : B × B → B∗ be a bilinear form where w(bi, bj)(bk) = cijk. In the vector space
L = B ⊕ B∗ we define the following product and bilinear form ϕ for b, b′ ∈ B and
β, β′ ∈ B∗:

[b+ β, b′ + β′] = w(b, b′), ϕ(b+ β, b′ + β′) = β(b′) + β′(b).

Then, it is equivalent:

(a) (L, ϕ) is a 2-step quadratic Lie algebra.

(b) w is a non-zero cyclic 2-cocycle and (L, ϕ) = (T ∗
wB, qB).

(c) For {b∗1, . . . , b∗n} dual basis of B, the chain of one-dimensional double exten-
sions {(Ak, fk)}nk=0, starting withA0 = {0} and f0 = 0, given by the suces-
sion {(bk+1, dk)}n−1

k=0 , whereAk = span⟨bi, b∗i : i = 1, . . . , k⟩, di−1(b
∗
j ) = 0,

and di−1(bj) =
∑i−1

k=1 cijkb
∗
k for j < i ≤ n, satisfies properties NNP and

2SP, and (L, ϕ) = (An, fn).

(d) The family of matrices {M1, . . . ,Mn}ni=1, where the entrance (k, j) ofMi is
cijk, is a non-null n-quadratic family and defines algebra (L, ϕ) = (F2n, f)

with product given by formula (4.10).

Proof. The construction given in this theorem is exactly the T ∗-extension one,
so (L, ϕ) is (T ∗

wB, qB), the T ∗-extension of the abelian Lie algebraB byw. This
proves the equivalence between (a) and (b) using Proposition 2.2.22.

Assume now item (b) holds and let decompose Ak = Ak,1 ⊕ Ak,2 as in
equation (4.4). Note that An = L (as vector spaces) and fk := ϕ

∣∣
Ak×Ak

are as
in Remark 4.1.8. In particular, fn = ϕ. So, the chainwill be of one-dimensional
double extensions if and only if di−1 ∈ Derfi−1

Ai−1. Since B∗ is ϕ-isotropic
and di−1(b

∗
j ) = 0, this assertion is equivalent to λijs = 0where:

λijs = fi−1(di−1(bj), bs) + fi−1(bj , di−1(bs)) = φ(di−1(bj), bs) + φ(bj , di−1(bs)).

Now from di−1(Ai−1) ⊆ Ai−1,2, λijs = 0 if s ≥ i. Otherwise λijs = cijs + cisj

and it is also null because of w is cyclic and skew. Moreover, since Ak,1 =
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Chapter 4. Equivalent constructions of 2-step quadratic Lie algebras

span⟨b1, . . . , bk⟩ and Ak,2 = span⟨b∗1, . . . , b∗k⟩, the chain satisfies property 2SP.
Finally, from w ̸= 0 we have that ci0jk ̸= 0 for some i0 index, thus di0−1 ̸= 0

and the chain satisfies NNP. Next, observe that from Proposition 4.1.10, the
chain described in (c) ends up in a quadratic Lie algebra (An, fn) such that

[bi, bj ]n(bk) = Dijk and [β, · ]n = 0 ∀β ∈ B∗,

where scalars Dijk are defined in that lemma. But [bi, bj ]A(bk) = cijk and for
j, k < i, with j ̸= k we have

cijk = fi−1(di−1(bj), bk) =
j<k<i

Djki = sgn((i j k))Dijk = Dijk,

cijk = fi−1(di−1(bj), bk) =
k<j<i

Djki = sgn((j k i))Dijk = Dijk.

Now, from w being cyclic and skew we get cijk = sgn(σ)cσ(i)σ(j)σ(k) for
every permutation σ and ciik = 0. So we have [bi, bj ]A(bk) = cijk = Dijk =

[bi, bj ]n(bk). Hence, [ · , · ]n = [ · , · ]A and (L, ϕ) = (An, fn) as quadratic Lie
algebras.

To prove that item (c) implies item (d) just apply Proposition 4.1.10 taking
into account that sgn(σ)Dσ(i)σ(j)σ(k) = Dijk = cijk and [bi, bj ]n =

∑n
k=1 cijkb

∗
k.

So, the entry cijk of every matrixMi described in item (d) is the entry in the
position (n + k, j) of the matrix of the inner derivation ad bi. This proves
the matrix family is n-quadratic. Finally, the definition of n-quadratic fam-
ily yields to w being a non-zero cyclic 2-cocycle.

Note that, with this theorem, we can also check the reduced conditions
required in each method are equivalent among them.

Once at this point, we are going to see that we canmove easily between the
threemethods directly from their respective constructions previously given in
this paper.

• In a chain {(Ak, fk)}nk=1 of one-dimensional double extensions, we con-
sider a basis {bn, . . . , b1, b∗1, . . . , b∗n} as before. Then

[bi, bj ] =
n∑
k=1

Dijke
∗
k, [b∗i , · ] = 0,

fn(bi, bj) = fn(b
∗
i , b

∗
j ) = 0, fn(bi, b

∗
j ) = δij .
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• In (T ∗
wB, qB) with basis {e1, . . . , en, e∗1, . . . , e∗n}

[ei, ej ] = w(ei, ej) =
n∑
k=1

wijke
∗
k, [e∗i , · ] = 0,

qB(ei, ej) = qB(e
∗
i , e

∗
j ) = 0, qB(ei, e

∗
j ) = δij .

(4.11)

• An n-quadratic family {M1, . . . ,Mn} where mijk is the entry (j, k) of
Mi defines over the basis {v1, . . . , vn, z1, . . . , zn} of A the quadratic Lie
algebra (A,φ)where

[vi, vj ] =
n∑
k=1

mijkzk, [zi, · ] = 0,

φ(vi, vj) = φ(zi, zj) = 0, φ(vi, zj) = δij .

So the equivalence comes from just renaming

bi ←→ ei ←→ vi,

b∗i ←→ e∗i ←→ zi,

fn ←→ qB ←→ f,

Dijk ←→ wijk ←→ mijk.

Therefore, if we have a n-quadratic family of matrices with coefficients
mijk we can define the equivalent (T ∗

wB, qB) extension taking

w(bi, bj)(bk) = wijk = mijk.

And we can also obtain a chain of one-dimensional double extensions taking

di−1 : Ai−1 → Ai−1

bj 7→
i−1∑
k=1

wijk b
∗
k =

i−1∑
k=1

w(ei, ej)(ek) b
∗
k,

b∗j 7→ 0.

And vice versa, if we have built a chain, we can get the equivalent T ∗
wB if we

take
w(ei, ej) =

n∑
k=1

Dijk e
∗
k =

n∑
k=1

fn([bi, bj ], bk) e
∗
k.

And, this also defines our n-quadratic family of matrices takingmijk = Dijk.
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Example 4.2.1. When we try to generate a generic 2-step quadratic Lie algebra
of dimension nwe end up with n(n−2)(n−4)/48 parameters, a number that
grows pretty fast. Even in the 10-dimensional algebra we have 10 parameters
in its general form, despite all of them are isometrically isomorphic. These
parameters can be observed in any of the three equivalent constructions. For
example, when constructing a 2SP andNNP chain of one-dimensional double
extensions, we obtain the following derivations: d1 = 02×2,

d2 =

 02×2 02×2

−D123 0
02×2

0 D123

, d3 =


03×3 03×3

−D134 −D124 0

03×3−D234 0 D124

0 D234 D134

,

d4 =


04×4 04×4

−D145 −D135 −D125 0

04×4
−D245 −D235 0 D125

−D345 0 D235 D135

0 D345 D245 D145

 .

These same parameters appear in T ∗-extensions or in a more condensed way
in 5-quadratic families, where F(M1, . . . ,M5) is

0 0 0 0 m123 m124 m125 m134 m135 m145

0 −m123 −m124 −m125 0 0 0 m234 m235 m245

m123 0 −m134 −m135 0 −m234 −m235 0 0 m345

m124 m134 0 −m145 m234 0 −m245 0 −m345 0

m125 m135 m145 0 m235 m245 0 m345 0 0


All this complexity in terms of classification can be reduced using the next
section. For instance, we will see all algebras in this example are isometrically
isomorphic to the one where D123 = D145 = 1 or m123 = m145 = 1 and the
rest of the entries are zero, named as L5,1 in the following section.

4.3 Trivectors and 2-step classification

In this section, we follow the main ideas given in [Noui and Revoy, 1997, Sec-
tion 3]. For basic notions on multilinear algebra see [Fulton and Harris, 1991,
Appendix B].
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4.3. Trivectors and 2-step classification

The classification of quadratic 2-step Lie algebras of dimension 2n can be
reduced to that of trilinear alternating forms or trivectors over a vector spaceV
of dimension n. In this section we will explain why and how under the scope
of previous construction methods of quadratic algebras. We point out that,
whereas the problem of classifying bilinear alternating forms is elemental,
the classification of trivectors seems tractable only for small values of n.

Let {e1, . . . , en} be a basis of V . The exterior power ΛmV or AltmV is a
vector space associated to a universal alternating multilinear form

∧ : V × · · · × V → ΛmV

(v1, . . . , vm) 7→ v1 ∧ . . . ∧ vm.

The dimension of ΛmV is (nm), and {ei1 ∧ · · · ∧ eim : 1 ≤ i1 < . . . < im ≤ n} is
its standard basis. Every element of ΛmV is called am-vector. So a trivector is
simply an element of Λ3V . Thus, every trivector can be expressed as a linear
combination of their corresponding basis {ei ∧ ej ∧ ek : 1 ≤ i < j < k ≤ 3}.

If V ∗ is the dual space of V , φi ∈ V ∗, vi ∈ V , the map ι : ΛmV ∗ → (ΛmV )∗

given explicitly as

(φ1 ∧ . . . ∧ φm) 7→
(
v1 ∧ . . . ∧ vm 7→

∑
σ∈Sm

sgn(σ)

m∏
i=1

φσ(i)(vi) = det (φj(vi))

)

is an isomorphism. The elements of (ΛmV )∗ are named m-alternating forms
orm-forms. We also note that ι−1 sends the linear form (ei1 ∧ . . .∧ eim)∗ back
into e∗i1 ∧ . . .∧ e∗im . Since (ΛmV )∗ is isomorphic to ΛmV , there is no difference
betweenm-vectors andm-forms.

Now that we know what a trivector is, we can see its relationship with re-
duced quadratic 2-step Lie algebras. In order to see it, we can make use of
T ∗-extensions of abelian Lie algebras as mentioned in Corollary 4.1.15. Here,
every algebra T ∗

wB obtained of the same dimension differs only in the map-
ping w : B × B → B∗, as B is an abelian algebra and the bilinear form is
defined in the same way. At this point, we can define ϕw : Λ3B → F tak-
ing ϕw(b1, b2, b3) = w(b1, b2)(b3). Note ϕw ∈ (Λ3B)∗ ∼= Λ3B∗ is a trivector
thanks to the bilinear map w is cyclic, so satisfies equation (2.20), and skew-
symmetric (see Remark 2.2.21). In fact, the set {wijk = w(ei, ej)(ek) : i < j <

k} seen in equation (4.11) is simply the coordinates of the trivector ϕw in the
standard dual basis, (ei ∧ ej ∧ ek)∗ ∼ e∗i ∧ e∗j ∧ e∗k. Therefore, every quadratic
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2-step Lie algebra can be defined from a trivector and also a quadratic 2-step
Lie algebra gives us a trivector. In this way, we arrive at the bijection

∆: {w ∈ Z2(B,B∗) : w is cyclic} → (Λ3B)∗, w 7→ ϕw (4.12)

given by the expression w(ei, ej)(ek) = ϕw(ei, ej , ek).
Even more, kerϕw = {x ∈ B : ϕw(x, · , ·) = 0} = Radw. Thus ∆ sends

a non-degenerate w into a trivector ϕw such that kerϕw = 0, and conversely.
The nullity of kerϕw is equivalent to say that ϕw is a trivector of (maximal)
rank equal to dimB. Following [Cohen and Helminck, 1988], the rank of a
trivector ϕ ∈ Λ3V is rankϕ = dimV − dimkerϕ. The rank of ϕ agrees with
the dimension of the smallest subspaceW of V such that ϕ ∈ Λ3W (see [Noui
and Revoy, 1994, Section 1]).

But the important point is that not only a bijection between quadratic 2-
step Lie algebras and trivectors exits. It is the fact the bijection maps isometri-
cally isomorphic 2-step T ∗-extensions into equivalent trivectors with respect
to the natural equivalence relation given by the action of the general linear
group (see Definition 4.3.1).

Definition 4.3.1. We say two trivectors ϕ1, ϕ2 ∈ Λ3V are equivalent if there
exist σ ∈ GL(V ) such that ϕ1(x, y, z) = ϕ2(σ(x), σ(y), σ(z)) for every x, y, z ∈
V . Hence σ ·ϕ1 = ϕ2, letting σ act on the trivectors bymeans of (σ ·ϕ)(x, y, z) =
ϕ(σ−1(x), σ−1(y), σ−1(z)).

Theorem 4.3.1. Let B be a Lie algebra and B∗ its coadjoint module, w,w1, w2 ∈
Z2(B,B∗) and cyclic. Themap∆ defined in equation (4.12) is an involutive bijection
satisfying the following properties:

(a) w is non-degenerate if and only if rank(ϕw) = dimB.

(b) If B is abelian and w1, w2 are non-degenerate, T ∗
w1
B and T ∗

w2
B are isometri-

cally isomorphic if and only if ϕw1 and ϕw2 are equivalent trivectors.

Proof. For arbitrary B, ∆ is well defined according to Remark 2.2.21. Thus
item (a) follows from previous comments. Before proving item (b), we recall
that Lie bracket of T ∗

wB = B
w
⊕ B∗ is given by [a + α, b + β]w = w(a, b) if B

is abelian and, from Corollary 4.1.14, Z(T ∗
wB) = B∗ if w is non-degenerate.

Hence, assuming B abelian and w1, w2 non-degenerate, for a given isometri-
cally isomorphism φ from T ∗

w1
B onto T ∗

w2
B, we have φ(Z(Tw1)) = Z(Tw2) =
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4.3. Trivectors and 2-step classification

B∗, thus T ∗
w2
B = B∗w2⊕φ(B) = B∗w2⊕B. This implies that σ = πB ◦φ ∈ GL(B),

where πB is the projection map from T ∗
w2
B onto B. Then,

ϕw1(x, y, z) = w1(x, y)(z) = f([x, y]w1 , z) = f([φ(x), φ(y)]w2 , φ(z)) =

f([σ(x), σ(y)]w2 , σ(z)) = w2(σ(x), σ(y)(σ(z)) = ϕ2(σ(x), σ(y), σ(z)).

Thus ϕw1 and ϕw1 are equivalent. On the contrary, if σ ∈ GL(B) such that
ϕw1(x, y, z) = ϕw2(σ(x), σ(y), σ(z)), w1(b1, b2)◦σ−1 = w2(σ(b1), σ(b2)) follows
easily, and the map

φ : Tw1B = B ⊕B∗ → Tw2B = B ⊕B∗

b+ β 7→ σ(b) + β ◦ σ−1

is an isometric isomorphism.

Remark 4.3.2. Item (b) in Theorem 4.3.1 extends to arbitrary fields of charac-
teristic zero several results found in [Duong, 2013, Theorem 2]. Moreover,
Theorem 4.3.1 also extends and reorganized other results in that same article.

Corollary 4.3.3. The map ∆ defined in equation (4.12) provides a natural bijec-
tion between isomorphism classes of reduced quadratic 2-step nilpotent Lie algebras
of dimension 2n and the equivalence classes of trivectors of rank n.

This result has been established in [Noui and Revoy, 1997, 3.5 Théorème]
and it is quite useful as classification tables for trivectors are available. In order
to simplify notation, from now on, trivector e∗i ∧e∗j ∧e∗k will be denoted as ijk.
So 123 + 456←→ e∗1 ∧ e∗2 ∧ e∗3 + e∗4 ∧ e∗5 ∧ e∗6.

The fact each quadric reduced 2-step Lie algebra can be associated to a
trivector and vice versa means their classification, thanks to Theorem 4.3.1, is
equivalent to the trivectors one. This allows us to obtain a list of these algebras,
as trivectors have been already classified for low dimensions. A nice classifi-
cation up to dimension 9, over the complex field C, appears in [Vinberg and
Èlashvili, 1988] by using a Z3-grading of the simple Lie algebra e8. Cohen and
Helminck (see [Cohen and Helminck, 1988]) classify trivectors up to dimen-
sion 7 over fields of cohomological dimension at most 1, which includes alge-
braically closed fields and finite fields. Recently, Borovoi, De Graaf and Vân
Lê published the classification of real trivectors of dimension 9 in [Borovoi
et al., 2022].
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Over the complex field, we can know howmany reduced quadratic 2-step
Lie algebras are there up to isometrically isomorphisms using less than 9 gen-
erators. This data is showed in Table 4.1, where the dimension 2n ≤ 18 of the
Lie algebra is related to the rank of the corresponding trivector.

Dimension 6 8 10 12 14 16 ≥ 18

Number 1 0 1 2 5 13 ∞

Table 4.1: Non-isometric reduced quadratic 2-step Lie algebras in C
(source [Vinberg and Èlashvili, 1988]).

Moreover, we are also able to give a representative of each of these alge-
bras and find its multiplication table. Along the following list we consider
a quadratic algebra (A, f) of dimension 2n with basis {e1, . . . , en, e∗1, . . . , e∗n},
where A2 = span⟨e∗1, . . . , e∗n⟩, f(ei, ej) = f(e∗i , e

∗
j ) = 0, and f(ei, e

∗
j ) = δij .

Each algebra receives a name of the form Ln,k, where n is the type, also half
the dimension, and k is the position it occupies in the list among all algebras
of the same type/dimension. In addition, to simplify the list we only show
non-zero products of the form [ei, ej ] where i < j. According to the map ∆

described in equation (4.12), the rule to display the different multiplication
tables is given by the coordinates of the trivectors ϕw =

∑
wijke

∗
i ∧ e∗j ∧ e∗k, so

[ei, ej ] = wijke
∗
k ⇐⇒ ϕw(ei, ej , ek) = wijk = w(ei, ej)(ek). (4.13)

In this way, any 2-step quadratic reduced Lie algebras of dimension less than
17 over the complex field up to isometric isomorphisms is given in the follow-
ing list:

• One 6-dimensional algebra:

– Algebra L3,1 associated to trivector 123:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e2, e3] = e∗1.

• One 10-dimensional algebra:

– Algebra L5,1 associated to trivector 123 + 145:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗5,

[e1, e5] = −e∗4, [e2, e3] = e∗1, [e4, e5] = e∗1.
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• Two 12-dimensional algebras:

– Algebra L6,1 associated to trivector 123 + 456:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e2, e3] = e∗1,

[e4, e5] = e∗6, [e4, e6] = −e∗5, [e5, e6] = e∗4.

– Algebra L6,2 associated to trivector 124 + 135 + 236:

[e1, e2] = e∗4, [e1, e3] = e∗5, [e1, e4] = −e∗2,
[e1, e5] = −e∗3, [e2, e3] = e∗6, [e2, e4] = e∗1,

[e2, e6] = −e∗3, [e3, e5] = e∗1, [e3, e6] = e∗2.

• Five 14-dimensional algebras:

– Algebra L7,1 associated to trivector 123 + 145 + 167:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗5,

[e1, e5] = −e∗4, [e1, e6] = e∗7, [e1, e7] = −e∗6,
[e2, e3] = e∗1, [e4, e5] = e∗1, [e6, e7] = e∗1.

– Algebra L7,2 associated to trivector 127 + 134 + 256:

[e1, e2] = e∗7, [e1, e3] = e∗4, [e1, e4] = −e∗3,
[e1, e7] = −e∗2, [e2, e5] = e∗6, [e2, e6] = −e∗5,
[e2, e7] = e∗1, [e3, e4] = e∗1, [e5, e6] = e∗2.

– Algebra L7,3 associated to trivector 125 + 136 + 147 + 234:

[e1, e2] = e∗5, [e1, e3] = e∗6, [e1, e4] = e∗7,

[e1, e5] = −e∗2, [e1, e6] = −e∗3, [e1, e7] = −e∗4,
[e2, e3] = e∗4, [e2, e4] = −e∗3, [e2, e5] = e∗1,

[e3, e4] = e∗2, [e3, e6] = e∗1, [e4, e7] = e∗1.

– Algebra L7,4 associated to trivector 125 + 137 + 247 + 346:

[e1, e2] = e∗5, [e1, e3] = e∗7, [e1, e5] = −e∗2,
[e1, e7] = −e∗3, [e2, e4] = e∗7, [e2, e5] = e∗1,

[e2, e7] = −e∗4, [e3, e4] = e∗6, [e3, e6] = −e∗4,
[e3, e7] = e∗1, [e4, e6] = e∗3, [e4, e7] = e∗2.
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– Algebra L7,5 associated to trivector 123 + 147 + 257 + 367 + 456:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗7,

[e1, e7] = −e∗4, [e2, e3] = e∗1, [e2, e5] = e∗7,

[e2, e7] = −e∗5, [e3, e6] = e∗7, [e3, e7] = −e∗6,
[e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗1,

[e5, e6] = e∗4, [e5, e7] = e∗2, [e6, e7] = e∗3.

• Thirteen 16-dimensional algebras:

– Algebra L8,1 associated to trivector 156 + 178 + 234:

[e1, e5] = e∗6, [e1, e6] = −e∗5, [e1, e7] = e∗8,

[e1, e8] = −e∗7, [e2, e3] = e∗4, [e2, e4] = −e∗3,
[e3, e4] = e∗2, [e5, e6] = e∗1, [e7, e8] = e∗1.

– Algebra L8,2 associated to trivector 127 + 138 + 145 + 236:

[e1, e2] = e∗7, [e1, e3] = e∗8, [e1, e4] = e∗5,

[e1, e5] = −e∗4, [e1, e7] = −e∗2, [e1, e8] = −e∗3,
[e2, e3] = e∗6, [e2, e6] = −e∗3, [e2, e7] = e∗1,

[e3, e6] = e∗2, [e3, e8] = e∗1, [e4, e5] = e∗1.

– Algebra L8,3 associated to trivector 125 + 137 + 248 + 346:

[e1, e2] = e∗5, [e1, e3] = e∗7, [e1, e5] = −e∗2,
[e1, e7] = −e∗3, [e2, e4] = e∗8, [e2, e5] = e∗1,

[e2, e8] = −e∗4, [e3, e4] = e∗6, [e3, e6] = −e∗4,
[e3, e7] = e∗1, [e4, e6] = e∗3, [e4, e8] = e∗2.

– Algebra L8,4 associated to trivector 137 + 168 + 236 + 245:

[e1, e3] = e∗7, [e1, e6] = e∗8, [e1, e7] = −e∗3,
[e1, e8] = −e∗6, [e2, e3] = e∗6, [e2, e4] = e∗5,

[e2, e5] = −e∗4, [e2, e6] = −e∗3, [e3, e6] = e∗2,

[e3, e7] = e∗1, [e4, e5] = e∗2, [e6, e8] = e∗1.
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– Algebra L8,5 associated to trivector 134 + 178 + 256 + 278:

[e1, e3] = e∗4, [e1, e4] = −e∗3, [e1, e7] = e∗8,

[e1, e8] = −e∗7, [e2, e5] = e∗6, [e2, e6] = −e∗5,
[e2, e7] = e∗8, [e2, e8] = −e∗7, [e3, e4] = e∗1,

[e5, e6] = e∗2, [e7, e8] = e∗1 + e∗2.

– Algebra L8,6 associated to trivector 128 + 135 + 147 + 237 + 246:

[e1, e2] = e∗8, [e1, e3] = e∗5, [e1, e4] = e∗7,

[e1, e5] = −e∗3, [e1, e7] = −e∗4, [e1, e8] = −e∗2,
[e2, e3] = e∗7, [e2, e4] = e∗6, [e2, e6] = −e∗4,
[e2, e7] = −e∗3, [e2, e8] = e∗1, [e3, e5] = e∗1,

[e3, e7] = e∗2, [e4, e6] = e∗2, [e4, e7] = e∗1.

– Algebra L8,7 associated to trivector 127 + 138 + 156 + 246 + 345:

[e1, e2] = e∗7, [e1, e3] = e∗8, [e1, e5] = e∗6,

[e1, e6] = −e∗5, [e1, e7] = −e∗2, [e1, e8] = −e∗3,
[e2, e4] = e∗6, [e2, e6] = −e∗4, [e2, e7] = e∗1,

[e3, e4] = e∗5, [e3, e5] = −e∗4, [e3, e8] = e∗1,

[e4, e5] = e∗3, [e4, e6] = e∗2, [e5, e6] = e∗1.

– Algebra L8,8 associated to trivector 136 + 158 + 247 + 258 + 345:

[e1, e3] = e∗6, [e1, e5] = e∗8, [e1, e6] = −e∗3,
[e1, e8] = −e∗5, [e2, e4] = e∗7, [e2, e5] = e∗8,

[e2, e7] = −e∗4, [e2, e8] = −e∗5, [e3, e4] = e∗5,

[e3, e5] = −e∗4, [e3, e6] = e∗1, [e4, e5] = e∗3,

[e4, e7] = e∗2, [e5, e8] = e∗1 + e∗2.

– Algebra L8,9 associated to trivector 145 + 167 + 238 + 246 + 357:

[e1, e4] = e∗5, [e1, e5] = −e∗4, [e1, e6] = e∗7,

[e1, e7] = −e∗6, [e2, e3] = e∗8, [e2, e4] = e∗6,

[e2, e6] = −e∗4, [e2, e8] = −e∗3, [e3, e5] = e∗7,

[e3, e7] = −e∗5, [e3, e8] = e∗2, [e4, e5] = e∗1,

[e4, e6] = e∗2, [e5, e7] = e∗3, [e6, e7] = e∗1.
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– Algebra L8,10 associated to trivector 128 + 167 + 236 + 247 + 345:

[e1, e2] = e∗8, [e1, e6] = e∗7, [e1, e7] = −e∗6,
[e1, e8] = −e∗2, [e2, e3] = e∗6, [e2, e4] = e∗7,

[e2, e6] = −e∗3, [e2, e7] = −e∗4, [e2, e8] = e∗1,

[e3, e4] = e∗5, [e3, e5] = −e∗4, [e3, e6] = e∗2,

[e4, e5] = e∗3, [e4, e7] = e∗2, [e6, e7] = e∗1.

– AlgebraL8,11 associated to trivector 128+136+157+247+256+345:

[e1, e2] = e∗8, [e1, e3] = e∗6, [e1, e5] = e∗7,

[e1, e6] = −e∗3, [e1, e7] = −e∗5, [e1, e8] = −e∗2,
[e2, e4] = e∗7, [e2, e5] = e∗6, [e2, e6] = −e∗5,
[e2, e7] = −e∗4, [e2, e8] = e∗1, [e3, e4] = e∗5,

[e3, e5] = −e∗4, [e3, e6] = e∗1, [e4, e5] = e∗3,

[e4, e7] = e∗2, [e5, e6] = e∗2, [e5, e7] = e∗1.

– AlgebraL8,12 associated to trivector 126+158+238+257+347+456:

[e1, e2] = e∗6, [e1, e5] = e∗8, [e1, e6] = −e∗2,
[e1, e8] = −e∗5, [e2, e3] = e∗8, [e2, e5] = e∗7,

[e2, e6] = e∗1, [e2, e7] = −e∗5, [e2, e8] = −e∗3,
[e3, e4] = e∗7, [e3, e7] = −e∗4, [e3, e8] = e∗2,

[e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗3,

[e5, e6] = e∗4, [e5, e7] = e∗2, [e5, e8] = e∗1.

– AlgebraL8,13 associated to trivector 123+178+257+368+456+478:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e7] = e∗8,

[e1, e8] = −e∗7, [e2, e3] = e∗1, [e2, e5] = e∗7,

[e2, e7] = −e∗5, [e3, e6] = e∗8, [e3, e8] = −e∗6,
[e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗8,

[e4, e8] = −e∗7, [e5, e6] = e∗4, [e5, e7] = e∗2,

[e6, e8] = e∗3, [e7, e8] = e∗1 + e∗4.
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However, despite there are an infinite number of non-isometrically iso-
morphic 2-step quadratic Lie algebras of dimension greater or equal than 18,
for the 18-dimensional algebras we still have a classification based on seven
families of trivectors, where each family depends on some parameters. This
classification can be found in [Vinberg and Èlashvili, 1988]. Here, the au-
thors explain how every trivector can be decompose as a sum of a semisimple
trivector and a nilpotent one. Details of this concepts can be found in §1 of the
paper. That semisimple part is a linear combination of four special trivectors,
and it is that specific combination in addition to the nilpotent part what de-
fines each family. Despite this classification involves parameters λi, this does
not affect our conversion to 2-step quadratic Lie algebras, and the procedure
described in (4.13) is still functional. We can see it in the following example.

Example 4.3.1. Let us take a trivector u in the sixth family, which decomposes
as u = p + e with p = λ(123 + 456 + 789) ̸= 0, where λ is determined up
to multiplication by a sixth root of the unity, and e is in table [Vinberg and
Èlashvili, 1988, Table 5]. For example, we consider e = 147 + 158. So our
trivector is

u = λ(123 + 456 + 789) + 147 + 158.

In this case the associated 18-dimensional Lie algebraL is defined by products

[e1, e2] = λe∗3, [e1, e3] = −λe∗2, [e1, e4] = e∗7, [e1, e5] = e∗8,

[e1, e7] = −e∗4, [e1, e8] = −e∗5, [e2, e3] = λe∗1, [e4, e5] = λe∗6,

[e4, e6] = −λe∗5, [e4, e7] = e∗1, [e5, e6] = λe∗4, [e5, e8] = e∗1,

[e7, e8] = λe∗9, [e7, e9] = −λe∗8, [e8, e9] = λe∗7,

when considering the basis {e1, . . . , e9, e∗1, . . . , e∗9}.

Remark 4.3.4. The idea of a nilpotent or semisimple trivector does not affect
the nilpotency of the algebra obtained from it. By construction, the quadratic
algebra we obtain is always 2-step.

Remark 4.3.5. In case we are interested in greater dimensions, things start to
get much more difficult as there are not a finite number of trivectors-algebras.
We can get bigger examples by applying Theorem 3.2.2 or Proposition 4.1.10.
These results provide computational constructions based on non-degenerate
n-quadratic matrices or chained one-dimensional double extensions.

131



Chapter 4. Equivalent constructions of 2-step quadratic Lie algebras

4.4 Summary

In this chapter we have seen how the three methods: double-extension, T ∗-
extension and n-quadratic families apply over two-step nilpotent Lie alge-
bras. While the last method was originally developed specially for them,
the other two can be simplified when considered over this specific subfam-
ily. For the double extension process, we can take successive one-dimensional
double extensions with some restrictions on the derivations chain (NNP and
2SP from Definition 4.1.2) to build these algebras. Starting with the trivial
quadratic algebra (A0 = 0, φ0 = 0), Subsection 4.1.1 includes, as its main
tool, a general multi-step metabolic extension process. This method appears
described in Proposition 4.1.10 and visually represented in Figure 4.1. For
the T ∗-extension, we can limit ourselves to extension of abelian Lie algebras
or, equivalently, simply vector spaces. This restriction is explained in Corol-
lary 4.1.15, which extends to characteristic zero a result from [Duong, 2013].

Once the three methods have been adapted to our goal, the equivalence
Theorem 4.2.1 appears. This result gives us 2-step quadratic Lie algebras by
structure constants encoded in cyclic 2-cocycles and provides a simple rule for
switching from one construction method to another.

In the final section, the bijective map described in equation (4.12) yields
to the explicit relationship between cyclic 2-cocycles and trivectors. This bijec-
tion, introduced in [Noui andRevoy, 1997], leads to the bijection up to isomor-
phisms of reduced quadratic 2n-dimensional 2-step Lie algebras and n-rank
trivectors up to equivalence given in Corollary 4.3.3. This result is an imme-
diate consequence of our Theorem 4.3.1. As an easy application, we list the
22 non-isometrically isomorphic reduced quadratic 2-step Lie algebras up to
dimension 17 over the complex field. This extends the classification of these
algebras which was, as far as we know and we mentioned in the previous
chapter, unknown.

132



CHAPTER

5Tools and patterns

p to this point, in this dissertation, we have continuously reduced our
field of study in order to obtain low dimensional classifications of
quadratic 2-step Lie algebras. Now, it is time to grow in dimension

producing extensions of those low dimensional Lie algebras and obtain solv-
able and mixed algebras. The first section of this chapter is devoted to the
study of derivations, automorphisms and bilinear forms in nilpotent Lie alge-
bras obtained via quotients of free nilpotent ones. This part is based on [Ben-
ito and Roldán-López, 2020] and ends up mentioning the classification given
in [Benito et al., 2017].

In Section 5.2, we are going to see the structure of local Lie algebras (only
one proper maximal ideal). Among them, we find oscillator algebras which
produce an infinite family of solvable quadratic Lie algebras. All these alge-
bras can be double extended using its derivations to produce mixed Lie alge-
bras. This section follows the article [Benito and Roldán-López, 2023b] and
the paper [Benito and Roldán-López, 2022c].

In the final Section 5.3, as a continuation of the ideal decomposition at the
beginning of Chapter 3, we will end up seeing in detail and completely which
ideal structure must a quadratic Lie algebra follow, not limiting in just some
special ideals as before. These ideas, when focused on algebras with a finite
number of ideals, have been developed in detail and it is published in [Benito
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and Roldán-López, 2022a]. Only half of this paper supports this chapter. All
these restrictions greatly limit which lattices of ideals are valid candidates.
Therefore, we will end this section studying the particular case in which all
ideals form a chain. These algebras, as observed in the [Benito and Roldán-
López, 2022b] which is indeed the preprint which supports the last part of
this section, can be algorithmically obtained and among all them, just a few
are quadratic.

5.1 Derivations, automorphisms and bilinear forms

As seen just before in Definition 2.1.27, nd,t represents the free nilpotent Lie
algebra of type d and nilindex t. Starting out with the derivation algebra and
the automorphism group of nd,t, we get a natural description of derivations
and automorphisms of any generic nilpotent Lie algebra of the same type and
nilindex.

In the middle of the 20th century, the study of derivations and automor-
phisms of algebras was a central topic of research. It is well known that many
linear algebraic Lie groups and their Lie algebras arise from the automor-
phism groups and the derivation algebras of certain non-associative algebras
(see [McCrimmon, 2004]). In fact, for a given finite-dimensional real non-
associative algebra A, the automorphism group AutA is a closed Lie sub-
group of the lineal group GL(A) and the derivation algebra DerA is the Lie
algebra associated to AutA (see [Sagle and Walde, 1973, Proposition 7.1 and
7.3, Chapter 7]).

Paying attention to Lie algebras, a lot of research papers on this topic are
devoted to the study of the interplay between the structures of their deriva-
tion algebras, their groups of automorphisms and Lie algebras themselves
(see [Varea and Varea, 2006] and references therein). Among them, we point
out two simple but elegant results on this direction. According to [Borel and
Serre, 1953], any Lie algebra that has an automorphism of prime period with-
out non-zero fixed points is nilpotent. The same result is valid in case the Lie
algebra has a non-singular derivation (see [Jacobson, 1955, Theorem 2]). So,
automorphisms and derivations and the nature of their elements are interest-
ing tools in the study of structural properties of general Lie algebras. Even
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more, according to Theorem 2.2.20, derivations are needed to make double
extensions.

Thedeconstructionprocess in Section 3.1 leadus to pay attention to deriva-
tions and automorphisms of nilpotent quadratic Lie algebras as important
tools on constructions and isomorphisms. These objects are the main motif
of the first two sections, which describe the group of automorphisms and the
algebra of derivations of any finite-dimensional t-step nilpotent Lie algebra n
generated by a m.s.g. U of d elements. The description will be given through
the derivation algebra and the automorphism group of the free t-step nilpo-
tent Lie algebra nd,t generated by U. Denoting by u = span⟨U⟩, the elements
of the derivation algebra,Der nd,t, arise by extending and combining, in a nat-
ural way, linear maps from u into u and from u to n2d,t. The group of automor-
phisms, Aut nd,t, is described through automorphism induced by elements of
the general linear group GL(u) and automorphisms provide by linear maps
from u to nd,t which induce the identity mapping on nd,t

n2d,t
.

Some comments on bilinear forms are included at the end of this section.
This is the tool used in the classification of nilpotent quadratic Lie algebras
given in in [Benito et al., 2017] and mentioned in Section 3.1.3 and listed in
Table 3.1.

5.1.1 Linear maps and extensions

Recovering Definition 2.1.27 and thanks to UMP seeing in Proposition 2.1.9,
any nilpotent Lie algebra can be seen as a quotient of some free nilpotent Lie al-
gebra nd,t. In addition, derivations and automorphisms of nd,t are completely
determined by their effect on u. Conversely, any linear map from u into nd,t

(bijection from a basis of u to any m.s.g.) determines a unique derivation
(automorphism) of nd,t. This assertion is covered by the next result and its
corollary. A detailed proof can be found in [Satô, 1971, Propositions 2 and 3].

Proposition 5.1.1. Let φ be any linear map from vector space u = span⟨x1, . . . , xd⟩
into nd,t, where {x1, . . . , xd} is a m.s.g. of nd,t. Then:

(a) φ extends to a derivation of nd,t by declaring

dφ([xα1 , . . . , xαr ]) =
∑

1≤i≤r
[xα1 , . . . , φ(xαi), . . . , xαr ].
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(b) φ extends to an algebra homomorphism of nd,t by declaring

Φφ([xα1 , . . . , xαr ]) = [φ(xα1), . . . , φ(xαr)].

Moreover if proj u stands for the projection map from nd,t into u, we have Φφ is an
automorphism if and only if {proju(φ(x1)), . . . ,proju(φ(xn))} is a linearly indepen-
dent set.

Corollary 5.1.2. Let nd,t be the free t-nilpotent Lie algebra on d-generators m =

{x1, . . . , xd} and u = span⟨m⟩. The derivation algebra and the automorphism group
of nd,t are described as Der nd,t = {dφ : φ ∈ Hom(u, nd,t)} and Aut nd,t = {Φφ :

φ ∈ Hom(u, nd,t) and {proju(φ(x1)), . . . ,proju(φ(xd))} m.s.g.}.

Remark 5.1.3. The Levi factor Sd,t of Der nd,t is given by the maps dφ for φ ∈
sl(u). Clearly, Sd,t is isomorphic to the special lineal Lie algebra sld(F). Ele-
ments of the nilpotent radicalNd,t are linear maps dφ where φ ∈ Hom(u, n2d,t).
And the solvable radical is just Rd,t = k · Idd,t⊕Nd,t where Idd,t(as) = s · ak
for any as ∈ us (see [Benito and de-la-Concepción, 2014, Proposition 2.4]).
Remark 5.1.4. The groupAut nd,t is the semidirect product of the general linear
group GL(d, t), obtained from the automorphisms Φφ where φ ∈ GL(u), and
the nilpotent group NL(d, t), whose elements are Φσ and σ = Id u + δ where
δ ∈ End(u, n2d,t) (see [Benito et al., 2017, Proposition 3.1]).

For any ideal I of nd,t such that ntd,t ̸⊆ I ⊆ n2d,t, let denote by DerI nd,t and
Dernd,t,I nd,t the subset of derivations which map I into itself, and nd,t into
I respectively. Both sets are subalgebras of Der nd,t, even more, Dernd,t,I nd,t

is an ideal inside DerI nd,t, and the following result comes from [Satô, 1971,
Proposition 5]:
Theorem 5.1.5. Let I be an ideal of nd,t such that ntd,t ̸⊆ I ⊆ n2d,t, the algebra of

derivations of
nd,t
I

is isomorphic to
DerI nd,t

Dernd,t,I nd,t
, where DerI nd,t and Dernd,t,I nd,t

maps I and nd,t into I respectively.

In a similar vein to the previous theorem, it is possible to arrive at a struc-
tural description of automorphisms of homomorphic images of free nilpotent
algebras. For any ideal I of nd,t, ntd,t ̸⊆ I ⊆ n2d,t, let denote by AutI nd,t the
subset of automorphisms which map I into itself. It is easily checked that
AutI nd,t is a subgroup of Aut nd,t. Consider now the map

θ : AutI nd,t → Aut
nd,t
I
, θ(Φ)(x+ I) = Φ(x) + I.
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By using Φ(I) = I and Φ homomorphism, we can easily check that θ is well
defined. Now, a straightforward computation shows that θ is a group homo-
morphism with kernel

ker θ = {Φ ∈ Aut nd,t : Im(Φ− Id) ⊆ I}.

Then, we have the following result:
Theorem 5.1.6. For any ideal I of nd,t such that ntd,t ̸⊆ I ⊆ n2d,t, the setAut◦I nd,t =

{Φ ∈ Aut nd,t : Im(Φ − Id) ⊆ I} is a normal subgroup of the group of automor-

phisms of
nd,t
I

. MoreoverAut
nd,t
I

is isomorphic to
AutI nd,t
Aut◦I nd,t

, whereAutI nd,t maps

I into I .

Proof. Fromprevious comments, we only need to prove that themap θ is onto.
Let ρI : nd,t → nd,t

I be the canonical projection and let {f1 + I, . . . , fk + I} be a
basis of nd,t

I and {e1 + I, . . . , ed + I} a m.s.g. of nd,t
I . Then {e1, . . . , ed} is also

a m.s.g. of nd,t. If we take a generic automorphism Â ∈ Aut
nd,t
I

,

Â(ei + I) =
k∑
j=1

αijfj + I, and declare A(ei) =
k∑
j=1

αijfj ,

A extends to a linear homomorphism,A : e→ nd,t, where e = span⟨e1, . . . , ed⟩.
Let ΦA be the homomorphism given by Proposition 5.1.1. We check that
θ(ΦA) = Â noting that, for a generic element [[. . . [a1, a2], . . . , al]where ai ∈ e,
up to linear combinations, we have

ρI ◦ ΦA[[. . . [a1, a2], . . . , al] = [[. . . [ρI ◦A(a1), ρI ◦A(a2)], . . . , ρI ◦A(al)]
= [[. . . [Â ◦ ρ(a1), Â ◦ ρI(a2)], . . . , Â ◦ ρI(al)]
= Â ◦ ρI [[. . . [a1, a2], . . . , al].

The second equality follows because for every ai =
∑d

j=1 βjiej ,

ρI ◦A(ai) = ρI ◦A

 d∑
j=1

βjiej

 =
d∑
j=1

βjiρI ◦A(ej)

=
d∑
j=1

βjiρI

(
k∑
l=1

αjlfl

)
=

d∑
j=1

βji

k∑
l=1

(αjlfl + I) =
d∑
j=1

βjiÂ(ei + I)

=

d∑
j=1

βjiÂ ◦ ρI(ei) = Â ◦ ρI(ai).
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Now ker ρI = I and ρI ◦ ΦA = Â ◦ ρI implies ΦA(I) = I and, ΦA automor-
phism, follows by using the equivalence given in Proposition 5.1.1 and the
fact that Â is an automorphism.

5.1.2 Techniques and examples

Nowwe introduce several exampleswhich illustrate some techniques (among
other things):

1. The way to describe a generic d-generated t-nilpotent Lie algebra as an
homomorphic image of nd,t.

2. The way to compute automorphisms and derivations regarding Propo-
sition 5.1.1 and Theorems 5.1.5 and 5.1.6.

3. The recognition of some structural patterns of nilpotent algebras de-
pending on the nature of their derivations and automorphisms.

Some of these techniques, using Hall basis, have been computationally imple-
mented in Section 6.2.2.

In the sequel, if a map φ is given in a matrix form A = (aij) attached to a
basis B = {v1, . . . , vn}, then φ(vi) =

∑n
j=1 ajivj .

The UMP lets us describe any t-nilpotent Lie algebra n of type d as a ho-
momorphic image of nd,t in a easy way. From any m.s.g. {e1, . . . , ed} of n, the
correspondence xi 7→ ei for i = 1, . . . , d extends uniquely to a surjective alge-
bra homomorphism θn : nd,t → n and n ∼= nd,t

ker θn
. We will compute ideals of

this type in our following example.
Example 5.1.1. Let n1 and n2 be the 8-dimensional and 5-dimensional Lie alge-
bras described through the basis {e1, . . . , e8} and {u1, . . . , u5} by the following
multiplication table ([a, b] = −[b, a] and [a, b] = 0 is not in the table):

[e1, e2] = e5, [e2, e3] = e8, [e3, e5] = −e7,
[e1, e3] = e6, [e2, e4] = e6, [e4, e6] = −e8,
[e1, e4] = e7, [e2, e6] = −e7, [u1, u3] = u5,

[e1, e5] = −e8, [e3, e4] = −e5, [u2, u4] = u5,

The lower central series of these algebras are:
n21 = span⟨e5, e6, e7, e8⟩, n31 = span⟨e7, e8⟩, n41 = 0,
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and
n22 = span⟨u5⟩, n32 = 0.

Consider now the maps θn1 : xi → ei for i = 1, . . . , 4 from n4,3 onto n1 and
θn2 : xi → ui for i = 1, . . . , 4 from n4,2 onto n2. Both correspondences extend
to homomorphisms of algebras as in the proof in [Satô, 1971, Proposition 4]
(θ[xα1 . . . xαs ] = [θ(xα1) . . . θ(xαs)]). It is not hard to see that:

ker θn1 = span⟨[x3, x4] + [x1, x2], [x2, x4]− [x1, x3], [x2, x3]− [[x1, x3], x1],

[x1, x4] + [[x1, x2], x2], [[x3, x4], x4]− [[x1, x3], x1], [[x3, x4], x3],

[[x3, x4], x2] + [[x1, x2], x2], [[x3, x4], x1], [[x2, x4], x4], [[x1, x4], x2],

[[x2, x4], x3] + [[x1, x2], x2], [[x2, x4], x2], [[x2, x4], x1]− [[x1, x3], x1],

[[x2, x3], x3], [[x2, x3], x2], [[x2, x3], x1], [[x1, x4], x4], [[x1, x4], x3],

[[x1, x4], x1], [[x1, x3], x3] + [[x1, x2], x2], [[x1, x3], x2], [[x1, x2], x1]⟩,

and

ker θn2 = span⟨[x3, x4], [x2, x3], [x1, x4], [x1, x2], [x1, x3]− [x2, x4]⟩.

We point out that ker θn2 is an homogeneous ideal in the N-graded structure
of n4,2 and ker θn1 is not an homogeneous ideal of n4,3. Therefore, n2 inherits
the grading of n4,2 and is quasi-cyclic, but n1 does not inherit that of n4,3.

In 1955, N. Jacobson proved in [Jacobson, 1955, Theorem 3] that any Lie
algebra of characteristic zero with a non-singular derivation is nilpotent. The
author also noted that the validity of the converse was an open question. Two
years later, J. Dixmier and W.G. Lister supplied in [Dixmier and Lister, 1957]
a negative answer to the question by means of the algebra n1 that we have
revisited in Example 5.1.1. Every derivation of n1 is nilpotent, so the ele-
ments of Der n1 are nilpotent maps, and therefore, Der n1 is a nilpotent Lie
algebra. It can be also proved that Aut n1 is not a nilpotent group (see [Leger
and Luks, 1972]). The existence of n1 is the starting point of the study of the so
called characteristically nilpotent Lie algebras, that is, Lie algebras in which any
derivation is nilpotent. Over fields of characteristic zero, this class of algebras
matches to the class of algebras in which every semisimple automorphism is
of finite order (see [Leger and Tôgô, 1959, Theorem 3]) or the class of alge-
bras in which the algebra of derivations is nilpotent (see [Leger and Tôgô,
1959, Theorem 1]).
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Example 5.1.2. According to Proposition 5.1.1, all derivations and automor-
phisms of n2,4 in Hall basis H2,4 can be easily obtained by iterating the Leib-
niz rule φ([a, b]) = [φ(a), b])] + [a, φ(b)] and the law φ([a, b]) = [φ(a), φ(b)].
The matrices representing the elements of Aut n2,4 = GL(2, 4) ⋊ NL(2, 4) are
product of matrices of the following shapes:

a1 a2

a3 a4
02×1 02×2 02×3

01×2 ϵ 01×2 01×3

02×2 02×1
ϵa1 ϵa2

ϵa3 ϵa4
02×3

03×2 03×1 03×2 ϵ ·A′


∈ GL(2, 4),



I2 02×1 02×2 02×3

b1 b2 1 01×2 01×3

c1 c2

c3 c4

b2

−b1
I2 02×3

d1 d2

d3 d4

d5 d6

c2

c4 − c1
−c3

b2 0

−b1 b2

0 −b1
I3


∈ NL(2, 4).

Here vertical and horizontal bars are visual separators between homogeneous
components of n2,4, Ik denotes the k × k identity matrix, 0k×n the null matrix
of order k × n, ϵ = a1a4 − a2a3 ̸= 0 and

A′ =

 a21 a1a2 a22
2a1a3 a1a4 + a2a3 2a2a4

a23 a3a4 a24

 .

From the decomposition Der n2,4 = S2,4 ⊕ F · Id2,4⊕N2,4, the matrices that
represent derivations of n2,4 are sum of matrices of three different types:

a1 a2

a3 −a1
02×1 02×2 02×3

01×2 0 01×2 01×3

02×2 02×1
a1 a2

a3 −a1
02×3

03×2 03×1 03×2

2a1 a2 0

2a3 0 2a2

0 a3 −2a1


∈ S2,4,
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λ Id2,4 =



λ 0

0 λ
02×1 02×2 02×3

01×2 2λ 01×2 01×3

02×2 02×1
3λ 0

0 3λ
02×3

03×2 03×1 03×2

4λ 0 0

0 4λ 0

0 0 4λ


and 

02×2 02×1 02×2 02×3

b1 b2 0 01×2 01×3

c1 c2

c3 c4

b2

−b1
02×2 02×3

d1 d2

d3 d4

d5 d6

c2

c4 − c1
−c3

b2 0

−b1 b2

0 −b1
03×3


∈ N2,4.

For any 0 ̸= λ ∈ F, the linear map φλ(xi) = λxi provides the (semisim-
ple) automorphism Φφλ

([xα1 . . . xαr ]) = λr[xα1 . . . xαr ] and the (semisimple)
derivation dφλ

([xα1 . . . xαr ]) = rλ[xα1 . . . xαr ].
Remark 5.1.7. As Der n2,3 ∼= Der

(
n2,4/n

4
2,4

) the upper left 5 × 5 matrices in
the previous example gives us these derivations in Hall basis. In a similar
way, Der h3 ∼= Der n2,2 ∼= Der

(
n2,4/n

3
2,4

) appears in the same corner. These
derivation algebras will appear in detail in the following section.

Consider now the 5-dimensional Lie algebra n3 with basis {z1, . . . , z5} and
non-zero products

[z1, z2] = z3, [z1, z3] = z4, [z1, z4] = [z2, z3] = z5.

The lower central series is
n3 ⊇ n23 = span⟨z3, z4, z5⟩ ⊇ n33 = span⟨z4, z5⟩ ⊇ n43 = span⟨z5⟩ ⊇ n53 = 0.

So, the correspondence xi 7→ zi for i = 1, 2 extends to a surjective algebra
homomorphism θn3 : n2,4 → n3 and n3 ∼=

n2,4
ker θn3

. In this case, the kernel is the
3-dimensional ideal

ker θn3 = span⟨[[[x1, x2], x2], x2], [[[x1, x2], x2], x1],
[[x1, x2], x2] + [[[x1, x2], x1], x1]⟩.
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Example 5.1.3. Let denote I = ker θn3 . According to Theorems 5.1.5 and 5.1.6,
derivations (automorphisms) of n3 are a quotient of the set of derivations
(automorphisms) of n2,4 that leave I invariant. These sets are:

DerI n2,4 :



a1 a2

0 1
2a1

02×1 02×2 02×3

b1 b2
3
2a1 01×2 01×3

c1 c2

c3 c4

b2

−b1

5
2a1 a2

0 2a1
02×3

d1 d2

d3 d4

d5 d6

c2

c4 − c1
−c3

b2 0

−b1 b2

0 −b1

7
2a1 a2 0

0 3a1 2a2

0 0 5
2a1



,

and, for a4 ̸= 0, AutI n2,4 has the form



a24 a2

0 a4
02×1 02×2 02×3

b1 b2 a34 01×2 01×3

c1 c2

c3 c4

a24b2 − a2b1
−a4b1

a54 a2a
3
4

0 a44

02×3

d1 d2

d3 d4

d5 d6

a24c2 − a2c1
c4a

2
4 − a4c1 − a2c3
−a4c3

a44b2 − a2a24b1 a2
(
a24b2 − a2b1

)
−a34b1 a34b2 − 2a2a4b1

0 −a24b1

a74 a2a
5
4 a22a

3
4

0 a64 2a2a
4
4

0 0 a54



.

Note that the isomorphism n2,4
I → n3 is provided by the correspondence

z′i 7→ zi by taking z′1 = x1+I , z′2 = x2+I , z′3 = [x1, x2]+I , z′4 = [x1, [x1, x2]]+I ,
z′5 = [x2, [x1, x2]] + I . So B′ = {z′1, z′2, z′3, z′4, z′5} is a basis. Now, by using
the isomorphisms in Theorem 5.1.5 and Theorem 5.1.6 and a minor change
of basis, we get a complete description of derivations and automorphisms of
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n3 ∼=
n2,4
I

. Relative to the basis {z1, z2, z3, z4, z5}:

Der
n2,4
I

:


a1 0

a3 2a1
02×1 02×2 02×1

b1 b2 3a1 0 0

c1 c2 b2 4a1 0

d1 d2 c2 − b1 a3 + b2 5a1

 ,

and, for a4 ̸= 0,

Aut
n2,4
I

:



a4 0
02×1 02×1 02×1

a2 a24

b2 b1 a34 0 0

−c4 −c3 a4b1 a44 0

d6 − c2 d5 − c1 a2b1 − a4(a4b2 + c3) a24(a2a4 + b1) a54


.

From previous descriptions, it is clear that the map φλ : xi → λxi, for i =
1, 2, extends to a derivation of n2,4 if and only if λ = 0 and φλ extends to
an automorphism of n2,4 if and only if λ = 1. We also remark that, I is not
an homogeneous ideal, so n3 does not inherit the natural N-grading of n2,4
and it is not quasi-cyclic. However Φλ : zi → λizi is an automorphism for all
0 ̸= λ ∈ F with eigenvalues λi for 1 ≤ i ≤ 5. In case F = R and λ > 1, Φλ is
an (expanding) automorphism that provides the N-grading n3 = ⊕5

i=1S(λ
i)

where S(λi) = {v ∈ n3 : Φλ(v) = λiv}. In fact, the algebra n3, introduced
in [Leger, 1963] and [Johnson, 1975], provides an example of a non-quasi-
cyclic Lie algebra that admits expanding automorphisms.

As in Example 5.1.3, in the following one, we get the conditions that de-
termine derivations and automorphisms of n2, the Lie algebra described in
Example 5.1.1, by using Der n4,2 and Aut n4,2.
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Example 5.1.4. Let now I = ker θn2 . Derivations and automorphisms of n4,2 in
Hall basisH4,2 are (here ∆k,l

i,j = aiaj − akal). Der n4,2 is as follows



a1 a2 a3 a4 0 0 0 0 0 0

a5 a6 a7 a8 0 0 0 0 0 0

a9 a10 a11 a12 0 0 0 0 0 0

a13 a14 a15 a16 0 0 0 0 0 0

b1 b2 b3 b4 a1 + a6 a7 −a3 a8 −a4 0

b5 b6 b7 b8 a10 a1 + a11 a2 a12 0 −a4
b9 b10 b11 b12 −a9 a5 a6 + a11 0 a12 −a8
b13 b14 b15 b16 a14 a15 0 a1 + a16 a2 a3

b17 b18 b19 b20 −a13 0 a15 a5 a6 + a16 a7

b21 b22 b23 b24 0 −a13 −a14 a9 a10 a11 + a16



,

and, for non-singular matrices with entries ai, the structure of Aut n4,2 is



a1 a2 a3 a4 0 0 0 0 0 0

a5 a6 a7 a8 0 0 0 0 0 0

a9 a10 a11 a12 0 0 0 0 0 0

a13 a14 a15 a16 0 0 0 0 0 0

b1 b2 b3 b4 ∆2,5
1,6 ∆3,5

1,7 ∆3,6
2,7 ∆4,5

1,8 ∆4,6
2,8 ∆4,7

3,8

b5 b6 b7 b8 ∆2,9
1,10 ∆3,9

1,11 ∆3,10
2,11 ∆4,9

1,12 ∆4,10
2,12 ∆4,11

3,12

b9 b10 b11 b12 ∆6,9
5,10 ∆7,9

5,11 ∆7,10
6,11 ∆8,9

5,12 ∆8,10
6,12 ∆8,11

7,12

b13 b14 b15 b16 ∆2,13
1,14 ∆3,13

1,15 ∆3,14
2,15 ∆4,13

1,16 ∆4,14
2,16 ∆4,15

3,16

b17 b18 b19 b20 ∆6,13
5,14 ∆7,13

5,15 ∆7,14
6,15 ∆8,13

5,16 ∆8,14
6,16 ∆8,15

7,16

b21 b22 b23 b24 ∆10,13
9,14 ∆11,13

9,15 ∆11,14
10,15 ∆12,13

9,16 ∆12,14
10,16 ∆12,15

11,16



.

Let dA ∈ Der n4,2 be and ΦA ∈ Aut n4,2. An easy computation shows that

dA ∈ DerI n4,2 ⇔
{
a12 = −a5, a13 = a10, a7 = a4,

a15 = −a2, a16 = a1 − a6 + a11,
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and

ΦA ∈ AutI n4,2 ⇔


∆2,9

1,10 +∆6,13
5,14 = ∆3,10

2,11 +∆7,14
6,15 = 0,

∆4,9
1,12 +∆8,13

5,16 = ∆4,11
3,12 +∆8,15

7,16 = 0,

∆3,9
1,11 +∆4,10

2,12 +∆7,13
5,15 +∆8,14

6,16 = 0.

Therefore, the correspondence ui 7→ λui for i = 1, . . . , 4, and u5 7→ 2λu5

extends by linearity to a derivation of n2 for all λ. The correspondence ui 7→
λui for i = 1, . . . , 4, and u5 7→ λ2u5 extends to an automorphism if λ ̸= 0.

5.1.3 Bilinear forms and quadratic quotients

Analogous to linear maps, we can try to figure out which are the bilinear in-
variant forms in some quotients of Lie algebras.

In general, in a quotient L/I , we can try to define f̂ ∈ Biinv(L/I) from
f ∈ Biinv(L) taking f̂(x+ I, y+ I) = f(x, y). This is well defined if and only if
I ⊆ Rad f . But there is even more, this induces a vector space isomorphism

Ω: Biinv(L, I)→ Biinv(L/I)

f 7→ f̂

where Biinv(L, I) = {f ∈ Biinv(L) : I ⊆ Rad f} and f̂ is defined as above. It
is also worth mentioning this same Ω works when using symmetric forms in
both sides.

At this point, as we are interested in nondegenerate bilinear forms, we can
try to find when the resulting f̂ is nondegenerate. As

Rad f̂ =
Rad f

I
,

f̂ is nondegenerate if I = Rad f , so there is a bijection between the sets

{f ∈ Bisinv(L) : Rad f = I} ←→ {f̂ ∈ Bisinv(L/I) : Rad f̂ = 0}.

This procedure can be used to find quadratic Lie algebras inside bigger
algebras with degenerate bilinear forms. When considering only nilpotent Lie
algebras, by the UMP, this leads us to find all possible quadratic Lie algebras
computing all bilinear symmetric forms in nd,t and finding their respective
radicals. Those radical will be all the different ideals such that the quotient
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is a quadratic Lie algebra. Precisely, this procedure is the one followed in
Section 3.1.3 (originally in [Benito et al., 2017]). There, the authors obtain a
classification of nilpotent quadratic Lie algebras of low dimension.

5.2 Local and oscillator algebras

In Lemma 2.2.18 we have seen Lie algebras with quadratic dimension one
are simple or 1-dimensional. The next logical step is studying the ones with
quadratic dimension two, which has been done in [Bajo and Benayadi, 2007].
When indecomposable, they are local Lie algebras. This variety of Lie alge-
bras, which includes oscillator algebras, is an important family of Lie algebras.
They present an interesting quadratic structure and serve as a good example
to find extensions to other more general, even mixed, Lie algebras. Along this
section (g, φ) is a quadratic Lie algebra.

5.2.1 Local Lie algebras

Definition 5.2.1. A local Lie algebra is a Lie algebra with only one proper max-
imal ideal.

Lemma 5.2.1. For a Lie algebra g of dimension greater than one and not simple, the
following are equivalent:

(a) g is local,

(b) J(g) = n with n = N(g),

(c) g = s⊕ n with s one dimensional or simple and

n2 = {x ∈ n : [y, x] ∈ n2 ∀ y ∈ s}.

Remark 5.2.2. Assertion n2 = {x ∈ n : [y, x] ∈ n2 ∀ y ∈ s} in Lemma 5.2.1,
is equivalent to saying that adx is faithful on n/n2 for all x ∈ n\n2 if s is
one-dimensional and, in the simple case, the ad s-module n/n2 has not trivial
submodules.
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When working with quadratic local algebras one of the best results about
their characterization is the following one found in [Bajo and Benayadi, 2007,
Theorem 3.1]

Proposition 5.2.3. Up to isometric isomorphisms, any local and quadratic Lie alge-
bra (g, φ) is of one of the following types:

• When J (g) = 0:

(a) g = span⟨x⟩ and φ(x, x) = 1.

(b) g is simple and in algebraically closed fields there is λ ̸= 0 such that
λφ(x, y) = Tr(ad x ◦ ad y) is the Killing form.

• When J (g) = n ∼= s∗ is abelian:

(c) g = T ∗
0 s where s is a simple Lie algebra and admits the bilinear form

φ(x+ α, y + β) = α(y) + β(x) with x, y ∈ s and α, β ∈ s∗.

• When J (g) = n is not abelian:

(d) g is a solvable Lie algebra double extension of a nonzero and nilpotent
quadratic Lie algebra (a, ψ) by a ψ-skew derivation δ which is invertible
on the centre Z(a).

(e) g = g2 is a mixed Lie algebra double extension of a nonzero and nilpotent
quadratic Lie algebra (a, ψ) by a simple subalgebra s through a represen-
tation ψ : s→ Derφ(a) such that Z(a) has non-trivial s-modules.

Proof. If g = s ⊕ n is reductive, the only possibilities are (a) or (b). Assume
then g non-reductive. From [Bajo and Benayadi, 2007, Theorem 3.1, item i)]
we arrive at item (d) and from [Bajo and Benayadi, 2007, Theorem 3.1, item
ii)] n⊥ = Z(n) we get either (c) if n = n⊥ or (e) otherwise. Note that if g
solvable, 0 ̸= Z(g) ⊆ n. Then g2 = n = [x, n] ⊕ n2 and n2 = 0 give us ad x|n
bijective, which is not possible.

From previous proposition we can obtain the following conclusions. For the
first cases:

• Simple and one-dimensional algebras are the only local quadratic and
reductive Lie algebras (types (a) and (b)).
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• Trivial T ∗-extensions of simple Lie algebras (type (c) in the list) are local
and quadratic. Recall that the T ∗-extension is a more general construc-
tion where the trivial extension is the easier case.

Quadratic local algebras (g, φ) of types described in items (d) or (e) have some
common structural patterns but remarkable differences. In both cases, since
n is the unique maximal ideal, n⊥ is the unique minimal ideal, and n ̸= n⊥

because n is not abelian. In addition, 0 ̸= n⊥ ⊆ n2 and, using g/n is simple or
1-dimensional. From Theorem 3.1.8, g can be built as a double extension as of
the quadratic nilpotent algebra ( n

n⊥
, φ̂| n

n⊥

)
.

But they also have differences :

• g of type (d) is solvable (s = 0) and n = g2 is of codimension 1, n⊥ =

Z(g) = span⟨z⟩ ⊆ n2 ⊂ n and the double extension is induced through
the φ-skew ad x for any x ∈ g such that φ(x, z) ̸= 0 and ad x|Z( n

n⊥ ) is
invertible. This is described in Corollary 3.1.12.

• g of type (e) satisfies g = s ⊕ n and it is a perfect mixed algebra. Also,
n⊥ = Z(n) ⊆ n2 ⊂ n = [g, n], Z(n) ∼= s∗ as ad s-modules and the second
term of the lower central series Z2(n) has no trivial ad s-modules. Here
the double extension is induced by the adjoint representation of the Levi
subalgebra, ad n

n⊥
: s→ Derφ(

n
n⊥ ). This appears in Corollary 3.1.11.

In both cases, by imposing n2 = n⊥, g is a double extension of the abelian al-
gebra n

n⊥ . This applies to the constructions given the in Section 5.2.2 for g solv-
able, and Example 5.2.1 for g perfect. Moreover, as the nilradical n is an ideal,
then using item (b) in Proposition 2.2.13 [n, n⊥] = [n, n⊥] = 0 so n3 = 0 and
n is 2-step. Otherwise, n2 ̸= n⊥ and local quadratic Lie algebras follow from
nilpotent and nonabelian quadratic algebras. In our Examples 5.2.2 and 5.2.3
we will present some local algebras extending low nilindex quadratic alge-
bras.
Example 5.2.1. Let s be a simple Lie algebra and (v, φ) an s-module without
trivial submodules. Denote by ρ : s → gl(v) the representation of s on v. As-
sume that φ is a symmetric, nondegenerate and s-invariant bilinear form, i.e.
ρ(s) ⊆ Derφ(v) ⊆ so(v, φ) defined in equation (2.8). The existence of φ only
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is possible if the 2-symmetric tensor power, S2v, has a trivial submodule. Let
v(s) = s⋉ρ (v⊕ω s∗), the double extension of (v, φ) by (s, ρ). The bracket and
the bilinear form are given by equations (2.18) and (2.19) whereB = s,A = v

is an abelian algebra and ω(u, v)(s) = φ(ρ(s)(u), v), for all u, v ∈ v and s ∈ s.
Taking s = sl2(F) and v = Vn (see equation (5.12)), the unique possibility is
n = 2m and the algebra v(s) is a (2m + 7)-dimensional local algebra with 4

ideals in chain.

By using results and techniques of previous Section 5.1 we can compute
Derφ n2,3 and Derϕ n3,2 (see Chapter 6). Both algebras have also been given
in [del Barco and Ovando, 2012].

Example 5.2.2. Let (n2,3, φ) be the algebra described in Example 2.2.4 with
(Hall) basis {ai}5i=1. Then,Derφ n2,3 is 6-dimensional and it is given as the di-
rect sum of the (nipotent) ideal Inner n2,3, and its Levi subalgebra s ∼= sl2(F).
Thus, any derivation decomposes as the next sum, where the first summand
D = D(mi) ∈ s and the second d = d(vi) ∈ Inner n2,3,


m1 m2 0 0 0

m3 −m1 0 0 0

0 0 0 0 0

0 0 0 m1 m2

0 0 0 m3 −m1

 +


0 0 0 0 0

0 0 0 0 0

v2 v1 0 0 0

v3 0 v1 0 0

0 v3 −v2 0 0



Note that n2,3 has two copies of the 2-dimensional natural s-module V1 (both
linear spans of ⟨a1, a2⟩ and ⟨a4, a5⟩) and one of the trivial module V0 = ⟨a3⟩.
By double extension formulae (2.18) and (2.19) we get the 11-dimensional
local (applying Lemma 5.2.1 or Proposition 5.2.3) perfect quadratic Lie alge-
bra n2,3(s) = s ⊕ n2,3 ⊕ s∗. The lattice of ideals of n2,3(s) is a 6-chain. Tak-
ing any derivation δ = D(m1,m2,m3) such that m3m2 + m2

1 ̸= 0 we get a
7-dimensional solvable local quadratic via the double extension by Fδ.

Example 5.2.3. Consider now the quadratic (n3,2, ϕ) from Example 2.2.5 with
(Hall) basis {ai}6i=1. In this case,Derφ n3,2 is 10-dimensional and it is the direct
sum of Inner n3,2 and a simple Lie subalgebra s ∼= sl3(F), thus we have two
summands, the firstD = D(m1, . . . ,m5) ∈ s and the second d = d(v1, v2, v3) ∈
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Inner n3,2:

m1 m2 m3 0 0 0

m4 m5 m6 0 0 0

m7 m8 −m1−m5 0 0 0

0 0 0 m1+m5 m6 −m3

0 0 0 m8 −m5 m2

0 0 0 −m7 m4 −m1


+



0 0 0

0 0 0 · · ·
0 0 0

v1 v2 0

v3 0 v2 · · ·
0 v3 −v1


Here n3,2 decomposes as two copies of the 3-dimensional natural s-module.
By double extension, we get (just applying Lemma 5.2.1) the 22-dimensional
local perfect quadratic Lie algebra n3,2(s) = s⊕n3,2⊕s∗ and its lattice of ideals
is a 5-chain.
Remark 5.2.4. According toCorollary 4.1.3, double extensions via inner deriva-
tions provide decomposable quadratic algebras.

As a final comment in this section, in 2014, A. Elduque and S. Benayadi
classified real and complex indecomposable mixed quadratic Lie algebras of
dimension less or equal than 13 (see [Benayadi and Elduque, 2014, Theorems
3.16 and 4.11]). The Levi subalgebra of this type of algebras in the complex
case is the 3-dimensional split sl2(C) and over the reals it is either sl2(R) or
su2(R). Combining irreducible modules for these algebras, smart reasoning
and elementary linear and multilinear algebra tools and previous knowledge
on basic structure of quadratic Lie algebras, the authors achieve a very clean
classification. In the complex case, apart from the double extension process,
constructions of quadratic Lie algebras as tensor products (Example 2.2.6)
also appeared. The authors arrived at those tensors by using Jordan algebras
of dimension 2, 3, 4 and following the ideas given in [Allison, 1976, Theorem
1, Section 5]. Lie algebras in the complex classification are mostly local. We
also point out that their lattices of ideals are mainly n-chains with n ≤ 6. This
Lie structure will be treated in Section 5.3.2.

5.2.2 Generalised Oscillator algebras

According to Lemma 2.2.15, the smallest solvable non-abelian quadratic Lie
algebra has dimension 4. This four-dimensional algebra in the real case is
known as harmonic oscillator algebra and it is the Lie algebra of the harmonic
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oscillator group (see [Hilgert et al., 1989, Example V.4.15], [Douglas and Pre-
mat, 2007], [Ovando, 2006] and [Ovando, 2007a]). This algebra is local and
it is the first step of a countable series of solvable Lie algebras which support
invariant Lorentzian forms. Generalizing this situation, we arrive at oscillator
Lie F-algebras as double extensions of metric spaces (abelian Lie algebras).
The aim of this section is to present some structural features, invariant met-
rics and derivations of this class of algebras and to explore their possibilities
of being extended to mixed quadratic Lie algebras.

Real oscillator algebras are the Lie algebras attached to connected, simply
connected and non-simple Lie groups that admit a Lorentz invariant metric
that makes them indecomposable (see [Medina, 1985, Theorem 4.1]). This
type of algebras was introduced in [Hilgert and Hofmann, 1985] as double
extensions of Hilbert spaces, and renamed as standard solvable Lorentzian Lie
algebras A2m+2 in [Hilgert et al., 1989, Definition II.3.16]. Also, they are the
class of real solvable non-abelian Lie algebras that carry an invariant inner
product of metric signature (2m + 1, 1). This class is integrated by real Lie
algebras of dimension 2m + 2 for m ≥ 1. The term oscillator comes from
quantum mechanics because A2m+2 describe a system of harmonic oscillator
m-dimensional euclidean space. These algebras also support other nonasso-
ciative structures such as Poisson and Leibniz algebras and symmetric Leibniz
bialgebras following [Camacho et al., 2019] and [Albuquerque et al., 2021].
The results included in the last of these articles let us derive some geometric
consequences at the level of the oscillator Lie groups.

Oscillator algebras are quadratic, local and solvable Lie algebras with nil-
radical a Lie algebra of Heisenberg type according to [Hilgert et al., 1989,
Proposition II.3.11]. Along this section, we will see that the notion and their
structural properties can be extended to arbitrary fields.

5.2.2.1 Metric spaces and Oscillator algebras

In Example 2.2.7 we obtain the oscillator algebra from the double extension
of a two-dimensional vector space. This process can be replicated to produce
a infinite series of oscillator algebras simply by increasing the dimension of
this vector space. The algebras in our following definition are just the ones de-
scribed in item (d) of Proposition 5.2.3when considering an abelian quadratic
algebra (a, ψ).
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Definition 5.2.2. Let (Wn, φ) be an-dimensionalF-vector space endowedwith
a symmetric and non-degenerate form φ. Consider now any skew-linear au-
tomorphism δ of Wn; it is only possible for n = 2m. The double extension
F · δ ⊕W2m ⊕ F · δ∗ where δ∗ is the dual 1-form of δ is a quadratic Lie algebra
that wewill call generalized oscillator F-algebra on the triple (W2m, φ, δ). Wewill
refer to it as d(W2m, φ, δ) = or d2m+2(F) to shorten.

Remark 5.2.5. Algebras d2m+2(R) are the real oscillator algebras introduced
firstly in [Hilgert and Hofmann, 1985, Proposition 2.2] as Lorentzian semial-
gebras of Class II (see also [Hilgert et al., 1989, Proposition II.3.11]). In [Neeb,
1993, Definition II.7] and [Hilgert and Neeb, 1996] they appear as remarkable
examples of Lie algebras with cone potencial. The study of other nonassocia-
tive structures on oscillator algebras in [Albuquerque et al., 2021, Section 5]
yields to some geometric information on connections andmetrics of oscillator
Lie groups.

From Definition 5.2.2 and Theorem 2.2.20, the F-algebras d(W2m, φ, δ) are
one-dimensional double extensions of a quadratic abelian algebra by non-
singular self-derivations with bracket product

[tδ + u+ sδ∗, t′δ + v + s′δ∗]d2m+2 = tδ(v)− t′δ(u) + φ(δ(u), v)δ∗. (5.1)

The quadratic structure (there may be others) in d(W,φ, δ) is given by expres-
sion (2.19).

The next result condenses and expands the structural algebraic properties
of the oscillator R-algebras (Propositions II.3.11 and II.3.12 of [Hilgert et al.,
1989]) to any field of characteristic zero.

Proposition 5.2.6. The generalized F-oscillator algebra d2m+2 = d(W2m, φ, δ) is a
solvable quadratic algebra under the invariant bilinear form φδ described as

φδ(tδ + u+ sδ∗, t′δ + v + s′δ∗) = ts′ + t′s+ φ(u, v).

The nilradical N(d2m+2) = d22m+2 = W2m ⊕ F · δ∗ is its only maximal ideal. In
particular, d2m+2 is a local and indecomposable quadratic algebra, and its centre,

Z(d2m+2) = d
(2)
2m+2 = F · δ∗ = Z(N(d2m+2)),

is the orthogonal subspace of N(d2m+2), and it is also the only minimal ideal. More-
over,N(d2m+2) is a Lie algebra of Heisenberg type in which the product is completely
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determine by the automorphism δ through the formulas [u, v] = φ(δ(u), v)δ∗ for all
u, v ∈ W2m. The algebra is a split extension of N(d2m+2) by F · δ, so [δ, u] = δ(u)

for u ∈W2m.

Proof. Since δ is a linear automorphism, following equation (4.1) and using
Lemma 4.1.2, from expression (5.1) we get d22m+2 = Im δ+span⟨φ(δ(u), v)δ∗ :
u, v ∈ W2m⟩ = W2m ⊕ F · δ∗ and Z(d2m+2) = (Z(W2m) ∩ Ker δ) ⊕ F · δ∗ =

F · δ∗. Now d
(3)
2m+2 = [d

(2)
2m+2, d

(2)
2m+2] = 0, so d2m+2 is a solvable algebra, that

is, R(d2m+2) = d2m+2. And it is not nilpotent because of d32m+2 = d22m+2.
Then its Jacobson radical, J (d2m+2) = d22m+2 according to equation (2.9) and
comments around. As J (d2m+2) ⊆ N(d2m+2) ̸= d2m+2 and it is the inter-
section of the whole set of maximal ideals, it is the only maximal ideal and
J (d2m+2) = N(d2m+2). The statement on the Lie bracket of two elements of
W2m follows from equation (5.1). To finish the proof, we use Lemma 5.2.1
and Definition 2.2.9.

From previous proposition, we get Z(d2m+2) = F · δ∗, and N(d2m+2) =

W2m ⊕ F · δ∗ and

d2m+2(W2m, φ, δ) = F · δ ⊕W2m ⊕ F · δ∗ = F · δ ⊕N(d2m+2)︸ ︷︷ ︸
h2m+1

.

Setting d = add2m+2 δ, we have d|W2m = δ and d(δ∗) = 0. Then, the nilradical
is d-invariant and any oscillator algebra can be viewed as the split extension
of an algebra of Heisenberg type h2m+1 by a map d ∈ Der h2m+1 such that
ker d = Z(d2m+2) = Z(h2m+1) and

h2m+1 = Im d⊕ ker d.

Proposition 5.2.7. Any oscillator F-algebra can be obtained as a split extension
of a Lie algebra of Heisenberg type h2m+1 and a map d ∈ Der h2m+1 such that
h2m+1 = Im d⊕ ker d where ker d = Z(h2m+1) and the invariant vector space Im d

is endowed with a symmetric and nondegenerate bilinear form φ for which d|Im d is
φ-skew. Moreover, a self-linear map D of the oscillator F-algebra d(W2m, φ, δ) is a
derivation if and only if:

(a) N(d(W2m, φ, δ)) is D-invariant and D|N(d(W2m,φ,δ)) ∈ Der h2m+1,

(b) D(δ∗) = αδ∗ for some α ∈ F,
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(c) D(δ(a)) = [D(δ), a] + [δ,D(a)] for all a ∈W2m.

Proof. The first part follows from previous discussion. The second part is
based on the fact that the nilradical and the centre of any Lie algebra are char-
acteristic ideals, which means that they are invariant through derivations. So
items (a), (b) and (c) are necessary conditions if D is a derivation. For the
converse, it is straightforward to check that ifD is a self-linear map of the os-
cillator algebra satisfying items (a), (b) and (c), D also satisfies the identity
d([x, y]) = [d(x), y] + [x, d(y)].

5.2.2.2 Double extensions of Oscillator algebras

Following Theorem 2.2.20, the knowledge of the set Derφ d(W2m, φ, δ) allows
to expand oscillator algebras to other quadratic algebras. The latter set is
closely related to Der h2m+1 which is well-known set easy to describe. Start-
ing from Proposition 5.2.7, in this section we will give an explicit description
of the whole sets of derivations and skew-derivations of real oscillator alge-
bras. Andwewill also describe their invariant forms. The results let us obtain
two countable series of mixed quadratic Lie algebras based on real oscillator
algebras.

According to [Benito and de-la-Concepción, 2013] and following Defini-
tion 2.2.9 and notation therein, the 2-graded decomposition h2m+1 = W ⊕
Z(h2m+1), whereW is an arbitrary 2m-dimensional F-complement, induces a
natural grading on End (h2m+1) and lets us describe the derivations of h2m+1

as (for a matrix description see [Rubin and Winternitz, 1993]):

Der h2m+1 = {δ : δ |W∈ sp(W, bz), δ(Z(h2m+1) = 0}︸ ︷︷ ︸
s∼= sp(2m,F)

⊕

R(Der h2m+1)︷ ︸︸ ︷
F · Îd⊕ {δ : δ(W ) ⊆ Z(h2m+1), δ(Z(h2m+1)) = 0} (5.2)

Here Îd means Îd|W = IdW and Îd|Z(h2m+1) = 2 IdZ(h2m+1). So, the Levi
subalgebra s of Der h2m+1 is simple. And its solvable radical is a (2m + 1)-
dimensional Lie algebra with abelian nilpotent radical N(Der h2m+1) = {δ :

δ(W ) ⊆ F · z, δ(z) = 0}. In matrix form, the general shape of a derivation in
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an ordered standard basis as described in Definition 2.2.9 is M + αIm P 0m×1

Q −M t + αIm 0m×1

ct1 ct2 2α

 , (5.3)

where α ∈ F, ci are column matrices,M,P and Q arem×mmatrices P t = P

and Qt = Q.
Returning to the real field and applying the spectral theorem, for any real

φ-skew and invertible map of an euclidean space, δ : (W2m, φ) → (W2m, φ),
there is an orthonormal basis {e1, . . . , e2m} such that δ(e2i−1) = λie2i and
δ(e2i) = −λie2i−1 and λ1, . . . , λ2m are positive real numbers (w.l.o.g. we
can assume λi ≤ λi+1). So any oscillator R-algebra of dimension 2m + 2

is determined by an m-fold λ = (λ1, . . . , λm) of positive scalars such that
0 < λ1 ≤ · · · ≤ λm (to shorten dλ2m+2(R) for a fixedm-fold λ),

d2m+2(λ1, . . . , λm) = R · δλ ⊕W2m ⊕ δ∗λ.

Applying Proposition 5.2.6, the structure constants respect to the basis
δλ, e1, . . . , e2m, δ

∗
λ are determined by the entries of λ. Using φ(ei, ej) = δij

and [u, v] = φ(δλ(u), v)δ
∗
λ for all u, v ∈W , we have



[e2i−1, e2i] = −[e2i, e2i−1] = λiδ
∗
λ,

[ep, eq] = 0 if (p, q) ̸= (2i− i, 2i), (2i, 2i− 1),

[δλ, e2i−1] = −[e2i−1, δλ] = δλ(e2i−1) = λie2i,

[δλ, e2i] = −[e2i, δλ] = δλ(e2i) = −λie2i−1,

[d2m+2, δ
∗
λ] = 0.

(5.4)

From the basis-bracket description of dλ2m+2(R), the following lemma restates
[Hilgert et al., 1989, Proposition II.3.14].

Lemma 5.2.8. Let λ = (λ1, . . . , λm) and dλ2m+2(R) = R ·δλ⊕span⟨e1, . . . , e2m⟩⊕
R · δ∗λ the oscillator algebra with Lie bracket given in equations (5.4). For any t ∈ F
and s ̸= 0 the symmetric bilinear form φt,s given as the orthogonal sum

span⟨e1, . . . , e2m⟩ ⊥ span⟨δλ, δ∗λ⟩,

with φt,s(δλ, δλ) = t, δλ and δ∗λ isotropic, {e1, . . . , e2m} orthogonal family and
φt,s(δλ, δ

∗
λ) = s = φt,s(ei, ei) is invariant and nondegenerate. The set {φt,s : t, s ∈
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F, s ̸= 0} is the whole set of symmetric invariant and nondegenerate bilinear forms of
dλ2m+2. In particular, Bisinv(dλ2m+2) = span⟨φ0,1, φ1,1⟩ and the quadratic dimension
of real oscillator algebras is two.

Proof. Note that detφt,s = −s2m+2, so φt,s is nondegenerate if and only if
s ̸= 0. The invariance of φt,s is equivalently to

φt,s([x, a], b) + φt,s(a, [x, b]) = 0 ∀x, a, b ∈ d2m+2.

The equality follows by checking it for x ∈ {δλ, ei} (only φ0,1 and φ1,1 need
to be checked). Now let b an arbitrary invariant symmetric and nondegen-
erate form. From Proposition 5.3.6, we get (d22m+2)

⊥ = Z(d2m+2) = Fδ∗λ and
b(δλ, δ

∗
λ) = s0 ̸= 0 because b is non-degenerate. We also set b(δλ, δλ) = t0.

Since δλ(e2i−1) = λie2i and δλ(e2i) = −λie2i−1, we get

b(δλ, e2i) =
1

λi
b(δλ, δλ(e2i−1)) = b(δλ, [δλ, e2i−1]) = 0,

by using that b is invariant. So b(δλ, e2i) = 0 and b(δλ, e2i−1) = 0 in the same
vein. Finally, from (5.4), b(δλ, [e2i−1, e2j ]) = δijλis0 and by invarianceb(δλ, [e2i−1, e2j ]) = b(δλ(e2i−1), e2j) = λib(e2i, e2j),

b(δλ, [e2i−1, e2j ]) = −b(δλ(e2j), e2i−1) = λjb(e2j−1, e2i−1).

Therefore, b(e2i, e2j) = b(e2i−1, e2j−1) = δijs0. A similar reasoning yields

b(e2i, e2j−1) =
1

λi
b(δλ(e2i−1), e2j−1) = λib(δλ, [e2i−1), e2j−1]) = 0,

so b = φt0,s0 . The final assertion follows from Proposition 2.2.17 and the lin-
early depending relation φt0,s0 = (s0 − t0)φ0,1 + t0φ1,1.

There are three classes of metric real oscillator algebras depending on λ =

(λ1, . . . , λm) (see [Medina and Revoy, 1985, Section 4]):

• O-I: all the entries of λ are different. Then, the set of φ0,1-skew deriva-
tions is an abelian Lie algebra.

• O-II: all the entries of λ are equals to λ1. Up to isomorphisms for any
m ≥ 1 we have the series d2m+2(1, . . . , 1). Since λ = (λ1, . . . , λ1), rescal-
ing the basis of dλ2m+2(R) in the form 1

λ1
δ, e1, . . . , e2m, λ1δ

∗
λ we arrive at

d2m+2(1, . . . , 1). The set of φ0,1-skew derivations is the special unitary
Lie algebra sum(R), a simple Lie algebra of type A (i.e. the complex
extension sum(R)⊗ C is slm(C)).
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• O-III: there are at least two different entries λi < λi+k and one of them
of multiplicity greater or equal than 2. The set of φ0,1-skew derivations
is a reductive non-abelian Lie algebra.

Remark 5.2.9. This result shows real oscillator algebras as counterexamples
of a conjecture made in [Walker, 1963]. In this paper, the author asserts the
only real Lie algebras of quadratic dimension two are the direct sum of two
simple central algebras, a simple but non-central algebra, or the T ∗-extension
of a simple central algebra. Although the author reaches this conjecture from
Lie groups, in general, reductive Lie algebras formed by a simple central and
1-dimensional also have quadratic dimension two.

To end this section, we will compute explicitly the whole sets of derivations
and φ0,1-skew derivations of d2m+2(1, . . . , 1) (for short d2m+2). In the sequel,
we fixed a natural m ≥ 1 and, in order to get a more symmetric block de-
scription of any derivation, all the self-linear maps of d2m+2 will be given in a
matrix level with respect to the ordered basis

{δλ, x1, . . . , xm, y1, . . . , ym, δ∗λ = z}

with xi = e2i−1 and yi = e2i. In this way, {xi, yi, δ∗λ} forms a standard ba-
sis of h2m+1 as in Definition 2.2.9. For the rest of products we observe equa-
tions (5.4) with λi = 1. Let D be any derivation of d2m+2. From

D(δλ) = γδλ +
m∑
i=1

bixi +
m∑
i=1

ciyi + βz,

items (a), (b) and (c) in Proposition 5.2.7 and matrix specification in equa-
tion (5.3), we arrive at the general matrix description

D =


0 0 0 0

b M + αIm P 0

c −P −M t + αIm 0

β −bt −ct 2α

 , (5.5)

with β, α ∈ R, b, c 1 × m matrices and M t = −M and P t = P . The set of
inner derivations Inner d2m+2 = span⟨ad δλ, adxi, ad yi : 1 ≤ i ≤ m⟩ is just the
set of matrices as in equation (5.5) with M = 0, β = α = 0 and P = µIm.
Using ad[x, y] = [adx, ad y], we get the derived subalgebra of this algebra,
(Inner d2m+2)

2 = span⟨adxi, ad yi : 1 ≤ i ≤ m⟩, which is clearly abelian.

157



Chapter 5. Tools and patterns

Among the derivations of (d2m+2, φ0,1), we look for the φ0,1-skew ones:

D ∈ Derφ0,1 d2m+2 ⇐⇒ φ0,1(D(x), y) + φ0,1(x,D(y)) = 0. (5.6)

From equation (5.6), the skew-derivations are as in expression (5.5) with β =
α = 0. Hence, any derivation D decomposes into the generic sum of basic
blocks of derivations:

D =

αD0,1,2︷ ︸︸ ︷
0 0 0 0

0 αIm 0 0

0 0 αIm 0

0 0 0 2α

+

s0︷ ︸︸ ︷
0 0 0 0

0 M 0 0

0 0 M 0

0 0 0 0

+

∈ s1︷ ︸︸ ︷
0 0 0 0

0 0 P0 0

0 −P0 0 0

0 0 0 0


︸ ︷︷ ︸

s2 = [s, s]s

+

µ ad δλ ∈ s1︷ ︸︸ ︷
0 0 0 0

0 0 µIm 0

0 −µIm 0 0

0 0 0 0

+

t = (Inner d2m+2)
2︷ ︸︸ ︷

0 0 0 0

b1 0 0 0

b2 0 0 0

0 −bt1 −bt2 0


︸ ︷︷ ︸

Inner d2m+2

+

βD1,0,0︷ ︸︸ ︷
0 0 0 0

0 0 0 0

0 0 0 0

β 0 0 0

,

whereM t = −M and P t0 = P0 arem×m traceless matrices. Let denote s the
set of 2m× 2mmatrices of the following shape:(

M P

−P M

)
=

(
M 0

0 M

)
⊕
(

0 P0

−P0 0

)
⊕
(

0 µIm

−µIm 0

)
, (5.7)

here P = P0 + µIm and µ = TrP
m . It is easily checked that s is a vector space

which is closed under the bracket [x, y]s = xy − yx. Then, s is a linear Lie
subalgebra of the special linear algebra sl2m(R) and the direct sum decompo-
sition given in equation (5.7) provides aZ2-graded decomposition s = s0⊕s1.
So, the even part s0 is a Lie algebra, in this case isomorphic to the simple or-
thogonal algebra of skew-symmetric matrices som(R) ifm ≥ 3.

Theorem 5.2.10. Let dλ2m+2(R) = R · δλ ⊕ (W2m, φ0,1) ⊕ R · δ∗λ, m ≥ 2, be the
real oscillator Lie algebra ofm-fold λ = (1, . . . , 1). The sets of derivations and skew-
symmetric derivations can be described as follows:

1. Der d2m+2 = R · D1,0,0 ⊕ R · D0,1,2 ⊕ [s, s]s ⊕ Inner d2m+2 where D0,1,2

is the derivation given by D0,1,2(δλ) = 0, D0,1,2(v) = v for all v ∈ W and
D0,1,2(z) = 2z and D1,0,0(δλ) = z and D1,0,0(d

2
2m+2) = 0.
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5.2. Local and oscillator algebras

2. Derφ0,1 d2m+2 = s⊕ [Inner d2m+2, Inner d2m+2], and s2 is isomorphic to the
special unitary simple Lie algebra sum(R). For m ≥ 3, s0 is the orthogonal
simple algebra ofm×m skew-matrices.

Form = 1, Der d4 = R ·D0,1,2 ⊕ R ·D1,0,0 ⊕ Inner d4 and Derφ0,1 d4 = Inner d4.

Proof. The result follows from previous matrix decompositions and discus-
sion. Since the special unitary real Lie algebra can be realized as the vector
space of traceless skew-Hermitinan m ×m matrices, so sum(R) = {M + iP :

M t = −M,P t = P, trP = 0} and som(R) = {M :M t = −M} is a subalgebra.
It is easily checked that themapM+P0 7→M−iP0 (hereM+P0 represents the
two first summands in the decomposition (5.7)) is a Lie isomorphism from
s2 to sum(R). The same map proves that s0 ∼= som(R).

Remark 5.2.11. Let J = H(Mm(R, t)) be the real simple unitary Jordan algebra
ofm×m symmetric matrices form ≥ 2. Up to isomorphisms, s0 and s = R ·
ad δλ⊕ [s, s]s are just the algebra of derivations of J and the Lie multiplication
algebra of J according to [Jacobson, 1968, Chapter VI, Section 9, Theorems
9 and 11]. And the Z2-graded decomposition s2 = s0 ⊕ s1 ∩ s2 is related to
the compact symmetric space SU(m)/SO(m) (see [Helgason, 1979, Table V,
page 518]). We also point out that Jordan algebraswere introduced by Pascual
Jordan in 1933 to formalize the notion of an algebra of observables in quantum
mechanics. The algebra d4(R) is the algebra of the observables of the quantum
mechanical model of the harmonic oscillator.

The existence of s2 ∼= sum(R) and s0 ∼= som(R) as simple subalgebras of
Derφ0,1 d2m+2 for m ≥ 2 and m ≥ 3 lets us construct, in parallel with the
quadratic solvable series (d2m+2, φ0,1), the series of mixed quadratic algebras,

(d2m+2)sum(R) := sum(R)⊕ d2m+2 ⊕ sum(R)∗, and

(d2m+2)som(R) := som(R)⊕ d2m+2 ⊕ som(R)∗,

by following Theorem 2.2.20. In this case, we extend from the natural inclu-
sion of s into the subalgebra Derφ0,1 d2m+2, so b = s2, s0 and ϕ = ι.

As pointed out in Remark 5.2.4, double extensions of the oscillator algebra
d4(R) bymeans of its skew-derivations only produce decomposable quadratic
algebras (see Corollary 4.1.3) that are orthogonal sums d4 ⊕ a, with a metric
abelian because Derφ0,1 d4 = Inner d4. But this little algebra, also known as
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diamond algebra, has a self-interest of its own (see [Douglas and Premat, 2007]
and [Casati et al., 2010] and references therein).

5.3 Lattices of ideals

In Chapter 3 we started analysing the relationships among some important
ideals in quadratic Lie algebras. Indeed, these ideals and their location are so
important they define families like the local one we have just seen. In local
algebras, the existence of a unique maximal ideal implies the existence of a
unique minimal ideal. This structural pattern is a consequence of the orthog-
onality imposed by the quadratic form. In fact, we have the mapping

Φ: Ideals(L)→ Ideals(L)
I 7→ I⊥.

(5.8)

As the orthogonal of an ideal is another ideal, this mapping is well defined.
Moreover, it is an involutive anti-automorphism which turns I + J into I⊥ ∩
J⊥ and vice versa. This pattern was pointed in [Hofmann and Keith, 1986,
Corollary 1.4]. As stated in that corollary, this influences strongly the ideal
structure of the algebra.

The set of ideals of a Lie algebra L is a partially ordered set (poset) ordered
by inclusion. In the set of ideals of L, every two elements have unique supre-
mum taking the sum of ideals, and infimum when considering the intersec-
tion, which coincides with the definition of a lattice.

In this section we will start seeing the main structural properties of ideals
in Lie algebras, particularly on finite lattices of quadratic Lie algebras. Among
all the variety, we will focus on lattices whose ideals form a chain, which are a
peculiar example of local Lie algebras. For those ones, wewill give procedures
about how to obtain them, to end up seeing a list of these chains and when
they are quadratic. Along this first subsectionwe follow, partially, [Benito and
Roldán-López, 2022a].
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5.3. Lattices of ideals

5.3.1 Structure and properties

As observed in the introduction, when considering sum and intersection of
ideals, the set of ideals form a lattice.
Definition 5.3.1. A poset (L,≤) is a lattice if a ∨ b = sup{a, b} and a ∧ b =

inf{a, b} exist for all a, b ∈ L.

As seen in [Grätzer, 2011, Lemma 2], this definition is equivalent to supH

and infH exist for every finite nonempty subset H of L. We should not con-
fuse this to being complete.
Definition 5.3.2. A lattice L is called complete if every subset (not only finite
nonempty subsets) of ideals has a join and a meet.

Lattices of ideals of Lie algebras are complete lattices. Moreover, these
lattices are also bounded: the zero ideal is the smallest element, and the total
algebra is the largest element. In terms of lattices, they are also referred as
0 and 1 respectively. Many fundamental properties of Lie algebras can be
interpreted as facts about lattices of ideals (see [Benito, 1995] and for finite
lattices [Benito and Roldán-López, 2022a]).

In addition, we can represent lattice of ideals, totally or partially, using
a Hasse diagram, which represents a finite poset in the form of a drawing of
its transitive reduction. For a poset (S,≤), the Hasse diagram represents the
elements of S by nodes (small black circles in our figures). And the nodes
representing the elements x and y of S are connected by a straight line or
segment that goes upward from x to y whenever y covers x, that is, whenever
x < y and there is no z such that x < z < y. These segments may cross each
other, but must not touch any vertices other than their endpoints. We have
drawn some examples of these diagrams in Figure 5.1.

(a) (b) (c) (d) (e)

Figure 5.1: Examples of different Hasse diagrams. Not all of them are valid
Hasse diagramas for Lie algebras ideals as we will see.
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According to [Grätzer, 2011, Lemma 1, Section 1.4], from aHasse diagram
we can recapture the relation≤ by noting that x < y holds if and only if there
exists a sequence of elements c0, c1, . . . , cn such that x = c0, y = cn and ci+1

covers ci. Hence, the Hasse diagram of a finite poset determines the poset up
to isomorphisms. A finite lattice is a poset attached to a Hasse diagram for
which every pair of nodes has a unique supremum and infimum. The above
remark implies that for each of the diagrams in Figure 5.1, the corresponding
poset is a lattice with the exception of diagram (b).

On lattices of ideals of Lie algebras, we can observe that for any three ideals
A,B,C of L such that A ⊆ B, we have the identity

B ∩ (A+ C) = A+ (B ∩ C). (5.9)

In a general lattice, equation (5.9) can be rewritten exactly as theModular Law
in the following definition:

Definition 5.3.3. We say a latticeL ismodular it satisfies theModular Law, i.e.,
if for every a, b, c ∈ L such that a < b

inf{b, sup{a, c}} = sup{a, inf{b, c}}.

So, lattices of ideals of Lie algebras are also modular, apart from being
complete and bounded. Unfortunately, despite the strong conditions a Lie al-
gebra imposes on its lattice of ideals, the ideal lattice structure does not always
determine the Lie algebra in a unique way. For instance, the one-dimensional
Lie algebra and every simple Lie algebra have the same lattice of ideals con-
sisting of a 2-element chain (see lattice h2.1 in Figure 5.6). This elementary
example shows that there exist non-isomorphic Lie algebraswith the same lat-
tice of ideals. Even more, the lattice ideal structure is not preserved through
scalar extensions as seen in Example 5.3.1. Nevertheless, the lattice structure
of a Lie algebra does approach to the algebraic structure.
Example 5.3.1. The oscillator Lie algebra has 4-chain as a lattice when consid-
ered over R, while it is related to the second lattice in Figure 5.2 when taken
over C.

In Figure 5.2, we can observe how the third lattice comes from a sort of
duplication of the second one. This duplication can be achieved, for example,
by a direct sum of a simple Lie algebra as a trivial extension. Indeed, this also
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5.3. Lattices of ideals

Figure 5.2: Examples of lattices of Lie algebras.

explains why sl2(F) ⊕ sl2(F) ⊕ sl2(F) has by its lattice the fourth one in the
same figure.

When studying lattices of ideals, other definitions appear:

Definition 5.3.4. Let L be a bounded lattice attached to the poset (S,≤) with
join and meet denoted by ∨ and ∧ respectively. Then:

(a) L is a complemented lattice if each element has a complement, that is, for
a given element a, there is an element b such that a∨b = 1 and a∧b = 0.

(b) L is a distributive lattice if L satisfies either of the following equivalent
distributive laws:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(c) L is a boolean lattice if it is complemented and distributive.

The completely reducibility of reductive Lie algebras implies that their
lattices of ideals are complemented. When their centre has dimension less
or equal than one they are also distributive. Two typical examples of non-
distributive lattices are the pentagon N5 and the diamond M3 whose Hasse
diagrams are shown in Figure 5.3. The following theorem characterizes dis-
tributive and modular lattices by means of pentagons and diamonds.

Theorem 5.3.1. (See [Grätzer, 2011, Theorem 102]) Every distributive lattice is
modular. Moreover:
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(a) (b)

Figure 5.3: (a) is the pentagonN5 non-modular lattice, and (b) is the diamond
M3 non-distributive lattice.

(a) A lattice is modular if and only if it does not contain a pentagon.

(b) A lattice is distributive if and only if it does not contain a pentagon or a dia-
mond.

This relation between distributive lattices and the diamond lattice makes
the following definition appears.
Definition 5.3.5. Let L be a lattice. We say L satisfies the diamond property
(DP) if for two distinct atoms1 a, b there exists another element c for which
{0, a, b, c, a ∨ b} is theM3 lattice in Figure 5.3.

As seen the previous theorem, if L satisfies DP then L is non-distributive.
In a totally ordered set (S,≤), not just a poset, any pair of elements are

comparable, thus the infimum and supremum exist and therefore S is always
a lattice. If this set contains n elements, we will say that S is an n-element
chain lattice (n-chain for short). The Hasse diagram for any n-chain is given in
Figure 5.4. Chains play an important role as they allow us to define the length
of a general lattice.

...

...

· · ·

Figure 5.4: On the left the n-chain and on the right theMn lattice. They have
n and n+ 2 nodes respectively.

1Any element that covers 0 is named atom.
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Definition 5.3.6. A general lattice is said to be of length k, where k is a natural
number (k = 0 is possible), if there is a (k + 1)-chain sublattice and all of its
chain sublattices have a number of elements smaller than k + 1.

Note that the length of an n-chain is n − 1, just the number of “jumps”.
In Figure 5.4 we can also see the generalization Mn of M3 lattice. Mn is the
2-length lattice with n ≥ 3 atoms.

The following examples relate the set of ideals of some varieties of Lie
algebras and the previous notions and examples of lattices. From now on,
LId(L)will denote the lattice of ideals of a Lie algebra Lwith product [x, y].
Example 5.3.2 (n-chain lattice Cn(n ≥ 1)). This lattice is distributive and non-
complemented if n ≥ 3. The trivial Lie algebra is the only algebra whose
lattice of ideals is C1. The variety of Lie algebras that have C2 as lattice of ide-
als is the set of simple Lie algebras plus the 1-dimensional algebra. For any
n ≥ 3, Lie algebras whose lattice of ideals is an n-chain have been fully char-
acterized in [Benito, 1992a]. A complete classification is given for solvable Lie
algebras over algebraically closed fields.
Example 5.3.3 (n-subspace lattice SubFn (n ≥ 0)). The set of subspaces, de-
noted as SubFn, of the n-dimensional vector space Fn is a complemented and
modular lattice of length n that satisfies the DP. This lattice is not finite and
nondistributive if n ≥ 2. The variety of Lie algebras whose lattice of ideals is
isomorphic to SubFn for some n, is the variety of finite dimensional abelian
Lie algebras. This happens because any algebra L such that LId(L) is isomor-
phic to Sub Fn decomposes into the sum of nminimal ideals L = I1⊕· · ·⊕ In.
The ideals in the decomposition are abelian because of the DP, and therefore
L2 = 0. This variety is trivially quadratic.
Example 5.3.4 (Mn lattice (n ≥ 3)). This lattice has length 2 and it is comple-
mented, modular and satisfies the DP, so it is nondistributive. There are no
Lie algebras with a lattice of ideals isomorphic toMn: If LId(L) is isomorphic
to Mn, DP implies L2 = 0, so L is a 2-dimensional abelian Lie algebra and
therefore LId(L) is not a finite lattice, a contradiction. This assertion is a con-
sequence of Theorem 5.3.4. When L is abelian of dimension two we obtain
lattice SubF2 which behaves asMn when n goes to infinity.

For a finite set A, the Hasse diagram of the lattice of

PowA = {S : S ⊆ A},

165



Chapter 5. Tools and patterns

the set of subsets, also denoted as 2A, has 2|A| nodes. Here a line joins two
nodes whenever the corresponding subsets differ in a single element. This
way, we arrive at the hypercube lattice or n-cube lattice Qn, the lattice of sub-
sets of the set {1, 2, . . . , n}, where Q0 is the lattice of subsets of the empty set.
We point out the following result about n-cube lattices and its relation with
distributive and boolean lattices:

Theorem 5.3.2. [Grätzer, 2011, Corollaries 109, 110] LetL be a finite lattice. Then:

(a) L is distributive if and only if L is isomorphic to a sublattice of the lattice of
subsets of some finite set.

(b) L is boolean if and only if L is isomorphic to Qn for some n ≥ 0.

Example 5.3.5 (n-cube lattice Qn (n ≥ 0)). In Figure 5.5 we have drawn the
n-cube lattices of ideals of either a semisimple Lie algebra with n = 1, 2, 3, 4, 5

simple components or L = S ⊕ Fz, where Fz is the centre of L and S is a
semisimple ideal with n − 1 = 0, 1, 2, 3, 4 simple components. The lattices
Q4 and Q5 are called tesseract and penteract respectively. We also note that
n-cube lattices are just the lattices of ideals of reductive Lie algebras, whose
centre has dimension at most 1, and all these algebras are quadratic.

Figure 5.5: n-cube lattices from n = 0 (left) to n = 5 (right).

Given a vector spaceM and any subset Ω of linear maps inM , the set of
subspaces ofM which are invariant under Ω is a lattice denoted as SubΩM .
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Here, two subspaces A,B ∈ SubΩM are Ω-isomorphic if there is a bijective
map φ : A→ B such that φ(f(a)) = f(φ(a)) for any a ∈ A and any f ∈ Ω.
Lemma 5.3.3. Let Ω be a Lie algebra of linear transformations in a vector spaceM
and let SubΩM be the lattice of Ω-invariant subspaces of M . Then, the following
assertions are equivalent:

(a) SubΩM is a finite and boolean lattice.

(b) SubΩM is a finite and complemented lattice.

(c) Ω is completely reducible inM and SubΩM has no irreducible Ω-isomorphic
elements.

(d) Ω = Ω1⊕A, whereΩ1 is a semisimple ideal ofΩ,A is the centre, the elements
of A are semisimple, i.e. the minimum polynomial of any linear map of A is
the product of relatively prime irreducible polynomials, and SubΩM has no
irreducible Ω-isomorphic elements.

If any of these equivalent conditions hold,M has a unique decompositionM =M1⊕
· · · ⊕Mr, whereMj ∈ SubΩM are irreducible and no Ω-isomorphic subspaces. In
particular,

SubΩM = {Mi1 ⊕ · · · ⊕Mik : 1 ≤ i1 < . . . < ik ≤ r} ∪ {0},

and SubΩM is isomorphic to the r-cube lattice Qr.

Proof. If we omit the condition of finiteness and the property of nonexistence
of Ω-isomorphic subspaces, the equivalence of the assertions (b), (c) and (d)
follows from [Jacobson, 1979], specifically from Theorem 9 in Section 5 of
Chapter II, and Theorem 10 in Section 7 of Chapter III.

Now assume SubΩM is a finite and complemented lattice. Then, there are
no irreducible Ω-isomorphic subspaces P and Q. Otherwise, there exists a
Ω-isomorphism φ : P → Q, so φf = fφ for any f ∈ Ω. In this case, for any
α ∈ F we can define the nonzero subspace,

Rα = {a+ αφ(a) | a ∈ P} ⊆ P ⊕Q.

It is clear that Rα ∈ SubΩM . Suppose Rα = Rβ , so a + αφ(a) = b + β φ(b),
a, b ∈ P \ {0}. The last equation implies

a− b = β φ(b)− αφ(a) = φ(αa− βb) ∈ P ∩Q = 0,
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and therefore β = α. Hence for any scalar α we get distinct Ω-invariant sub-
spaces Rα, a contradiction because the based field F is infinite and SubΩM is
a finite set.

Assumefinally thatΩ is completely reducible inM andM does not contain
Ω-isomorphic irreducible subspaces. Then M = M1 ⊕ · · · ⊕Mr, where the
different Mj ∈ SubΩM are not Ω-isomorphic. For any irreducible subspace
P , it follows thatM = P ⊕P2⊕· · ·⊕Pk, where Pi are irreducible. Since there
are noΩ-isomorphic irreducible subspaces, applying Krull-Schmidt Theorem
of sets of linear transformations, we get that k + 1 = r and P = Mj for some
1 ≤ j ≤ r. So, apart from the trivial subspace, theΩ-invariant subspaces ofM
are direct sums of a finite number of subspacesM1, . . . ,Mr. The equivalence
of (a) and (c) follows from [Pierce, 1982, Chapter 2, Corollary c, Section 2.4]
and therefore Theorem 5.3.2 ends the proof.

This lemma prepares us to prove one of the main results for lattices.

Theorem 5.3.4. Finite lattices of ideals of Lie algebras are always distributive. Up to
isomorphisms, these lattices are sublattices of n-cube lattices.

Proof. Let L be a Lie algebra and L = LId(L) be its lattice of ideals. Assume
the result is false. Since L is a modular and nondistributive lattice, there is a
sublattice of type M3 in L according to Theorem 5.3.1. So there exist ideals
K,R, P1, P2 and P3 such that Pi ∩ Pj = K, Pi + Pj = R, and R covers Pi
and Pi covers K for each i = 1, 2, 3. Consider now the quotient Lie algebra
L/K and note thatQi = Pi/K areminimal ideals. Since [Pi, Pj ] ⊆ K andPk ⊆
Pi+Pj = R, the idealT = R/K decomposes as the direct sums, T = Q1⊕Q2 =

Q1 ⊕Q3 = Q2 ⊕Q3. Then [Qi, Qj ] ⊆ Qi ∩Qj = 0, and therefore each Qi is an
abelian ideal. LetM denote the sum of all minimal abelian ideals ofL/K, and
consider the Lie algebra of linear maps inM , Ω = adM L/K, adx(m) = [x,m]

for all x ∈ L/K,m ∈M . The elements of the lattice SubΩM are just the set of
ideals of L/K insideM . This lattice is finite and complemented because ofM
decomposes as a direct sum of minimal abelian ideals. Using Lemma 5.3.3,
there is noΩ-isomorphic ideals ofL contained inM . SinceQi are ideals, every
canonical projection φijk : T = Qi ⊕ Qj → Qk, {(i, j, k) : i < j, k = i, j},
satisfies φijk([x, a]) = [x, φijk(a)] for all x ∈ L/K. So, in a natural way, the
maps φijk let us define an Ω-isomorphism φ : Q1 → Q2, a contradiction. The
final part follows from Theorem 5.3.2.
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In conclusion, the set of ideals of a Lie algebra is a bounded and mod-
ular lattice. If we impose finiteness, it is also distributive. In Figure 5.6 we
show all possible distributive lattices up to 8 nodes according to [Erné et al.,
2002]. Lie algebras up to 6 ideals have been characterized in [Benito, 1992b]
and [Roldán-López, 2017]. Using ideas and techniques included in [Benito,
1992b], [Benito, 1995] and [Roldán-López, 2017], most of the distributive lat-
tices of 7 and 8 nodes can be easily performed as the lattices of ideals of some
Lie algebra.

As a direct consequence of the Theorem 5.3.4, we have the next result
which describes the variety of Lie algebras whose lattice of ideals is either
complemented or boolean, all of them self-dual. We remark that the general
assertion about complemented lattices and the equivalence of statements (a)
and (e) have been previously stablished in [Benito, 1995, Lemma 2.3].

Corollary 5.3.5. The Lie algebras with complemented lattice of ideals are of the form
L = S⊕A, where S is a semisimple ideal ofL andA is an abelian ideal, soA = Z(L).
Moreover, the following assertions are equivalents:

(a) LId(L) is a boolean lattice.

(b) LId(L) is finite and complemented.

(c) LId(L) is an n-cube lattice for some n ≥ 0.

(d) The Jacobson radical of L is trivial and Z(L) has dimension at most 1.

(e) L is either 0 or one of the following Lie algebras: Fz, a semisimple algebra S
or a direct sum as ideals of Fz and S.

In this case, L has 2n ideals where n is either r or r+1 and r is the number of simple
components of S (r = 0 is also possible).

Proof. Let Ω = adL = {adx : x ∈ L}, where adx(a) = [x, a]. Note that
LId(L) is the set of Ω-invariant subspaces of L, so LId(L) = SubΩ L. First, we
will prove the characterization of complemented lattices. Assume LId(L) is
complemented and letA be an ideal such that L = L2⊕A. Then [L,A] ⊆ L2∩
A = 0, thusA ⊂ Z(L). On the other hand, the derived idealL2 decomposes as
a sum of minimal ideals, L2 = I1⊕· · ·⊕Ik, and I2j = Ij because of (L2)2 = L2.
Hence L = L2 ⊕ Z(L) is a direct sum of the semisimple ideal L2 and the
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h1.1 h2.1 h3.1 h4.1 h4.2

h5.1 h5.2 h5.3

h6.1 h6.2 h6.3 h6.4 h6.5

h7.1 h7.2 h7.3 h7.4 h7.5 h7.6 h7.7 h7.8

h8.1 h8.2 h8.3 h8.4 h8.5 h8.6 h8.7 h8.8

h8.9 h8.10 h8.11 h8.12 h8.13 h8.14 h8.15

Figure 5.6: All Lie algebras Hasse diagrams up to 8 ideals (nodes).
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centre. Conversely, in the case L = S ⊕ Z(L), Ω = adL ∼= adS and LId(L) is
complemented by [Jacobson, 1979, Theorem 10, Section 7, Chapter III].

Now we will check the equivalence of the five conditions. Theorem 5.3.4
shows that statement (b) implies (a). The previous paragraph and Exam-
ple 5.3.3 give us item (e) from item (a). Since the Jacobson radical of L is
just L2 ∩Rad(L) = [L,Rad(L)], where Rad(L) is the solvable radical (see [Ja-
cobson, 1979, Chapter III, Section 9] and [Marshall, 1967]), item (e) implies
(d) follows from [L,Rad(L)] = [L,Fz] = 0. In the case L2 ∩ Rad(L) = 0 we
have L = S ⊕ Z(L), so S = L2 is semisimple and adL ∼= S. Then the im-
plication from statement (d)to item (b) follows by using dimZ(L) ≤ 1 and
Lemma 5.3.3. Finally, Theorem 5.3.2 ensures that items (a) and (c) are equiv-
alent.

The algebras in this corollary are quadratic Lie algebras as they are reduc-
tive. Lattices in Figures 5.2 and 5.5 also belong to quadratic Lie algebras. We
can observe all of their Hasse diagrams coincide with themselves when they
are turned upside down. This symmetry is a consequence of the mapping
Φ in equation (5.8). This function maps between L2 and Z(L) and in gen-
eral, the terms in the central descending series to the ascending ones. Since
I ⊆ J implies J⊥ ⊆ I⊥, Φ forces quadratic Lie algebras to have a selfdual
lattice of ideals. In case of finite lattices, the dualization provides a symmetry
in the Hasse diagram respect an horizontal axis. These results are pointed
out in [Hofmann and Keith, 1986, Section 1], and appear summarized in the
following proposition.

Proposition 5.3.6. In any Lie algebraL endowed with an non-degenerate symmetric
invariant form, the map Φ: LId(L)→ LId(L) such that Φ(I) = I⊥ is an involutive
anti-automorphism of the lattice of ideals of L. In particular:

(a) I ⊆ J if and only if ϕ(J) ⊆ ϕ(I).

(b) Φ(I) = J if and only if Φ(J) = I .

(c) Φ(I + J) = I ∩ J .

(d) Φ(Lk) = Zk−1(L), in particular, Φ(L2) = Z(L).

(e) If I is minimal, Φ(I) is maximal and vice versa. Thus Φ(soc(L)) = J (L).

(f) dimL = dim I + dimΦ(I), in particular, dim I/J = dimΦ(J)/Φ(I).
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So, the lattices of ideals of quadratic Lie algebras are self-dual.

It is important to note, this lattice duality is a necessary condition, but not
sufficient. Their codimensionsmust also respect this symmetry due to item (f)
in previous proposition. But, there are also Lie algebraswith symmetricHasse
diagram and symmetric codimensions in their ideals which are not quadratic
as seen in the following example.
Example 5.3.6. Let F · Îd⋉h3 be a Lie algebra obtained from the 3-dimensional
Heisenberg in a semidirect product with a derivation obtained from extend-
ing the identity (check equation (5.3)). This algebra has a self-dual lattice
(see Figure 5.7), with symmetric dimensions as each ideal has codimension 1
in its consecutive ideals.

L = span⟨d, x, y, z⟩

h3 = span⟨x, y, z⟩

span⟨αx+ βy, z⟩· · ·

Z(L) = span⟨z⟩

0

Figure 5.7: Lattice of ideals of F· Îd⋉h3. Note the interval sublattice [h3 : Z(L)]
is a SubF2 lattice.

The non-null products in this algebra, taking basis {d, x, y, z} are

[d, x] = x, [d, y] = y, [d, z] = 2z, [x, y] = z.

But it is not quadratic because respect to ad d both x, y and z are eigenvectors
of non-opposite eigenvalues. Therefore, as

φ(x, z) = φ([d, x], z) = −φ(x, [d, z]) = −2φ(x, z),

φ(x, z)must be zero. Analogously for every pair in {x, y, z}, we obtain φ|h3 =

0 which prevents φ from being non-degenerate. Despite being similar, this
algebra differs in ad dwith respect the oscillator, which it was quadratic.
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h1.1 h2.1 h3.1 h4.1 h4.2 h5.1

h6.1 h6.3 h6.5 h7.1 h7.8

h8.1 h8.4 h8.11 h8.13 h8.14 h8.15

Figure 5.8: All Lie algebras self-dual Hasse diagrams up to 8 ideals (nodes).

Among all lattices of ideals up to 8 nodes seen in Figure 5.6, only few of
them are selfdual. We can see which of them are in Figure 5.8. We can easily
obtain some quadratic Lie algebras from those self-dual lattices by using our
deconstructing results on Chapter 3, structural patterns and some classical
constructions from Chapter 2:

• Lattices h3.1, h5.1, h7.1, h7.8 and h8.13 are T ∗-extensions using Theo-
rem 2.2.23 because they contain a lagrangian ideal. As an example, h3.1
is the lattice of T ∗

0 (S) for any S simple Lie algebra.

• h2.1, h4.2 and h8.15 correspond, according to Corollary 5.3.5, to reduc-
tive Lie algebras with dimZ(L) ≤ 1 containing exactly one, two and
three factors respectively.

173



Chapter 5. Tools and patterns

• h6.5 comes from an algebra, whose lattice is h3.1, in direct sum with a
one-dimensional or simple ideal. In the same way h8.14 follows from
h4.1.

• hi.1 for i = 1, . . . , 8 are chains. We have seen some quadratic algebras, as
the real 4-dimensional oscillator one, whose lattices are of this type. For
i ≥ 3, they are local algebras according to Lemma 5.2.1, which also says
they can be decomposed as its nilradical plus a simple or 1-dimensional
subalgebra. Thus, using Theorem 3.1.8, we can obtain them as double
extensions ofN/N⊥. In these chains, the nilradical occupies the second
ideal starting from above, and its orthogonal appears in the penultimate
position.

Apart from finite lattices, some of the algebras we are studying present
infinite lattices. In those one, we can still clearly observe the self-dual property
as seen in the two first lattices in Figure 5.9. The third one shows the existence
of quadratic Lie algebras whose lattice of ideals is a n-chain for any n ∈ N as
long as you want. This, in combination with lattices hi.1 for i = 1, . . . , 8 from
Figure 5.8, opens up our next section.

· · ·

· · ·

n2,3

· · ·

· · ·

· · ·

· · ·

n3,2 S ⊗ F[t]
⟨tn⟩

...

...

Figure 5.9: Infinite quadratic lattices and n-chains for S simple. [n2,3 : n22,3]

and [n3,2 : n
2
3,2] are respectively SubF2 and SubF3.

5.3.2 Chain lattices of ideals

From Dilworth’s Chain Decomposition Theorem [Dilworth, 1950], any finite
lattice decomposes as a disjoint union of chains. This fact highlightsn-element
chain lattices as basic blocks for embedding or decomposing finite lattices. As
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describe in the characterization of these chains in [Benito, 1992a], for dimen-
sion greater or equal than 2, solvable n-chains Lie algebras are 1-dimensional
extensions of a nilpotent Lie algebra n. This algebra n is the nilradical and it
can be a GHA, or a filiform2 with nilpotency index greater or equal than 3, or
a finite thin algebrawith two diamonds (both the centre and n/n2 have dimen-
sion two and ni

ni+1 is one-dimensional otherwise). The common pattern to all
n is that they are naturally graded and generated by a subspace. That is, they
are quasi-cyclic Lie algebras.

In the non-solvable case, there is a large number of different types ofmixed
algebras with chain lattices of ideals. The easiest example is the 3-chain given
by any split extension of a simple Lie algebra and a nontrivial irreduciblemod-
ule. Mixed n-chain algebras are formed from a nilpotent radical and a simple
Levi factor. As in the solvable case, the chain ideal condition also imposes
positive gradings on the nilradical. Examples are given at the end of this sec-
tion.

5.3.2.1 Examples and theoretical support

Using free nilpotent models in equation (2.7), the UMP and description of the
derivations in Proposition 5.1.1, Corollary 5.1.2 and the remark below, any lin-
ear map f : u→ u extends to a derivation df of nd,t. The set of such extension
maps that have zero trace is just the Levi subalgebra of Der nd,t that we also
denote as sl(u,F) (for short sld(F) or sl(u)). Seen as sl(u)-modules3 for d ≥ 3,
we have u = V (λ1), Λ2u = V (λ2) and Λ3u = F if d = 3 and Λ3u = V (λ3) if
d ≥ 4. In addition,

u⊗ Λ2u

Λ3u
= V (λ1 + λ2).

Denoting by ρ1 and ρ2 the natural representations of sl(u) on nd,2 and nd,3, we
arrive at the series of mixed Lie algebras with 4-chain and 5-chain ideals:

sl(u)⊕ρ1 nd,2 and sl(u)⊕ρ2 nd,3. (5.10)

Example 5.3.7. The smallest Lie algebras in equation (5.10) correspond to a
vector space u of dimension 2. In this case, we get algebras of dimension 6 and
8with sl2(F)-irreducible decomposition V2⊕V1⊕V0 and V2⊕V1⊕V0⊕V1. Here

2See for example [Bordemann, 1997] for a definition.
3For any simple Lie algebra, following [Humphreys, 1997], any irreducible module is of the

form V (λ) where λ is a dominant weight.
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Vn is the (n + 1)-dimensional irreducible module of sl2(F) and V2 is just the
adjoint module of sl2(F). Equation (5.12) describes the modules, and later,
through this section, we will give a complete description of this algebra using
basis and bracket product.
Example 5.3.8. From the set of skew-maps of a fixed vector space u relative to a
bilinear and non-degenerate form φ, either symmetric or skew-symmetric, we
get classical simple Lie algebras so(u, φ) and sp(u, φ). The natural module u =

V (λ1) of so(u, φ) (dim u ≥ 7 is required for tensor decompositions) provides
the representation ρi, (it is the restricted representation of the one given in
equation (5.10)). Then, Λ2u = V (λ2),

Z(nd,3) =
u⊗ Λ2u

Λ3u
= V (λ1 + λ2)⊕ V (λ1),

and we get the series of Lie algebras of seven ideals

L(u, φ) = so(u, φ)⊕ρ2 nd,3.

The lattice of ideals of L(u, φ) is a 4-element chain connected by the rhombus
ideal Z(nd,3) at the bottom. But the quotient Lie algebras by minimal ideals
inside Z(nd,3),

L(u, φ)

V (λ1)
and L(u, φ)

V (λ1 + λ2)
,

are 5-chain mixed Lie algebras. In both cases we get the 5-chain by removing
a minimal node in the complete lattice of ideals of L(u, φ).
Example 5.3.9. GHA h2n+1, in their standard basis, endow the vector space
W2nwith the non-degenerate skew-form [a, b] = φ(a, b)z. According to equa-
tion (5.2), the Levi factor ofDer h2n+1 is the Lie algebra s of extendedmaps df
where and df (z) = 0 and df |u = f for every f ∈ sp(u, φ). So s ∼= sp(u, φ) and
h2n+1 decomposes as the natural sp(u, φ)-module u = V (λ1), and the trivial
one-dimensional module Z(h2n+1) = F · z. Clearly, the ideals of the Lie alge-
bra s⊕id h2n+1 (a mixed subalgebra of the mixed algebraDer h2n+1⊕id h2n+1)
form a 4-chain. For n = 1, since sp2(F) ∼= sl2(F), previous 4-chain Lie algebra
is encoded in a Lie structure V2 ⊕ V1 ⊕ V0 in Example 5.3.7. Here V1 ⊕ V0 is
just h3.
Example 5.3.10. The tensor product S ⊗ A of a Lie algebra S by a commuta-
tive and associative algebra A produces a Lie algebra named in the literature
current Lie algebra of S by A. Poisson structures and invariant bilinear forms on
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current Lie algebras are treated in [Zusmanovich, 2014, Theorem 2, Corrol-
lary 2.2 and Lemma 2.3]. If A has unit, a copy of S appears as subalgebra of
S ⊗ A. If S is simple, the ideals of S ⊗ A are of the form S ⊗ I where I is an
ideal of A. Since the Killing form is an invariant and non-degenerate form of
any simple Lie algebra, from Lemma 2.3 in [Zusmanovich, 2014], the current
Lie algebra S⊗A can also be endowed with an invariant symmetric and non-
degenerate bilinear form. In this way we get ametric Lie structure (quadratic or
metrizable Lie algebra). Consider now the series of current algebras introduced
in Example 2.2.6

gn(S) = S ⊗ F[t]
span⟨tn⟩ ,

for S a simple Lie algebra. Note, the block s = S ⊗ 1 is a Levi subalgebra
of gn, and the solvable radical, r(gn) = n(gn) = ⊕n−1

i=1 S ⊗ xi, is a positive nat-
urally graded Lie algebra (here x is the class of the element ti mod span⟨tn⟩)
generated by S ⊗ x. So, n(gn) is Carnot and the whole algebra gn is also nat-
urally graded. As s-module, gn decomposes as the direct sum of n copies of
the adjoint module of S and its lattice of ideals is a (n+ 1)-element chain. In
addition, gn is a quadratic Lie algebra. The smallest algebras appear by taking
S = sl2(F). The sl2(F)-module decomposition of gn(sl2(F)) is V2⊕ · · · ⊕ V2 (n
summands).

From all these examples, the only ones which provide quadratic Lie alge-
bras comes from Example 5.3.10. The rest of them do not provide symmetric
codimension in their lattice of ideals. Now, we will try to build chains in a
general way using sl2 and the theoretical results presented below.

The anticonmutivity and Jacobi identity are the identities that determine
any Lie algebra g. The first one is equivalent to saying that the product [x, y]
on g in is given by a bilinear map Λ2g → g; while the latest is equivalent to
stating that the right multiplication adx is a derivation of g, for every x ∈ g.
If g is simple, it is irreducible as adjoint module and a copy of g is inside Λ2g.
Reversing and generalizing this argument, for an irreducible representation ρ
of a semisimple Lie algebra s over a vector space V , the existence of a copy of
V inside Λ2V let us define an skew-product ⋆ : V ⊗ V → V such that ρ(s) ⊆
Der(V, ⋆). This induces naturally a Lie structure on the vector space s ⊕ρ V .
Along this section, we follow this idea in order to get Lie algebras with chain
ideal lattices.
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Our algorithms to give the desired Lie structure are based on the represen-
tation theory of sl2(F) and the use of transvections to express skew-products,
and the structure results given in [Benito, 1992a, Theorem 2.2] and [Šnobl,
2010, Theorem 2]. Both theorems can be found below.

Theorem 5.3.7 (see [Benito, 1992b]). Let g be a mixed Lie algebra. Then, the ideals
of g are in chain if and only if g is a simple Lie algebra or a direct sum of a nonzero
nilpotent ideal n and a simple algebra s such that n/n2 is a faithful s-module and
nj/nj+1 are irreducible s-modules for j ≥ 1. In that case, if t is the nilindex of n, the
ideals of g are the (t+ 1)-element chain 0 = nt ⊊ nt−1 ⊊ · · · ⊊ ni ⊊ · · · ⊊ n ⊊ g.

In order to obtain a Lie algebra, as described in previous theorem, we need
a triad (s, n, ρ) where s is simple, n nilpotent and ρ : s → Der n. So n = m1 ⊕
m2 ⊕ · · · ⊕ mt is a direct sum of irreducible s-modules mi

∼= ni/ni+1. The
nilpotency of n makes the construction easier because the terms in the lower
central series are characteristic ideals (i.e., ni is Der n-invariant for all i) and
n is generated by any subspace V such that n = V ⊕ n2. We also note that
g = s⊕ρ n is indecomposable, so ρ is faithful. Even more:

Theorem 5.3.8 (see [Šnobl, 2010]). Let g be an indecomposable Lie algebra with
product [x, y], nilpotent radical n of (t+ 1)-nilindex and nontrivial Levi decomposi-
tion g = s⊕ n for some semisimple Lie algebra s. Then, there exists a decomposition
of n into a direct sum of s-modules.

n = m1 ⊕m2 ⊕ · · · ⊕mt,

where nj = mj ⊕ nj+1, mj ⊆ [m1,mj−1] such that m1 is a faithful s-module and
for 2 ≤ j ≤ t,mj decomposes into a sum of some subset of irreducible components of
the tensor representationm1 ⊗mj−1.

From Theorems 5.3.7 and 5.3.8, we get the following general construction
of mixed algebras with chained lattices of ideals

Theorem 5.3.9. Let s be a simple Lie algebra and m1, m2, . . . , mt irreducible s-
modules with representations ρi : s→ gl(mi) for i = 1, . . . , t being ρ1 faithful. Also,
we have s-module homomorphisms

pijk : mi ⊗mj → mk

where 1 ≤ i ≤ j ≤ k ≤ t and i+ j ≤ k such that
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• pijk is skew-symmetric when i = j,

• pijk is not null when i = 1 and k = 1 + j

which also verify the identity

t−i∑
l=j+k

t∑
r=i+l

pilr(u, pjkl(v, w))−
t−j∑
l=i+k

t∑
r=j+l

pjlr(v, pikl(u,w))

+
t−k∑
l=i+j

t∑
r=k+l

p̂klr(w, pijl(u, v)) = 0, (5.11)

where u ∈ mi, v ∈ mj andw ∈ mk for i+j+k ≤ t and i ≤ j ≤ k. Here p̂klr = pklr

if k ≤ l, or p̂klr = −plkr otherwise.
The vector space g = s⊕m1 ⊕m2 ⊕ · · · ⊕mt with product

[s, s′]g = [s, s′]S ,

[s, u]g = ρi(s)(u),

[u, v]g =

t∑
k=i+j

pijk(u, v),

for s, s′ ∈ s, u ∈ mi, v ∈ mj and i ≤ j gives a Lie algebra with a (t+2)-chain lattice
of ideals

0 < mt < mt−1 ⊕mt < . . . < m1 ⊕m2 ⊕ · · · ⊕mt < g.

Moreover, every mixed Lie algebra with (t+ 2)-chain lattice of ideals has this form.

Proof. By definition g is skew-symmetric and satisfies Jacobi identity, as it
involves the usual product in s, some of its representations ρi, or it is im-
posed by condition in equation (5.11), which is effectively Jacobi inside n =

m1 ⊕ · · · ⊕mt. Since mk is irreducible, any (nonzero) map p1jk is surjective
when k = j + 1. Then, from [s,mi]g ⊆ mi and [mi,mj ]g = 0 for i+ j ≥ t+ 1,
it is straightforward to check that n is a nilpotent ideal with kth lower central
term

nk = ⊕
s≥k

ms.

In fact n is the onlymaximal ideal of g because of ρ1 is faithful and irreducible,
and s is a simple Lie algebra. The ideals we obtain, and the reason why every
non-solvable chain has this form is obtained from Theorem 5.3.7.
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Remark 5.3.10. Lie algebras g = s ⊕ n described in Theorem 5.3.9 are perfect
algebras (g = g2) with nilpotent solvable radical, n = m1⊕m2⊕· · ·⊕mt with
LCS terms nk = mk ⊕ . . .mt and [ni, nj ] ⊆ ni+j . In addition, the summands
mi are irreducible and either dimmi = 1, so [s,mi] = 0, or [s,mi] = mi, and
mj+1 ⊆ [m1,mj ]. In particular, the module m1 generates n as a subalgebra
andm2 ⊆ Λ2m1 by skew commutativity.

Example 5.3.8 and equation (5.10) in Section 5.3.2.1 follow the rules of the
decompositions given in Theorem 5.3.9 by using the simple Lie algebras sl(u)
and so(u) and taking m1 = u the irreducible natural module and irreducible
quotients of Λ2u and u⊗ Λ2u (here Λ3u must be removed). In each example,
the homomorphisms pijk are given by the projections inside tensor product
modules. These examples are particular cases of a more general situation.
According to [Benito and de-la-Concepción, 2013, Theorem 3.5] and Theo-
rem 5.3.7, the mixed Lie algebras with nilradical of type d and nilindex t + 1

in which the lattice of ideals is a n-element chain are of the form

s⊕Id
nd,t
i
,

where s is a simple subalgebra of the Levi subalgebra of derivations of the free
nilpotent nd,t (see [Benito and de-la-Concepción, 2013, Section 3] for a com-
plete description of Der nd,t) such that nd,t/n2d,t is a s-irreducible and faithful
module, i is an ideal, and also a s-submodule of n2d,t, that properly contains
ntd,t. And each s-quotient module

nkd,t + i

nk+1
d,t + i

,

for 2 ≤ k ≤ t, is s-irreducible. Explicit expressions for the irreducible blocks
mi or the general product in Theorem 5.3.9 for the Lie algebra Lt(s, u, i) are
not easy to get, even in low nilindex. In the case of the 3-dimensional split
simple Lie algebra, where the irreducible modules can be described in terms
of differential operators and the maps pijk are given by using partial differen-
tiation of polynomials, computational algorithms with a detailed description
(including bases and bracket products) of the algebras can be implemented.

sl2(F)-modules and transvections As our final aim is constructing chains
like the ones in Theorem 5.3.9 where s = sl2(F), we are going to see some

180



5.3. Lattices of ideals

arithmetic particularities of this simple algebra. They will play a significant
role in obtaining these algebras, automatically and theoretically. We follow
ideas and tools from [Dixmier, 1984] and [Bremner and Hentzel, 2004].

First, we work with the classic basis in sl2: {e, f, h} with products [h, e] =
2e, [h, f ] = −2f , [e, f ] = h. Let F[x, y] be the ring of polynomials in the vari-
ables x and y. For every d greater or equal than 0, we denote as

Vd = V (d) = span⟨xd, xd−1y, . . . , xyd−1, yd⟩ (5.12)

the set of homogeneous polynomials of degree d. Abusing notation, we will
write deg Vd = d. Then, Vd are vector spaces of dimension d+1, with V0 = F·1.
The set Vd can also be viewed as a sl2(F)-module in a natural way once sl2(F)
is identified, into the Lie algebra gl(F[x, y]), as the Lie subalgebra of partial
derivations

span

〈
e = x

∂

∂y
, f = y

∂

∂x
, h = x

∂

∂x
− y ∂

∂y

〉
. (5.13)

This action turns Vd into an irreducible module as seen in Figure 5.10. Even
more, any finite-dimensional irreducible module of sl2(F) can be viewed in
this way, being V0 the trivial module.

0

xd xd−1y xd−2y2

. . .

x2yd−2 xyd−1 yd

0

e e e e e e e

f f f f f f f

h h h h h h

Figure 5.10: Diagram representing the sl2-action over module Vd.

The Clebsch-Gordan’s formula gives the following decomposition of the ten-
sor product of two sl2(F)-irreducible modules. For n ≥ mwe have

Vn ⊗ Vm ∼= Vm ⊗ Vn ∼=
m⊕
k=0

Vn+m−2k
∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ Vn−m. (5.14)

While, when n = mwe can decompose

Λ2Vn ∼=
⌊n−1

2
⌋⊕

k=0

V2n−4k−2
∼= V2n−2 ⊕ V2n−6 ⊕ V2n−10 ⊕ . . . ,
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which is simply taking the odd k-summands in equation (5.14).
Now, for 0 ≤ k ≤ min(n,m), let us consider the bilinear transvection map

introduced in [Dixmier, 1984] as (·, ·)k : Vn × Vm → Vn+m−2k where

(f, g)k =
(m− k)!
m!

(n− k)!
n!

k∑
i=0

(−1)i
(
k

i

)
∂kf

∂xk−i∂yi
∂kg

∂xi∂yk−i
.

We will use these transvections to define sl2(F)-invariant products as it is ex-
plained in [Dixmier, 1984]. From Schur’s Lemma and Clebs-Gordan’s for-
mula, it is easy to prove the following result:
Lemma 5.3.11. Any bilinear sl2(F)-invariant product Pn,m,p : Vn ⊗ Vm → Vp,
satisfies:

• Pn,m,p = α · (f, g)k for some α ∈ F when p = n + m − 2k and 0 ≤ k ≤
min{n,m}. Here Pn,m,p(b, a) = (−1)kPn,m,p(a, b).

• Pn,m,p = 0 otherwise.

So the product Pn,m,p is either symmetric or skew-symmetric.

Proof. Note that the set of sl2(F)-invariant products Pm,n,p are just the vector
space of module homomorphismsHomsl2(F)(Vn ⊗ Vm, Vp). The dimension of
this set is equal to the number of copies of the irreducible Vp inside Vn ⊗ Vm.
According to Clebs-Gordan’s formula, the dimension is at most 1.

This lemma plays an important role in the construction of Lie algebras in
which their Levi factor is, up to isomorphism, sl2(F).

5.3.2.2 Algorithms

Now we have all the tools to start constructing Lie algebras whose ideals are
in a chain. First, note we will go back to notation pijk : mi⊗mj → mk, instead
of the one Lemma 5.3.11, as it will be more convenient. Aside, as every sl2-
modulemi can be identified by an integer, our algorithmwill receive integers.
But, instead of integers referring to the dimension or degree of each module
wewill set the integers in the followingway: n1, n2, . . . , ntwill definemodules
m1,m2, . . . ,mt where

mi = Vi·n1−2
∑i

j=2 nj
= Vi·n1−2n2−...−2ni (5.15)
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Som1 = Vn1 ,m2 = V2n1−2n2 ,m3 = V3n1−2n2−2n3 and so on. Here

dimmi = dimm1 + dimmi−1 − 2ni − 1

= i · n1 − 2

i∑
j=2

nj + 1 = i · n1 − 2n2 − . . .− 2ni + 1.

As this type of algebras would appear constantly till the end of the article,
we would introduce the following definition:

Definition 5.3.7. We say a Lie algebra g is a sl2-chained Lie algebra of length
t+ 2 when g has Levi decomposition s⊕ n with s ∼= sl2 and it is formed as in
Theorem 5.3.9.

We will denote these sl2-chained Lie algebras as

C({mi}i=1,...,t, {αijk}i=1,...,⌊ t
2
⌋; j=i,...,t−1; k=i+j,...,t),

wheremi will be the sl2-modules of the form Vki for some ki and

pijk = αijk(·, ·)cijk ,

where

cijk =
dimmi + dimmj − dimmk − 1

2

=
degmi + degmj − degmk

2

=

(
i+ j − k

2

)
n1 −

i∑
l=2

nl +

k∑
l=j+1

nl

=

(
i+ j − k

2

)
n1 − n2 − · · · − ni + nj+1 + · · ·+ nk.

Therefore, our chains will be of the form

g = sl2 ⊕m1 ⊕m2 ⊕ · · · ⊕mt,

with t+ 2 ideals in a chain: 0,⊕t
i=kmi for k = 1, . . . , t; and g. They will also

have the following Lie bracket definition (s, s′ ∈ sl2, u ∈ mi):

• Inside sl2, where the elements are viewed as partial differentiationmaps
according to equation (5.13), the definition is given by the using usual
special linear Lie bracket [s, s′] = ss′ − s′s.
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• The product [sl2,mi] is defined using the representation ρi, as

[s, u] = ρi(s)(u).

This way, for the standard basis in sl2, it is defined as

ρ(e) = x
∂

∂y
,

ρ(f) = y
∂

∂x
,

ρ(h) = x
∂

∂x
− y ∂

∂y
.

• The product between the modules satisfies a couple of conditions:

[m1,mi] ⊇ mi+1,

[mi,mj ] ⊆
t∑

k=i+j

mk = mi+j +mi+j+1 + · · ·+mt.

Given u ∈ mi and v ∈ mj where i ≤ j the Lie product is

[u, v] =
t∑

k=i+j

pijk(u, v),

where pijk : mi ⊗mj → mk such that

pijk(u, v) = αijk · (u, v)cijk

If cijk /∈ Z≥0 then, as stated in Lemma 5.3.11, αijk = 0. Moreover

– αijk ̸= 0 for i = 1 and k = j + 1,
– As piik must be skew-symmetric then ciik must be odd or αiik = 0.

So, when t = 3 we will have chains C({m1,m2,m3}, {α112, α113, α123}),
and for t = 4 chains will be

C({m1,m2,m3,m4}, {α112, α113, α114, α123, α124, α134, α224}).

Now, all these tools andnotation, in combinationwith Theorem5.3.9, open
up the idea to develop Algorithm 5.3.1 to find all these algebras given the
already mentioned list of integers referring to the irreducible modules.
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Algorithm 5.3.1. Checks if a succession of t integers referring to t modules is
compatible with being a Lie algebra whose ideals are in chain of t+ 2 ideals.
Input: The algorithm receives t integers n1, n2, . . . , nt referring to sl2-modules
as defined by equation (5.15).
Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2, . . . ,mt}, {αijk}i=1,...,⌊ t

2
⌋; j=i,...,t−1; k=i+j,...,t) for some αijk. And the

list those valid αijk such the chained algebra exists.
In case the validity of the algebra is subject to only some values of the

parameters αijk the algorithm also gives them.
Steps: The algorithm is divided in two main steps:

(a) Check integers input: this is equivalent to checking if

• m2 ⊆ Λ2m1

• mi+1 ⊆ m1 ⊗mi for every i = 2, . . . , t

In terms of integers, this translates into n2 being an odd number, and
for i = 1, . . . , t− 1,

0 ≤ ni+1 ≤ min(n1,dimmi − 1) = min

n1, i · n1 − 2
i∑

j=2

nj

 .

(b) Check Jacobi identities inside m1 ⊕m2 ⊕ · · · ⊕mt: We need to study
J(u, v, w) = 0 for u ∈ mi, v ∈ mj and w ∈ mk such i + j + k ≤ t and
i ≤ j ≤ k. As seen in Theorem 5.3.9, here

J(u, v, w) = [u, [v, w]] + [v, [w, u]] + [w, [u, v]]

=
t−i∑

l=j+k

t∑
r=i+l

pilr(u, pjkl(v, w))−
t−j∑
l=i+k

t∑
r=j+l

pjlr(v, pikl(u,w))

+
t−k∑
l=i+j

t∑
r=k+l

p̂klr(w, pijl(u, v)) = 0, (5.16)

where p̂klr = pklr if k ≤ l, or p̂klr = −plkr otherwise.

In case we want to find every tuple (n1, n2, . . . , nt) that gives a chain we
should call Algorithm 5.3.1 using at least all integers that satisfy step 1 in Al-
gorithm 5.3.1.
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Note, Algorithm 5.3.1 only works for every chain of 3 or more ideals (so
t ≥ 1). But we do not need more in case we want to study smaller cases. A
1-chain is simply the zero-dimensional Lie algebra, the only 2-chain of this
form is the simple Lie algebra sl2 with no modules. And, even for cases as
3-chains of 4-chains (t = 1, 2) the algorithm is unnecessary as the algebras
are sl2 ⊕ Vn for every n ≥ 0, and sl2 ⊕ Vn ⊕ V2n−2k for 1 ≤ k ≤ n and k being
an odd number. In all those algebras, the skew-symmetry is guaranteed by
transvection properties, while the Jacobi identity is trivially null in the mod-
ules. It is only in larger cases when the use of the algorithm becomes relevant
for finding valid algebras. That is why, for cases t = 3 and t = 4we can find a
detailed implementation in Algorithm 5.3.2 and Algorithm 5.3.3 respectively.
Algorithm 5.3.2. Detailed implementation of Algorithm 5.3.1 in case t = 3.
Input: Three integers n1, n2 and n3 referring to modules

• m1 = Vn1 ,

• m2 = V2n1−2n2 ,

• m3 = V3n1−2n2−2n3 .

Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2,m3}, {α112, α113, α123}) for any αijk such that α112 · α123 ̸= 0.
Steps: The algorithm is divided in two main steps:

1. Check integers input:

• 1 ≤ n2 ≤ n1 and n2 is odd,
• 0 ≤ n3 ≤ min(n1, dimm2 − 1) = min(n1, 2n1 − 2n2).

2. Check Jacobi identity inside the nilradical N = m1 ⊕m2 ⊕m3. As we
have t = 3, equation (5.16) can be simplified as we have only one possi-
bility: i = j = k = 1. Therefore, the only identity to check is

p123(u, p112(v, w)) + p123(v, p112(w, u)) + p123(w, p112(u, v)) = 0.

for every u, v, w ∈ m1. Every term of this equality has both coefficients
α123 and α112, and, as they are not zero, we can simplify obtaining

(u, (v, w)n2)n3 + (v, (w, u)n2)n3 + (w, (u, v)n2)n3 = 0. (5.17)
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If this is true C({m1,m2,m3}, {α112, α113, α123}) is a Lie algebra for any
αijk such that α112 · α123 ̸= 0.

Applying Algorithm 5.3.2, we can obtain every possible 5-chain for n1 ≤
32. This way we observe two families: the first is formed by 4 chains that
exist for every n1 and are described in Table 5.1. The second family is formed
by algebras which repeat every four n1 values. This last family appears in
Table 5.2. And, up to4 n1 = 32 these are the only chains of 5 ideals. Therefore,
it is quite probable that this extends for every n1.

n1 n2 n3 sl2-modules Condition

n 1 0 Vn ⊕ V2n−2 ⊕ V3n−2 n ≥ 1

n 1 1 Vn ⊕ V2n−2 ⊕ V3n−4 n ≥ 2

n 1 3 Vn ⊕ V2n−2 ⊕ V3n−8 n ≥ 3

n 3 1 Vn ⊕ V2n−6 ⊕ V3n−8 n ≥ 4

Table 5.1: Chains of 5 ideals for n1 ≤ 32which repeat for every n1.

n1 n2 n3 sl2-modules Condition

4n 2n+ 1 4n− 3 V4n ⊕ V4n−2 ⊕ V4 n ≥ 2

4n+ 1 2n+ 1 4n V4n+1 ⊕ V4n ⊕ V1 n ≥ 0

4n+ 2 2n+ 1 4n+ 1 V4n+2 ⊕ V4n+2 ⊕ V2 n ≥ 0

4n+ 3 2n+ 1 4n+ 3 V4n+3 ⊕ V4n+4 ⊕ V1 n ≥ 0

4n+ 4 2n+ 1 4n+ 3 V4n+4 ⊕ V4n+6 ⊕ V4 n ≥ 0

Table 5.2: Chains of 5 ideals for n1 ≤ 32which repeat every four n1.

Algorithm 5.3.3. Detailed implementation of Algorithm 5.3.1 in case t = 4.
Input: Four integers n1, n2, n3 and n4 referring to modules

• m1 = Vn1 ,

• m2 = V2n1−2n2 ,

• m3 = V3n1−2n2−2n3 ,
4The n1 = 32 cap is set arbitrarily to limit the computational cost, and it is not based on

some property that does not work for greater values.
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• m4 = V4n1−2n2−2n3−2n4 .

Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2,m3,m4}, {αijk}i=1,2; j=i,...,3; k=i+j,...,4) for some αijk. It also returns
a value α which gives the following scalar restriction over α224:

α =
α224 · α112

α123 · α134
. (5.18)

Any values for α112, α123, α134 different from zero would give an algebra, at
least when considering α124 = α113 = 0.
Steps: The algorithm is divided in two main steps:

1. Check integers input:

• 1 ≤ n2 ≤ n1 and n2 is odd,
• 0 ≤ n3 ≤ min(n1, dimm2 − 1) = min(n1, 2n1 − 2n2),
• 0 ≤ n4 ≤ min(n1, dimm3 − 1) = min(n1, 3n1 − 2n2 − 2n3).

2. Check Jacobi identity inside the nilradical N = m1 ⊕ m2 ⊕ m3 ⊕ m4.
Here t = 4, so equation (5.16), taking into account p114 and p124 go to
the centre, appears in two scenarios:

(a) Three elements u, v, w ∈ m1.

p123(u, p112(v, w)) + p123(v, p112(w, u)) + p123(w, p112(u, v))

+ p124(u, p112(v, w)) + p124(v, p112(w, u)) + p124(w, p112(u, v))

+p134(u, p113(v, w))+p134(v, p113(w, u))+p134(w, p113(u, v)) = 0.

Taking projections, we can separate the first three addends from
the rest into two null equations. The first one, following the same
procedure as in Algorithm 5.3.2, turns again into equation (5.17).
The second part could be omitted taking α124 = 0 and α113 = 0.

(b) Two elements u, v ∈ m1 and another w ∈ m2.

p134(u, p123(v, w))− p134(v, p123(u,w)) + p224(w, p112(u, v)) = 0.

(5.19)
For this equation we have two options:
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• If n3 + n4 − n2 is even or negative, or n2 + n3 + n4 > 2n1 then
α224 = 0, and equation (5.19) turns into

(u, (v, w)n3)n4 − (v, (u,w)n3)n4 = 0

• If not, equation (5.19) turns into

(u, (v, w)n3)n4 − (v, (u,w)n3)n4 + α · (w, (u, v)n2)n3+n4−n2 = 0

for α = α224α112
α123α134

. Note this α is unique as in this case we have
(w, (u, v)n2)n3+n4−n2 ̸= 0.

On the same way, applying Algorithm 5.3.3, we can try to obtain every
possible module combination of 6-chains for n1 ≤ 32. Again, we can distin-
guish two groups. The general one that repeats for every n1 which appears in
Table 5.3. But, in contrast to what happens with five ideals, in this case there
are some chains that only work for some n1 values. These particular cases are
listed in Table 5.4.

n1 n2 n3 n4 sl2-modules α Condition

n 1 0 0 Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2 0 n ≥ 1

n 1 0 2 Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6
4(4n−3)
3(3n−2) n ≥ 2

n 1 1 1 Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6
2n−2
3n−4 n ≥ 2

Table 5.3: Chains of 6 ideals for n1 ≤ 32which repeat for every n1. Parameter
α is defined in equation (5.18).

Remark 5.3.12. In case we want to study what happens in (t + 2)-chains for
t ≥ 5 we can use the general Algorithm 5.3.1. It is important to note, that
in these cases the complexity increases rapidly. For instance, when t = 5,
which is the simplest case, checking Jacobi identity following equation (5.16)
produces up to 4 cases to study:

1. Three elements inm1

2. Two elements inm1 and other inm2

3. Two elements inm1 and other inm3
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n1 n2 n3 n4 sl2-modules α

3 1 1 3 V3 ⊕ V4 ⊕ V5 ⊕ V2 7/5
3 1 3 1 V3 ⊕ V4 ⊕ V1 ⊕ V2 -2
4 1 3 3 V4 ⊕ V6 ⊕ V4 ⊕ V2 3/2
4 3 1 3 V4 ⊕ V2 ⊕ V4 ⊕ V2 1/2
5 1 3 5 V5 ⊕ V8 ⊕ V7 ⊕ V2 22/21
5 3 1 5 V5 ⊕ V4 ⊕ V7 ⊕ V2 12/7
6 1 3 5 V6 ⊕ V10 ⊕ V10 ⊕ V6 1

Table 5.4: Chains of 6 ideals for n1 ≤ 32which do not repeat for n1. Parameter
α is defined in equation (5.18).

4. Two elements inm2 and other inm1

As seen in Algorithm 5.3.2 and Algorithm 5.3.3, many αijk could be consid-
ered null and we could simplify them. But, as α224 could be different from
zero many more subcases appear making it much harder to solve.

5.3.2.3 Lie algebra structure existence

Although our algorithms are useful for finding chains, they do not let us gen-
eralize and prove the existence of 5 or 6-chains whose dimension is as big as
we want. But, at least, seeing their results we know approximately where we
should look.

Before proving some results of existence, we need to introduce Gordan
identities, which appear in [Dixmier, 1984] (see also [Bremner and Hentzel,
2004] for further information). These are some relationships that transvec-
tions fulfil which will be helpful during proofs.

Definition 5.3.8 (Gordan’s Identity). Let f ∈ Vn, g ∈ Vm and h ∈ Vp, and let
α1, α2 and α3 be non-negative integers such that α1 + α2 ≤ p, α2 + α3 ≤ m,
α3 + α1 ≤ n, with α1 = 0 o α2 + α3 = m. Then f g h

m n p

α1 α2 α3

 = 0,
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where f g h

m n p

α1 α2 α3

 =
∑
i≥0

(
n−α1−α3

i

)(
α2

i

)(
m+n−2α3−i+1

i

)((f, g)α3+i, h)α1+α2−i

+ (−1)α1+1
∑
i≥0

(
p−α1−α2

i

)(
α3

i

)(
m+p−2α2−i+1

i

)((f, h)α2+i, g)α1+α3−i.

Chains with five ideals Now, we have all the necessary tools to prove all
chains in Tables 5.1 and 5.2 can be extended for any n and not only up to
32. But before proving the results we introduce the following simplified nota-
tion for Gordan’s Identity. When writing [f, g, h, n, α1, α2, α3] we refer to (for
f, g, h ∈ Vn)  f g h

n n n

α1 α2 α3


and

[f, g, h, n, α1, α2, α3]
∗ =

∑
⟳

f,g,h

[f, g, h, n, α1, α2, α3]−
∑
⟳

g,f,h

[g, f, h, n, α1, α2, α3].

From now on ρ(n1,...,nt) = ρn1 ⊕ · · · ⊕ ρnt will denote the direct sum repre-
sentation of sl2(F) on the vector space module

W (n1, . . . , nt) = Vn1 ⊕ V2n1−2n2 ⊕ · · · ⊕ Vtn1−2
∑t

i=2 ni
.

According to Section 5.3.2.1, the action ρnj on the module V
jn1−2

∑j
k=2 nk

of
homogeneous polynomials of degree jn1−2

∑j
k=2 nk, is given in terms of dif-

ferential operators. The Lie bracket that makesW (n1, . . . , nt) into a nilpotent
Lie algebra is defined rescaling by αijk ∈ F the cijk-transvection (f, g)cijk ∈
Vkn1−2

∑k
s=2 ns

of f ∈ Vin1−2
∑i

r=2 nr
and g ∈ V

jn1−2
∑j

q=2 nq
. Here i = 1, . . . , ⌊ t2⌋,

j = i, . . . , t − 1 and k = i + j, . . . , t. In the particular case where i = 1, j = p

and k = p+ 1

[f, g]W = αijk(f, g)nk
and αijk ̸= 0.

Wewill also denote the tuple λ(n1,...,nt) = (αijk)ijk. This encodes the structure
constants of the Lie algebra W (n1, . . . , nt). Here, αijk is nonzero for all i =
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1, j = p = 1, . . . t− 1 and k = p+ 1. We shall refer to a fold (αijk)ijk structure
constants fold of the Lie algebra

gρ,λ(n1,...,nt)
= sl2(F)⊕ρW (n1, . . . , nt)λ and

ρ = ρ(n1,...,nt),

λ = λ(n1,...,nt).

Proposition 5.3.13. The 3-tuples (n, 1, 0), (n, 1, 1), (n, 1, 3) and (n, 3, 1) generate
the following λ-parametric families of sl2-chained Lie algebras:

(a) gρ,λ(n,1,0) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2)λ, for n ≥ 1,

(b) gρ,λ(n,1,1) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−4)λ, for n ≥ 2,

(c) gρ,λ(n,1,3) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−8)λ, for n ≥ 3,

(d) gρ,λ(n,3,1) = sl2(F)⊕ρ (Vn ⊕ V2n−6 ⊕ V3n−8)λ, for n ≥ 4,

where scalar threefolds λ(n1,n2,n3) = (α112, α113, α123) determine the product in nil-
radical by α112(·, ·)n2 , α113(·, ·) 2n2+2n3−n1

2

and α123(·, ·)n3 . And they take values:

λ(n,1,0) = (α112, 0, α123)

λ(n,1,1) = (α112, 0, α123), for n ̸= 2, λ(2,1,1) = (α112, α113, α123)

λ(n,1,3) = (α112, 0, α123), for n ̸= 6, λ(6,1,3) = (α112, α113, α123)

λ(n,3,1) = (α112, 0, α123), for n ̸= 6, λ(6,3,1) = (α112, α113, α123)

Proof. We denote the different tuples in the general form (n1, n2, n3), som1 =

Vn1 , m2 = V2n1−2n2 and m3 = V3n1−2n2−2n3 . It is a straightforward computa-
tion that the module summandW (n1, n2, n3) = m1⊕m2⊕m3 is as described
in all four items. Using Clebsch-Gordan’s formula from equation (5.14) we
can observe m2 appears in Λ2m1 and m3 appears in m1 ⊗m2. Therefore, by
construction, we only need to check Jacobi identity from equation (5.17), for
every f, g, h ∈ m1. And this equality can be proved using Gordan’s Identity
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from Definition 5.3.8 on expressions:

[f, g, h, n, 0, 0, 1] = ((f, g)1, h)0 − ((f, h)0, g)1 −
1

2
((f, h)1, g)0,

[f, g, h, n, 0, 1, 1] = ((f, g)1, h)1 +
1

2
((f, g)2, h)0 − ((f, h)1, g)1 −

1

2
((f, h)2, g)0,

[f, g, h, n, 0, 2, 2] = ((f, g)2, h)2 + ((f, g)3, h)1 +
(n− 2)(n− 3)

(2n− 5)(2n− 6)
((f, g)4, h)0

− ((f, h)1, g)1 − ((f, h)3, g)1 −
(n− 2)(n− 3)

(2n− 5)(2n− 6)
((f, h)4, g)0,

[f, g, h, n, 0, 1, 3] = ((f, g)3, h)1 +
1

2
((f, g)4, h)0 − ((f, g)1, h)3 −

3

2
((f, h)2, g)2

− 3(n− 1)

2(2n− 3)
((f, h)3, g)1 −

(n− 1)

4(2n− 5)
((f, h)4, g)0.

Depending on the different tuples, equation (5.17) is equivalent to the follow-
ing identities (note that (a, b)k = (−1)k(b, a)k according to Lemma 5.3.11):

• (n1, n2, n3) = (n, 1, 0) for n ≥ 1: equation (5.17) follows from,

[f, g, h, n, 0, 0, 1]− [h, g, f, n, 0, 0, 1] = 0.

We note that α113 = 0 becausem3 = V3n−2 is not contained in Λ2m1.

• (n1, n2, n3) = (n, 1, 1) for n ≥ 2: equation (5.17) follows from,

[f, g, h, n, 0, 1, 1] + [g, f, h, n, 0, 1, 1] + [h, g, f, n, 0, 1, 1] = 0.

In this case, m3 = V3n1−4 ⊂ Λ2m1 implies 3n1 − 4 = 2n1 − 2n2 with n2
odd. Then 2n2 = 4− n1 ≥ 0 and therefore α113 = 0 if n1 = n ≥ 3. And
n1 = n = 2 implies n2 = 1 and any α113 is valid.

• (n1, n2, n3) = (n, 1, 3) for n ≥ 4: equation (5.17) follows from,

[f, g, h, n, 0, 1, 3]∗ − 7n− 9

4n− 6

(
[f, g, h, n, 0, 2, 2]

− [g, f, h, n, 0, 2, 2]− [h, g, f, n, 0, 2, 2]
)
= 0.

And it is equivalent to [f, g, h, 3, 1, 1, 2]∗ = 0 if n = 3. Here, α113 = 0 if
n ̸= 6 and n = 6 implies n2 = 1 and any α113 is valid.

• (n1, n2, n3) = (n, 3, 1) for n ≥ 4: here equation (5.17) is equivalent to
[f, g, h, n, 0, 2, 2] + [g, f, h, n, 0, 2, 2] + [h, g, f, n, 0, 2, 2] = 0.
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Most of previous information on the Proposition 5.3.13 can be originally
found distributed in several lemmas in [Pérez-Aradros, 2016, Sección 2.3.1],
work that has been revisited, sorted and extended to produce the mentioned
proposition. From the algorithms, we also reach the following series of Lie
algebras.

Proposition 5.3.14. The 3-tuples (4n, 2n+1, 4n− 3), (4n+1, 2n+1, 4n), (4n+
2, 2n+1, 4n+1), (4n+3, 2n+1, 4n+3) and (4n+4, 2n+1, 4n+3) generate only
algebras with N+-graded nilradical. So, the valid scalar threefolds are λ(n1,n2,n3) =

(α112, 0, α123) for all of them except λ(4n+2,2n+1,4n+1) = (α112, α113, α123). The
resulting λ-parametric families of sl2-chained Lie algebras are:

(a) gρ,λ(4n,2n+1,4n−3) = sl2(F)⊕ρ (V4n ⊕ V4n−2 ⊕ V4)λ for n ≥ 2.

(b) gρ,λ(4n+1,2n+1,4n) = sl2(F)⊕ρ (V4n+1 ⊕ V4n ⊕ V1)λ for n ≥ 0.

(c) gρ,λ(4n+2,2n+1,4n+1) = sl2(F)⊕ρ (V4n+2 ⊕ V4n+2 ⊕ V2)λ for n ≥ 0.

(d) gρ,λ(4n+3,2n+1,4n+3) = sl2(F)⊕ρ (V4n+3 ⊕ V4n+4 ⊕ V1)λ for n ≥ 0.

(e) gρ,λ(4n+3,2n+1,4n+3) = sl2(F)⊕ρ (V4n+4 ⊕ V4n+6 ⊕ V4)λ for n ≥ 0.

And products in the nilradicals are given by α112( · , ·)n2 , α123( · , ·)n3 and α113 =

( · , ·) 2n2+2n3−n1
2

when not zero.

Proof. We follow the notation introduced in the proof of Proposition 5.3.13. It
is a straightforward computation that the module summandW (n1, n2, n3) =

m1 ⊕m2 ⊕m3 is as described in all items in the list. Using Clebsch-Gordan’s
formula from equation (5.14) we check that α113 = 0 in all the cases, m2 ap-
pears in Λ2m1 and m3 appears in m1 ⊗m2. So, to establish the result, it only
remains to prove Jacobi identity from equation (5.17) for every f, g, h ∈ m1.
As in Proposition 5.3.13, we proceed to check using Gordan identities:

• (n1, n2, n3) = (4n, 2n+ 1, 4n− 3), for n ≥ 2: equation (5.17) is just

[f, g, h, 4n, 2n−2, 2n+2, 2n−2]∗−2[f, g, h, 4n, 2n−2, 2n+1, 2n−1]∗ = 0

For the other cases n ≥ 0 is fixed and,
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• (n1, n2, n3) = (4n+1, 2n+1, 4n): equation (5.17) follows from the iden-
tity [f, g, h, 4n+ 1, 2n, 2n+ 1, 2n]∗ = 0.

• (n1, n2, n3) = (4n + 2, 2n + 1, 4n + 1): equation (5.17) is equivalent to
[f, g, h, 4n+ 2, 2n, 2n+ 1, 2n+ 1]∗ = 0.

• (n1, n2, n3) = (4n+ 3, 2n+ 1, 4n+ 3): equation (5.17) is just

[f, g, h, 4n+ 3, 2n− 1, 2n, 2n+ 3]∗

+
4n+ 3

2n
[f, g, h, 4n+ 3, 2n− 1, 2n+ 3, 2n]∗ = 0

forn ≥ 1. While casen = 0 is just item (c) forn = 3 in Proposition 5.3.13.

• (n1, n2, n3) = (4n+ 4, 2n+ 1, 4n+ 3): equation (5.17) is obtained from

[f, g, h, 4n+4, 2n− 2, 2n+4, 2n]∗− [f, g, h, 4n+4, 2n− 2, 2n, 2n+4]∗

− 3(n+ 2)(2n+ 3)(7n+ 10)

4n(4n+ 1)(6n+ 7)

(
[f, g, h, 4n+ 4, 2n− 2, 2n+ 4, 2n]∗

− 5(n+ 2)

7n+ 10
[f, g, h, 4n+ 4, 2n− 2, 2n+ 3, 2n+ 1]∗

)
= 0

for n ≥ 1. While case n = 0 is item (c) for n = 4 in Proposition 5.3.13.

Observe, c113 is only an odd integer in the third case, thus, all otherα113 factors
are zero.

Remark 5.3.15. As seen in some proofs, some algebras are repeated in Propo-
sitions 5.3.13 and 5.3.14. The cases n = 0 from Proposition 5.3.14 in items (b),
(c), (d) and (e) coincide with the cases from Proposition 5.3.13 in item (a)
for n = 1, item (b) for n = 2, and item (c) for n = 3, 4.
Remark 5.3.16. Other 3-tuples that do not produce chain ideal Lie algebras are:

(n, 1, 2)n≥2, (n, 1, 4)n≥4, (n, 1, 5)n≥5, (n, 1, 6)n≥6,

(n, 3, 0)n≥3, (2n, 2n− 1, 1)n≥3, (2n, 2n− 1, 0)n≥2, (n, 3, 2)n≥3,

(2n+ 1, 2n+ 1, 0)n≥1, (2n, 2n− 1, 2)n≥3.

We can check why and where they do not work as chains in [Pérez-Aradros,
2016, Sección 2.3.1].
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Example 5.3.11. The 3-tuples (n, 1, 2)n≥2 or (2n+1, 2n+1, 0)n≥1 do not produce
Lie algebra structures with chain ideal lattice. In the first case, the Lie product
must be induced on Vn⊕V2n−2⊕V3n−6 by using λ = (α112, 0, α123). But Jacobi
identity fails (unless α112α123 = 0):

J(xn, yxn−1, y2xn−2) =
∑
cyclic

((xn, yxn−1)1, y
2xn−2)2 =

9n− 12

n2(2n− 3)(n− 1)
x3n−6

For the second tuple, the vector space is V2n+1⊕V0⊕V2n+1 and Jacobi identity
also fails:

J(yx2n, y2x2n−1, y2nx) =
∑
cyclic

((yx2n, y2x2n−1)2n+1, y
2nx)0 =

1

2n+ 1
y2x2n−1.

Chainswith 6 ideals Now,we have to prove the existence results inspired by
Table 5.3. Before proving them, we are going to introduce simplified notations
as in all the following resultsm1 = Vn andm2 = V2n−2. Thisway, wewillwrite
[h, f, g, n, α1, α2, α3]1, [f, h, g, n, α1, α2, α3]2 and [f, g, h, n, α1, α2, α3]3 instead
of  h f g

2n− 2 n n

α1 α2 α3

 ,
 f h g

n 2n− 2 n

α1 α2 α3

 ,
 f g h

n n 2n− 2

α1 α2 α3

 ,
respectively, and

[f, g, h, n, α1, α2, α3]⋆ = [f, g, h, n, α1, α2, α3]3 − [g, f, h, n, α1, α2, α3]3

+ [g, h, f, n, α1, α2, α3]2 − [h, g, f, n, α1, α2, α3]1

+ [h, f, g, n, α1, α2, α3]1 − [f, h, g, n, α1, α2, α3]2,

for f, g ∈ Vn and h ∈ V2n−2.
Note, as first seen in Algorithm 5.3.3, every chained Lie algebra of length

6 depends on an α parameter which imposes restrictions over α224 for every
not null α112, α123, α134 as seen in equation (5.18).

Proposition 5.3.17. The 4-tuples (n, 1, 0, 0), (n, 1, 0, 2) and (n, 1, 1, 1) generate the
following parametric families of sl2-chained Lie algebras:

(a) gρ,λ(n,1,0,0) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2)λ for n ≥ 1,
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(b) gρ,λ(n,1,0,2) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6)λ for n ≥ 2,

(c) gρ,λ(n,1,1,1) = sl2(F)⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6)λ for n ≥ 2.

Along here, λ(n1,n2,n3,n4) = (α112, 0, 0, α123, 0, α134, α224), where

α224 = 0 when λ = λ(n,1,0,0),

α224 =
4(4n− 3)α123 α134

3(3n− 2)α112
when λ = λ(n,1,0,2),

α224 =
(2n− 2)α123 α134

(3n− 4)α112
when λ = λ(n,1,1,1),

defines the product in the N-graded nilradical given by α112( · , ·)n2 , α123( · , ·)n3 ,
α134( · , ·)n4 and α224( · , ·)n3+n4−n2 . We also have the not necessarily graded partic-
ular cases, where α113, α114, α124 are not zero, given by the sevenfolds λ(n,1,k,j),

λ(2,1,0,2) = (α112, 0, α114, α123, α124, α134, α224),

λ(4,1,0,2) = (α112, 0, 0, α123, α124, α134, α224),

λ(2,1,1,1) = (α112, α113, α114, α123, α124, α134),

λ(4,1,1,1) = (α112, 0, 0, α123, α124, α134, α224).

For these four last parametric families, gρ,λ(2,1,k,j) and gρ,λ(4,1,k,j), the entry α224 and the
irreducible decomposition are described as in the graded case, and the product in the
nilradical is given by α112(·, ·)1, α11p(·, ·)1 for5 p = 3, 4, α123(·, ·)k, α124(·, ·) 4−n

2
,

α134(·, ·)j , α224(·, ·)1 with n = 2 and 4 respectively.

Proof. According to Proposition 5.3.13 and the notation in its proof, it is easily
check that the module summandW (n1, n2, n3, n4) = m1 ⊕m2 ⊕m3 ⊕m4 is
as described in the three items.

Assume first (n1, n2, n3, n4) = (n, 1, 0, 0) and look at scalar entries α113,
α114, α124 and α224 of λ(n,1,0,0). Using Clebsch-Gordan’s formula from equa-
tion (5.14) we check that α113 = α114 = α124 = α224 = 0 because modules
m3 = V3n−2 and m4 = V4n−2 are not contained in Λ2m1 and m4 is not con-
tained in either m1 ⊗ m2 or m2 ⊗ m2. Proposition 5.3.13 says tuple (n, 1, 0)

generates a chain. So our case is reduced to checking if m4 = V4n−2 appears
in m1 ⊗m3 decomposition, which it is true; and studying Jacobi identity for

5In general, we have α113(·, ·) 2k−n+2
2

and α114(·, ·)j+k−n+1. But, as we only have non-null
α113 and α114 for some λ we can simplify to those which have them.
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two elements in m1 and another in m2. But this last condition, seen in equa-
tion (5.19), is equivalent to [f, g, h, n, 0, 0, 0]3 = 0 for n ≥ 1, f, g ∈ Vn and
h ∈ V2n−2.

Suppose now (n1, n2, n3, n4) = (n, 1, 0, 2), and note that α113 = 0 and
α114 ̸= 0 (respectively α124 ̸= 0) only if n = 2 (respectively n = 2, 4). For
the N-graded condition α113 = α114 = α124 = 0, Proposition 5.3.13 says that
tuple (n, 1, 0) generates a chain. So this case is reduced to checking if m4 =

V4n−6 appears inm1⊗m3 decomposition, which it is true; and studying Jacobi
identity for two elements inm1 and another inm2. But this last condition, seen
in equation (5.19), is equivalent to

[h, f, g, n, 0, 2, 0]1 + [f, h, g, n, 0, 2, 0]2 − [h, g, f, n, 0, 2, 0]1

− [g, h, f, n, 0, 2, 0]2 +
14n− 18

9n− 12

(
[f, g, h, n, 0, 2, 0]3

− [g, f, h, n, 0, 2, 0]3
)
+

(n− 1)(2n− 4)

(3n− 4)(3n− 2)
G = 0

for n ≥ 2, f, g ∈ Vn and h ∈ V2n−2, where

G =
2n− 3

n− 1
[h, f, g, n, 0, 1, 1]1 + [g, h, f, n, 0, 1, 1]2 + [f, g, h, n, 0, 1, 1]3,

which will appear again in our final case (n1, n2, n3, n4) = (n, 1, 1, 1, 1). By
reapplying Proposition 5.3.13, tuple (n, 1, 1) generates a chain. So, assuming
α113 = α114 = α124 = 0, our case is reduced to checking ifm4 = V4n−6 appears
in m1 ⊗m3 decomposition, which it is true; and studying Jacobi identity for
two elements in m1 and another in m2. But this last condition, seen in equa-
tion (5.19), is equivalent to

2n− 3

n− 1
[h, f, g, n, 0, 1, 1]1 + [g, h, f, n, 0, 1, 1]2 + [f, g, h, n, 0, 1, 1]3 = 0,

for n ≥ 2, f, g ∈ Vn and h ∈ V2n−2. Here also appear the particular tuples
(2, 1, 1, 1) and (4, 1, 1, 1) for which (α113, α114, α12,4) ̸= (0, 0, 0) and α113 =

α114 = 0 but (α113, α114, α124) ̸= 0. Exceptions (2, 1, 0, 1), (4, 1, 1, 1), (2, 1, 1, 1)
and (4, 1, 1, 1) are covered by the particular sevenfold λ found at the end of
the proposition.

Overview Finally, to sum up, we will see the relation among all the previ-
ously described chains. As on any t-chain we can take the quotient by their
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last sl2-modules to obtain smaller chains, there is a strong relation between
chains. This is idea is expressed in the following lemma.

Lemma 5.3.18. The tuple (n1, n2, . . . , nt) could form a sl2-chained Lie algebra if
(n1, n2, . . . , nk) forms a valid sl2-chained Lie algebra for every k ≤ t.

Proof. If (n1, n2, . . . , nt) forms a valid sl2-chained Lie algebra L = sl2 ⊕N for
N = m1 ⊕m2 ⊕ · · · ⊕mt, then L/Nk+1 = sl2 ⊕m1 ⊕m2 ⊕ · · · ⊕mk would be
a Lie algebra for every k.

This is the same as saying that, if (n1, n2, . . . , nk) does not produce any
valid chain, then (n1, n2, . . . , nk, . . . , nt) would never produce a valid chain.
Example 5.3.12. From Remark 5.3.16, tuples (n, 1, 2, ∗)n≥2 or (2n + 1, 2n +

1, 0, ∗)n≥1 do not produce Lie algebras with t-chain ideal lattice for t ≥ 4.

This result is interesting for creating a tree-dependency between these
chains, which can be seen in Figure 5.11.

5.3.2.4 Quadratic Lie chains

Along the memoir we have built series of naturally graded Lie algebras of
nilindex 4 and 5 whose derivation algebra contains a subalgebra isomorphic
to sl2(F). The question now arises is which chains are quadratic Lie algebras.
As seen in Proposition 5.3.6, one necessary condition is that the ideal lattice
is self-dual. This imposes strong restrictions over our algebras, as it will only
work for symmetric chains, i.e. sl2

⊕t
i=1 Vkt whereVki ∼= Vkt−i

for i = 1, . . . , t−
1 and kt = 2 so Vkt ∼= sl2. This way, the chain will be something like

sl2 ⊕ Vn ⊕ Vm · · · ⊕ Vm ⊕ Vn ⊕ V2.

Among all previous algebras, the only symmetric ones of 5 or 6 ideals are:

• gρ,λ(2,1,1) from Proposition 5.3.13.

• gρ,λ(4n+2,2n+1,4n+1) from Proposition 5.3.14.

• gρ,λ(1,1,0,0) and gρ,λ(2,1,1,1) from Proposition 5.3.17.

• gρ,λ(4,1,3,3) and gρ,λ(4,3,1,3) from Table 5.4.
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Vn

Vn ⊕ V2n−2k

Vn ⊕ V2n−2 ⊕ V3n−2

Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2

Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6

Vn ⊕ V2n−2 ⊕ V3n−4

Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6

V3 ⊕ V4 ⊕ V5 ⊕ V2

Vn ⊕ V2n−2 ⊕ V3n−8

V3 ⊕ V4 ⊕ V1 ⊕ V2
V4 ⊕ V6 ⊕ V4 ⊕ V2
V5 ⊕ V8 ⊕ V7 ⊕ V2
V6 ⊕ V10 ⊕ V10 ⊕ V6

Vn ⊕ V2n−6 ⊕ V3n−8

V4 ⊕ V2 ⊕ V4 ⊕ V2
V5 ⊕ V4 ⊕ V7 ⊕ V2

V4n ⊕ V4n−2 ⊕ V4
V4n+1 ⊕ V4n ⊕ V1
V4n+2 ⊕ V4n+2 ⊕ V2
V4n+3 ⊕ V4n+4 ⊕ V1
V4n+4 ⊕ V4n+6 ⊕ V4

Figure 5.11: Relationships of sl2-chained Lie algebras up to length 6.

All previously mentioned symmetric sl2-chains, when considered natu-
rally graduated (αijk = 0 for k ̸= i + j) are quadratic, as they admit at least
the following non-degenerate symmetric bilinear form. Let

sl2

t⊕
i=1

Vki
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be the chain such that kt = 2 and ki = kt−i for i = 1, . . . , t − 1. We define a
bilinear form such that

sl⊥2 = sl2

t−1⊕
i=1

Vki ,

V ⊥
kj

= sl2

t−j−1⊕
i=1

Vki

t⊕
i=t−j+1

Vki .

Then, for {xkii , xki−1
i yi, . . . , xiy

ki−1
i , ykii } a basis of each Vki , we have

B(e, y2t ) = B(h, xtyt) = −B(f, x2t ) = θ ̸= 0.

For i = 1, . . . , t− 1 and j = 0, . . . , ki > 0

B(xkii , y
ki
t−i) = (−1)j

(
ki
j

)
B(xjiy

ki−j
i , xki−jt−i y

j
t−i) =

αi,t−i,tB(e, y2t )

ki
=
αi,t−i,tθ
ki

;

and, when ki = 0, thus ki−1 = k1 ̸= 0 and 2i = t, our bilinear form is defined
as

B(1, 1) =
αi−1,i,2i−1B(xk11 , y

k1
2i−1)

α1,i−1,i
=
αi−1,i,t−1B(xk11 , y

k1
t−1)

α1,i−1,i

=
αi−1,i,t−1 · α1,t−1,t · θ

α1,i−1,i · k1
.

So we end up with
span{xki−ji yji }⊥ = V ⊥

ki
⊕ span{xkii , . . . , x

ki−j+1
i yj−1

i , xki−j−1
i yj+1

i , . . . , ykii }

and with
span{e}⊥ = sl⊥2 ⊕ span{x2t , xtyt},
span{f}⊥ = sl⊥2 ⊕ span{xtyt, y2t },
span{h}⊥ = sl⊥2 ⊕ span{x2t , y2t }.

Apart from the bilinear form described, some of algebras in their naturally
graded form can be seen as quadratic using other arguments:

• gρ,λ(2,1,1) from Proposition 5.3.13 and gρ,λ(2,1,1,1) from Proposition 5.3.17 both
form a chain sl2 ⊕ V2 ⊕ · · · ⊕ V2 ∼= sl2 ⊗ F[x]/⟨xi⟩ for i = 4 and 5 respec-
tively. These algebras are quadratic as seen in Section 2.2.2. This idea
can also be applied over bigger chains. For instance, gρ,λ(2,1,...,1), which
produces sl2 ⊕ V2 ⊕ · · · ⊕ V2 ∼= sl2 ⊗ F[x]/⟨xi⟩, is always a quadratic Lie
algebra.
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• gρ,λ(2,1,1) from Proposition 5.3.13 can be obtained as a double extension
of n3,2 by sl2 and as a T ∗-extension of sl2 ⋉ρ1 V2 as the square of the
nilradical is a lagragian.

• gρ,λ(2,1,1,1) appears as the double extension of the Lie algebra 7, also named
as n23,3, in Section 6.2.2.1.

• gρ,λ(1,1,0,0) from Proposition 5.3.17 can be obtained as the double extension
of n2,3 by sl2.

Moreover, we point out these algebras are mixed, double extensions and
local quadratic Lie algebras. And, we can question ourselves what happens
in a general symmetric chain. As we are not sure if our general bilinear form
works for every symmetric chain, it is just a conjecture, we need other argu-
ments. Let g = sl2 ⊕ Vi1 ⊕ Vi2 ⊕ · · · ⊕ Vit be quadratic symmetric chain. Some
ideas which can be applied are:

(a) The nilradical is n = Vi1 ⊕ Vi2 ⊕ · · · ⊕ Vit and n is t-step (nt+1 = 0).

(b) The ideals contained in n satisfies (nk)⊥ = nt+1−k for k = 1, . . . , t. This
can be seen in Figure 5.12.

g

n = (nt)⊥

n2 = (nt−1)⊥

n3 = (nt−2)⊥

· · ·
nt−2 = (n3)⊥

nt−1 = (n2)⊥

nt = n⊥

0

Figure 5.12: Ideals in a quadratic chain g.

(c) Applying Corollaries 3.1.11 and 3.1.12, n/n⊥ must be quadratic and
obtainable as successive double extensions.

(d) If t = 2k − 1 then (nk)⊥ = nk is an isotropic ideal of dimension half
of the algebra and can be obtained as a T ∗-extension by [Bordemann,
1997, Theorem 3.2].

Remark 5.3.19. According to [Kath and Olbrich, 2006, Section 3], there are as-
cending and descending series of ideals, referred as higher socles and radicals
respectively, related by orthogonality. In our chains they match. Apparently,
this is one of themost natural ways of studying general quadratic Lie algebras,
as stated in some unpublished notes titled “Structure des espaces symetriques
pseudo-riemanniens” by Berard Bergery.
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5.4 Summary

In contrast with previous chapters which restrict the problem of studying
quadratic Lie algebras to smaller families, this chapter focuses on the inverse:
extending those small algebras into bigger and more general ones.

The first section is devoted to the study of derivations, automorphisms
and bilinear forms. Derivations are a key tool to obtain split and double exten-
sions, while automorphisms can be used to tackle isomorphism problems. In
the beginning of Section 5.1, derivations and automorphisms of any nilpotent
Lie algebra are given in Theorems 5.1.5 and 5.1.6. The first of these results was
a known result from [Satô, 1971], while the second one is a new contribution
to the matter. Both results are supported on the UMP. Moreover, in combina-
tion to Proposition 5.1.1 and Corollary 5.1.2, derivations and automorphisms
of free nilpotent Lie algebras can be deduced from how the map acts of their
m.s.g. All these ideas, described in Theorems 5.1.5 and 5.1.6, can be computa-
tionally implemented (see Section 6.2.2) to generate many examples included
in the chapter. The last part of the section is a remark on invariant bilinear
forms on general Lie quotients. This was the tool used in Section 3.1.3 (origi-
nally in [Benito, 2017]) to obtain the different nilpotent quadratic Lie algebras
of low dimension.

Section 5.2 is focused on the study of local algebras (one maximal ideal).
These algebras appear when considering indecomposable quadratic Lie alge-
bras of quadratic dimension two. The restriction to only one maximal ideal
transfers interesting properties gathered in Proposition 5.2.3 (originally in
[Bajo and Benayadi, 2007]). The most general algebras in this family can be
obtained applying our previous Theorem 3.1.8 as double extensions. This
is illustrated in several examples where, from free nilpotent quadratic alge-
bras, we obtain local algebras (solvable and mixed). A key example of lo-
cal algebras is the variety of generalized oscillator algebras. These algebras
are defined along this thesis as double extensions of abelian metric spaces
and decompose as split extensions of GHA (see Proposition 5.2.7). From the
derivation subalgebra of GHA, we are able to describe derivations and skew-
derivations of real oscillator algebras in Theorem 5.2.10. This provides new
series of mixed quadratic Lie algebras.

203



Chapter 5. Tools and patterns

The final section is related to the study of the lattice of ideals of quadratic
Lie algebras. It follows the results on ideal arrangement given in Section 3.1.
First, we note lattices of Lie algebras must be complete, bounded, modular,
and, if finite, also distributive (check Theorem 5.3.4). This restricts the possi-
ble lattices up to 8 ideals as seen in Figure 5.6. When working of quadratic Lie
algebras, lattices must be self-dual (symmetric) as stated in Proposition 5.3.6.
Main examples of self-dual lattices are boolean lattices and n-chains. There is
a wide variety of quadratic Lie algebras with this type of lattice.

At the end of the chapter, we start the study of n-chain lattices from a
general perspective using free nilpotent algebras in combination with simple
ones via representations, or using current algebras. Both generate mixed Lie
algebras, but only the last one provides quadratic Lie algebras. In order to ob-
tain other constructionmethods, supporting ourselves in results from [Benito,
1992b] and [Šnobl, 2010], we develop Theorem 5.3.9. Thismuchmore general
approach, in combinationwith sl2 using its irreducible representations Vn and
some suitable sl2(F)-invariant bilinear products Vn ⊗ Vm → Vm+n−2k that ap-
peared in [Dixmier, 1984], allows us to explicitly describe algorithms to obtain
Lie algebras whose lattice is a chain. These algorithms, inspired by [Dixmier,
1984] and [Bremner and Hentzel, 2004], will produce parametric families of
N-graded (also namedquasi-cyclic or Carnot) Lie algebras of arbitrary dimen-
sion and nilpotent index up to 5 (although bigger versions can be achieved by
extensions of these algorithms using Theorem 5.3.9). The algebras are easily
described by taking basis and defining their respective structure constants.
Up to length six, all possible chains are shown in Figure 5.11. Despite their
self-dual structure, only three specific algebra and two countable series are
quadratic thanks to the explicit invariant bilinear form given.
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CHAPTER

6Algorithms

uring the development of this thesis, several algorithms have been de-
veloped in order to assist ourselves in obtaining examples and getting
conjectures of what is happening for developing new results after. In

this chapter, we present these algorithms. Although they are implemented
for Wolfram Mathematica, the idea behind them can be translated to different
languages that support symbolic expressions such as SageMath.

All the information in this Chapter is referred to package LieFunctions
version 1.0.0 and is subject to improvements. In order to facilitate its use, each
method uses a descriptive name and preserves Mathematica naming convec-
tions, for instance an ending Q for tests. Apart from the explanations we will
give along this chapter, each method includes an inline description shown in
the autocomplete popup or prepending a question mark to its name.

6.1 Availability and installation

The package and the all its source code is available at the GitHub repository
https://github.com/joroldan/MathematicaLieFunctions. There, anyone
can download or inspect the code of all the package and functions.
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The license of the source code is GNU General Public License v3.0 so any-
one is free to use it, even for commercial or private uses, modify it, distribute
it. . .The only restrictions applied is that the derivedworksmust preserved the
same openness (open source and license), and cite the original work.

After downloading the package, in order to use it, you need to install
and, after that, import it in every Mathematica Notebook in which you make
use of it. The installation can be done through the menu of the application:
File ▶ Install. Once installed, before using it, you need to import it writing
<<LieFunctions‘ or whatever new name you have chosen.

If you do not have access to an installation of Mathematica, you can use
it online at the webpage https://www.wolframcloud.com. Here, with a free
account, you can still import the package and call every function. However,
there is a limit about the computation time available to used in that freemode.
This is why the most demanding functions can present problems. Anyway, to
install the package, as there is no File menu, the alternative is executing the
command:

PacletInstall["https://github.com/joroldan/\
MathematicaLieFunctions/releases/download/\
Releases/LieFunctions-1.0.0.paclet"]

changing the final part 1.0.0 for whatever version we are interested in. This
same command also works in the offline version. The rest works exactly the
same.

6.2 Functions included

The package we have developed covers different topics of the dissertation,
ranging from Hall bases to chains of ideals, including derivations, automor-
phisms, bilinear forms, and more.

The common pattern used in the package to make all of it work together is
the list of the adjoint matrices in a basis, that is their structure constants. Most
of the methods accept or produce that list of adjoint matrices. This is why the
first methods we need to know are the following:
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• AdjointListSymmetricQ given a list of matrices representing those ad-
joints in same basis checks if adx(y) = −ady(x) for every x, y in the
basis.

• AdjointListJacobiQ checks the Jacobi identity.

• AdjointListQ combines the two previous methods in just one. The rea-
son why there exists a separate version is in order to better detect mis-
spellings in the adjoint list and known exactly what is wrong with it.

Once you have a valid list of adjoint matrices, you can make use of the
method ProductCoordinates[v1,v2,adjointList] to calculate the Lie bracket
of a vector with coordinates v1 against other with coordinates v2, obtaining
the coordinates of the result. Also, you can get the product table using the
function ProductTableList[basis,adjointList]. This method returns a list
of the products given by the adjoints using to denote the elements the names
given in basis. This same function can be call as NonNullProductTableList
to remove null products or changing List into Print for a human readable
notation. See Figure 6.1.

In[1]:= ProductTableList[{e, f, h}, SL2AdjointList]

Out[1]= {{e, f, h}, {e, h, -2 e}, {f, h, 2 f}}

In[2]:= ProductTablePrint[{e, f, h}, SL2AdjointList]

Out[2]=

[e, f] = h
[e, h] = -2 e
[f, h] = 2 f

EjemplosTesis.nb     9

Figure 6.1: Example of a product table given the adjoint matrices.

Remark 6.2.1. Along all models, we consider right side products for matrices.

6.2.1 Hall Basis

From the generator set m = {x1, . . . , xd}, we easily get the standard monomi-
als [xi1 , . . . , xir ] that linearly generate Lie algebra nd,t. However, the anticom-
mutativity law ([xi, xj ] + [xj , xi] = 0) and the Jacobi identity

J(xi, xj , xk) =
∑
cyclic

[[xi, xj ], xk] = 0,
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both set linear dependency relations. This makes it difficult to find a basis
formed by monomials. The problem was solved by M. Hall in 1950. Focusing
on the behavior of algorithms, themost natural basis to work on free nilpotent
Lie algebras, is the Hall basis (see [Hall, 1950] for definition, and [Serre, 1992,
Chapter IV, Section 5] for a detailed construction).

Starting with the total order xd < xd−1 < . . . < x1, the definition of Hall
basis states recursively if a given standardmonomial depends on the previous
ones. The recursive algorithm is covered by the pseudocode given in Table 6.1
and provides a Hall basis that we will denote as Hd,t(U<) or Hd,t if the total
order in U is clear. This algorithm checks if an element v belongs to the Hall
basis once we have defined a monomial order. For some small d and t values,
the output of Hall basis algorithm is given in Table 6.2.

isCanonical(v):
if deg v == 1 then true;
else if (not isCanonical(v1) or not isCanonical(v2) or v2 > v1) then false;
else if deg v1 > 1 then (isCanonical(v1,1) or isCanonical(v1,2) or v2 ≥

v1,2);
else true;

Table 6.1: Hall basis algorithm pseudocode. Note that this is a recursive al-
gorithm. Here v = [v1, v2]. In order to generate Hall Basis elements of de-
gree n we can combine v1 and v2 in level n − k and k respectively, where
k = 1, . . . , n/2.

This algorithm is built into our Mathematica package under divided into
several functions:

• HallBasisLevel[d,t] returns the degree tmonomials in the Hall basis
with d generators.

• HallBasisUntilLevel[d,t] returns the fullHd,t.

Both methods have a sibling function to obtain the dimension of each of them
just adding the word Dimension at the end of their names. These algorithms
can be used to obtain Table 6.2. However, they do not used x as their variable
like in our example. In order to do so, we must set it manually using the
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(d, t) Hd,t
(2, 6) x2, x1, [x1, x2], [[x1, x2], x2], [[x1, x2], x1], [[[x1, x2], x2], x2], [[[x1, x2], x2], x1],

[[[x1, x2], x1], x1], [[[[x1, x2], x2], x2], x2], [[[[x1, x2], x2], x2], x1],

[[[x1, x2], x2], [x1, x2]], [[[[x1, x2], x2], x1], x1], [[[x1, x2], x1], [x1, x2]],

[[[[x1, x2], x1], x1], x1], [[[[[x1, x2], x2], x2], x2], x2], [[[[[x1, x2], x2], x2], x2], x1],

[[[[x1, x2], x2], x2], [x1, x2]], [[[[[x1, x2], x2], x2], x1], x1],

[[[[x1, x2], x2], x1], [x1, x2]], [[[[[x1, x2], x2], x1], x1], x1],

[[[x1, x2], x1], [[x1, x2], x2]], [[[[x1, x2], x1], x1], [x1, x2]],

[[[[[x1, x2], x1], x1], x1], x1]

(4, 3) x4, x3, x2, x1, [x3, x4], [x2, x4], [x2, x3], [x1, x4], [x1, x3], [x1, x2], [[x3, x4], x4],

[[x3, x4], x3], [[x3, x4], x2], [[x3, x4], x1], [[x2, x4], x4], [[x2, x4], x3], [[x2, x4], x2],

[[x2, x4], x1], [[x2, x3], x3], [[x2, x3], x2], [[x2, x3], x1], [[x1, x4], x4], [[x1, x4], x3],

[[x1, x4], x2], [[x1, x4], x1], [[x1, x3], x3], [[x1, x3], x2], [[x1, x3], x1], [[x1, x2], x2],

[[x1, x2], x1]

(6, 2) x6, x5, x4, x3, x2, x1, [x5, x6], [x4, x6], [x4, x5], [x3, x6], [x3, x5], [x3, x4], [x2, x6],

[x2, x5], [x2, x4], [x2, x3], [x1, x6], [x1, x5], [x1, x4], [x1, x3], [x1, x2]

Table 6.2: Hall basis of nd,t. Note from expanded basis H4,3 and H2,6 we can
recover Hall basis of n4,2 and n2,t for t = 2, 3, 4, 5

command $HallVar=x. In addition, due to Mathematica limitations the Lie
bracket are denote using curly brackets or braces as if itwere a list. An example
is shown in Figure 6.2.

In[1]:= $HallVar = a;
HallBasisLevel[2, 3]

Out[2]= {{{a[1], a[2]}, a[2]}, {{a[1], a[2]}, a[1]}}

(*This last result represents {[[a1,a2],a2], {[a1,a2],a1]}*)

In[3]:= HallBasisUntilLevelDimension[4, 3]

Out[3]= 30

8     EjemplosTesis.nb

Figure 6.2: Example of Hall basis commands.

Apart from the Hall basis, we can also obtain the Lie bracket of the free
nilpotent Lie algebras via its adjoint matrices in the Hall basis. The command
to get that is HallBasisAdjointList[d,t].
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Finally, as free nilpotent algebras have a natural gradation observed di-
rectly from the Hall basis monomials degree (see Example 2.1.7), there is an
auxiliar method which helps us showing the matrices (for example their ad-
joints or derivations) with vertical lines separating them in blocks. This is
achieved using HallGrid[d,t] before or after a matrix.

6.2.2 Derivations and automorphisms

Given any Lie algebra via their adjoint list you can obtain derivations and
automorphisms using methods:

• DerivationQ and AutomorphismQ given a matrix and a list of adjoints
checks whether that matrix could represent a derivation or automor-
phism.

• GetDerivation and GetAutomorphism given a variable and the structure
constants returns the desired matrix.

• Specific to derivations we have two additional methods:

– GetInnerDerivations[var,adjointList]

– GetSkewDerivation[var,adjointList,B]which finds the deriva-
tions skew-symmetric respect the bilinear form B.

6.2.2.1 Free nilpotent algebras quotients

In Section 5.1 we saw, among other things, how to find derivations of nd,t/I .
This procedure can be automated using Mathematica. The idea behind can
be explained in the next steps:

1. Find generic derivations δ and δ′ in nd,t.

2. Change basis in that derivation to a basis formed by the union of a basis
of a complement of I and a basis of I . This splits the derivation into 4
submatrices considering projections.

3. Impose δ(I) ⊆ I and δ′(nd,t) ⊆ I , which refers to the upper right and
upper submatrices respectively.

4. After seeing both derivations we apply the quotient (equivalence class).
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An example of this idea is found is Figure 6.3.

In[1]:= n = HallBasisUntilLevelDimension[2, 5];
ideal = {EC[5, n], EC[7, n], EC[8, n],

EC[10, n] + EC[11, n], EC[12, n], EC[13, n], EC[14, n]};
complement = Table[EC[i, n], {i, {1, 2, 3, 4, 6, 9, 10}}];
m = Length[complement];
cB = Transpose[Join[complement, ideal]];
aL = HallBasisAdjointList[2, 5];
d = GetDerivation[x, aL];
dN = Inverse[cB].d.cB;
cond1 = dN〚 ;; m, m + 1 ;;〛 ⩵ NullMatrix[m, n - m];
cond2 = dN〚 ;; m, ;;〛 ⩵ NullMatrix[m, n];
cond3 = SkewSymmetricRespectToQ[B, dN〚 ;; m, ;; m〛];
B = Reverse[DiagonalMatrix[{-1, 1, -1, 1, -1, 1, -1}]];
Grid[dN /. Solve[And[cond1, cond3]]〚1〛,
Dividers → {{m + 1 → Black}, {m + 1 → Black}}, Frame → True]

Grid[dN /. Solve[And[cond2, cond3]]〚1〛,
Dividers → {{m + 1 → Black}, {m + 1 → Black}}, Frame → True]

2     

Figure 6.3: FindingDerϕ(n2,5/I) for the algebra which appears later named as
Algebra 3.

For automorphisms the strategy is really simular. Although, from an alge-
braically point of view, this procedure is really good, when implementing it,
we can find amore general and easyway to obtain those derivations. This new
approach consists on finding the adjoint matrices in nd,t/I and finding their
derivations and automorphisms as normal on that new adjoints. In order to
do so when can we the following methods:

• AdjointListQuotient[cB,iB,adjointList]. Let cB a basis of C with
elements {c1, . . . , cn} and iB a basis of an ideal I , both expressed by
their coordinates, such that L = C ⊕ I . This method returns the list of
adjoints of L/I in basis {c1 + I, . . . , cn + I}.

• ChangeAdjointListBasis[cM,adjointList] is a more generic method
which serves as support for the previous one. Here cM represents the
matrix which changes coordinates from the new basis to the old one.
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This new technique simplifies the code seen in Figure 6.3 to the one in Fig-
ure 6.4. Both strategies allow us to find skew-derivations for the nilpotent
algebras found in the low-dimensional classification from [Benito et al., 2017].

In[1]:= n = HallBasisUntilLevelDimension[2, 5];
ideal = {EC[5, n], EC[7, n], EC[8, n],

EC[10, n] + EC[11, n], EC[12, n], EC[13, n], EC[14, n]};
complement = Table[EC[i, n], {i, {1, 2, 3, 4, 6, 9, 10}}];
adj25Q = AdjointListQuotient[complement, ideal,

HallBasisAdjointList[2, 5]];
B = Reverse[DiagonalMatrix[{-1, 1, -1, 1, -1, 1, -1}]];
GetSkewDerivation[x, adj25Q, B] // MatrixForm

Out[6]//MatrixForm=

x[1] 0 0 0 0 0 0
x[8] -2 x[1] 0 0 0 0 0
x[15] x[16] -x[1] 0 0 0 0
x[22] 0 x[16] 0 0 0 0
x[29] x[30] 0 x[16] x[1] 0 0
x[36] 0 x[30] 0 x[16] 2 x[1] 0

0 x[36] -x[29] x[22] -x[15] x[8] -x[1]

EjemploCocientes.nb     3

Figure 6.4: FindingDerϕ(n2,5/I) for the algebra which appears later named as
Algebra 3.

First, note that in all these algebras

dim InnerL = dimL− dimZ(L) = dimL− (dimL− dimL2) = dimL2,

and that if δ ∈ InnerL, then δ is nilpotent and ϕ-skew-symmetric. For each
algebra we will give two matrices, on the left Derϕ(nd,t/I) and on its right
Inner(nd,t/I).

Algebra 1 The 1-dimensional abelian Lie algebra (n1,1, ϕ) with basis {a1}
and ϕ(a1, a1) = 1. Here, all ϕ-skew derivations are null.

Algebra 2 The 5-dimensional free nilpotent Lie algebra (n2,3, ϕ) with basis
{ai}5i=1 and ϕ(ai, aj) = (−1)i−1 for i ≤ j and i + j = 6 and ϕ(ai, aj) = 0

otherwise. The product table is:

a1 = e1 = x2,

a2 = e2 = x1,

a3 = e3 = [a2, a1] = [x1, x2],

a4 = e4 = [a3, a1] = [[x1, x2], x2],

a5 = e5 = [a3, a2] = [[x1, x2], x1].
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Here, all ϕ-skew derivations are of the form:
m1 m2 0 0 0

m3 −m1 0 0 0

m4 m5 0 0 0

m6 0 m5 m1 m2

0 m6 −m4 m3 −m1

 ⊇


0 0 0 0 0

0 0 0 0 0

v2 v1 0 0 0

v3 0 v1 0 0

0 v3 −v2 0 0

 .

Algebra 3 The 7-dimensional Lie algebra (n12,5, ϕ) with basis {ai}7i=1 and
nonzero products:

[a2, a1] = a3, [a3, a1]= a4, [a4, a1] = a5,

[a5, a1] = a6, [a5, a2]= a7, [a3, a4] = a7,

where ϕ(ai, aj) = (−1)i for i ≤ j and i + j = 8 and ϕ(ai, aj) = 0 otherwise.
The product table is:

a1 = e1 = x2,

a2 = e2 = x1,

a3 = e3 = [a2, a1] = [x1, x2],

a4 = e4 = [a3, a1] = [[x1, x2], x2],

a5 = e6 = [a4, a1] = [[[x1, x2], x2], x2],

a6 = e9 = [a5, a1] = [[[[x1, x2], x2], x2], x2],

a7 = e10 = [a5, a2] = [[[[x1, x2], x2], x2], x1],

As a7 = [a3, a4] = [[x1, x2], [[x1, x2], x2]] = −e11, then e7 + e11 ∈ I , so the ideal
is I = span⟨e5, e7, e8, e10 + e11, e12, e13, e14⟩. Here, all ϕ-skew derivations are
of the form:

m1 0 0 0 0 0 0

m2 −2m1 0 0 0 0 0

m3 m4 −m1 0 0 0 0

m5 0 m4 0 0 0 0

m6 m7 0 m4 m1 0 0

m8 0 m7 0 m4 2m1 0

0 m8 −m6 m5 −m3 m2 −m1


⊇



0 0

0 0

v1 v2

v3 0 · · ·
v4 0

v5 0

0 v5


.
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Algebra 4 The 8-dimensional Lie algebra (n22,5, ϕ) with basis {ai}8i=1 and
nonzero products:

[a2, a1] = a3, [a3, a1]= a4, [a3, a2] = a5,

[a4, a1] = a6, [a6, a1]= a7, [a6, a2] = a8,

[a5, a2] = a6, [a3, a4]= a8, [a5, a3] = a7,

where ϕ(ai, aj) = (−1)i for 0 ≤ i ≤ 3 and i + j = 9, ϕ(a4, a4) = ϕ(a5, a5) = 1

and ϕ(ai, aj) = 0 otherwise. The product table is:

a1 = e1 = x2,

a2 = e2 = x1,

a3 = e3 = [a2, a1] = [x1, x2],

a4 = e4 = [a3, a1] = [[x1, x2], x2],

a5 = e5 = [a3, a2] = [[x1, x2], x1],

a6 = e6 = [a4, a1] = [[[x1, x2], x2], x2],

a7 = e9 = [a6, a1] = [[[[x1, x2], x2], x2], x2],

a8 = e10 = [a6, a2] = [[[[x1, x2], x2], x2], x1].

In this algebra, we also have

a6 = [a5, a2] = [[[x1, x2], x1], x1] = e8 ⇒ e8 − e6 ∈ I,
a7 = [a5, a3] = [[[x1, x2], x1], [x1, x2]] = e13 ⇒ e13 − e9 ∈ I,
a8 = [a3, a4] = [[x1, x2], [[x1, x2], x2]] = −e11 ⇒ e10 + e11 ∈ I,
a8 = [a6, a2] = [[[[x1, x2], x1], x1], x1] = e14 ⇒ e14 − e10 ∈ I.

So I = span⟨e7, e8 − e6, e10 + e11, e12, e13 − e9, e14 − e10⟩. Here, all ϕ-skew
derivations are of the form:

0 m1 0 0 0 0 0 0

−m1 0 0 0 0 0 0 0

m2 m3 0 0 0 0 0 0

m4 m5 m3 0 m1 0 0 0

m5 m6 −m2 −m1 0 0 0 0

m7 m8 0 m3 −m2 0 0 0

m9 0 m8 −m5 −m6 m3 0 m1

0 m9 −m7 m4 m5 −m2 −m1 0


⊇



0 0

0 0

v1 v2

v3 0 · · ·
0 v3 · · ·
v4 v5

v6 0

0 v6


.
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Algebra 5 The 6-dimensional free nilpotent Lie algebra (n3,2, ϕ) with basis
{ai}6i=1 and nonzero products:

[a2, a1] = a4, [a3, a1] = a5, [a3, a2] = a6,

where ϕ(ai, aj) = (−1)i−1 for i ≤ j and i+ j = 7 and ϕ(ai, aj) = 0 otherwise.
The basis of the article is:

a1 = e1 = x3,

a2 = e2 = x2,

a3 = e3 = x1,

a4 = e4 = [a2, a1] = [x2, x3],

a5 = e5 = [a3, a1] = [x1, x3],

a6 = e6 = [a3, a2] = [x1, x2].

In this case, the ϕ-skew derivations are of the form:



m1 m2 m3 0 0 0

m4 m5 m6 0 0 0

m7 m8 −m1 −m5 0 0 0

m9 m10 0 m1 +m5 m6 −m3

m11 0 m10 m8 −m5 m2

0 m11 −m9 −m7 m4 −m1


⊇



0 0 0

0 0 0 · · ·
0 0 0

v1 v2 0

v3 0 v2 · · ·
0 v3 −v1


.

Algebra 6 The 8-dimensional Lie algebra (n13,3, ϕ) with basis {ai}8i=1 and
nonzero products

[a2, a1] = a4, [a3, a1]= a5, [a4, a1] = a6,

[a4, a2] = a7, [a5, a1]= a8, [a5, a3] = a7,
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where ϕ(a4, a4) = ϕ(a5, a5) = ϕ(a1, a7) = −ϕ(a2, a6) = −ϕ(a3, a8) = 1, and
ϕ(ai, aj) = 0 otherwise. The basis of the article is:

a1 = e1 = x3,

a2 = e2 = x2,

a3 = e3 = x1,

a4 = e4 = [a2, a1] = [x2, x3],

a5 = e5 = [a3, a1] = [x1, x3],

a6 = e7 = [a4, a1] = [[x2, x3], x3],

a7 = e8 = [a4, a2] = [[x2, x3], x2],

a8 = e10 = [a5, a1] = [[x1, x3], x3],

Moreover, a7 = [a5, a3] = [[x1, x3], x1] = e12, so e8 − e12 ∈ I . Therefore,

I = span⟨e6, e9, e11, e13, e14, e8 − e12⟩.

The ϕ-skew derivations are of the form:


m1 0 0 0 0 0 0 0

m2 −m1 m3 0 0 0 0 0

m4 −m3 −m1 0 0 0 0 0

m5 m6 m7 0 m3 0 0 0

m8 m7 m9 −m3 0 0 0 0

m10 0 m11 m6 m7 m1 0 m3

0 m10 m12 −m5 −m8 m2 −m1 m4

m12 −m11 0 m7 m9 −m3 0 m1


⊇



0 0 0

0 0 0 · · ·
0 0 0

v1 v2 0

v3 0 v2

v4 0 0

0 v4 v5 · · ·
v5 0 0


.

Algebra 7 The 9-dimensional Lie algebra (n23,3, ϕ) with basis {ai}9i=1 and
nonzero products:

[a2, a1] = a4, [a3, a1]= a5, [a3, a2] = a6,

[a4, a1] = a7, [a4, a2]= a8, [a5, a1] = a9,

[a5, a3] = a8, [a3, a6]= a7, [a6, a2] = a9,
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ϕ(a4, a4) = ϕ(a5, a5) = ϕ(a6, a6) = ϕ(a1, a8) = −ϕ(a2, a7) = −ϕ(a3, a9) = 1,
and ϕ(ai, aj) = 0 otherwise. The basis of the article is:

a1 = e1 = x3,

a2 = e2 = x2,

a3 = e3 = x1,

a4 = e4 = [a2, a1] = [x2, x3],

a5 = e5 = [a3, a1] = [x1, x3],

a6 = e6 = [a3, a2] = [x1, x2],

a7 = e7 = [a4, a1] = [[x2, x3], x3],

a8 = e8 = [a4, a2] = [[x2, x3], x2],

a9 = e10 = [a5, a1] = [[x1, x3], x3],

Moreover, we also have

a7 = [a3, a6] = [x1, [x1, x2]] = −e14 ⇒ e7 + e14 ∈ I,
a8 = [a5, a3] = [[x1, x3], x1] = e12 ⇒ e8 − e12 ∈ I,
a9 = [a6, a2] = [[x1, x2], x2] = e13 ⇒ e10 − e13 ∈ I,

so I = span⟨e9, e11, e8 − e12, e10 − e13, e7 + e14⟩. The ϕ-skew derivations is of
the form:

0 m1 m2 0 0 0 0 0 0

−m1 0 m3 0 0 0 0 0 0

−m2 −m3 0 0 0 0 0 0 0

m4 m5 m6 0 m3 −m2 0 0 0

m7 m8 m9 −m3 0 m1 0 0 0

m8 −m6 m10 m11 m2 −m1 0 0 0 0

m12 0 −m14 m5 m8 m10 0 m1 m3

0 m12 m13 −m4 −m7 m6 −m8 −m1 0 −m2

m13 m14 0 m6 m9 m11 −m3 m2 0


⊇



0 0 0

0 0 0 · · ·
0 0 0

v1 v2 0

v3 0 v2 · · ·
0 v3 −v1

v4 0 −v6

0 v4 v5 · · ·
v5 v6 0


.

6.2.3 Quadratic Lie algebras

This package can also generate symmetric invariant bilinear forms for a given
Lie algebra. This is achieved using the methods:

• InvariantBilinearFormQ[matrix,adjointList] which gives the con-
ditions matrixmust satisfies in order to be invariant.

217



Chapter 6. Algorithms

• GetSymmetricInvariantBilinearForm[var,adjointList] generates a
matrix to define the bilinear form of a quadratic Lie algebra.

Internally, both methods use SkewSymmetricRespectToQ[m1,m2] to check if
some matrix m2 is skew-symmetric respect to m1.
Remark 6.2.2. In combination with the method NumberOfVariables, which
will be introduced later, we can easily obtain the quadratic dimension.

6.2.4 Chains

In Section 5.3.2, we explained several algorithms to build Lie algebras whose
lattice of ideals is a chain. These algebras were developed using sl2 algebra
andmodules. The first structures integrated into the package are the different
parts involved:

• SL2AdjointList (without parameters) is the list of adjoints of simple
Lie algebra sl2 in the standard basis.

• VM[n] is the basis of the of the sl2-module Vn.

As explained in their section, the product is given via actions over the
modules and transvections. Those can also be computed directly:

• SL2Module[coord,elto] finds the action of the sl2 element with coordi-
nates coord onto the module element elto.

• Transvection[f,g,k,n,m] refers to (f, g)k : Vn × Vm → Vn+m−2k from
equation (5.3.2.1). This method can also be called omitting n and m, as
both can be obtain from f and g degrees.

• SL2ChainAdjointList[n1,n2,...] gives the adjoint list of the resulting
chain for n1, n2. . . the same as in Algorithms 5.3.2 and 5.3.3. This func-
tion takes any αijk = 0 whenever possible and works up to 4 modules
(6 ideals).

Although it is not important, just for completeness, internally, products are
calculated using a special, more visual, notation for elements. This can be
observed in the basis from SL2ChainBasis[n1,n2,...]. This naming convec-
tion is used in SL2ChainProduct. But, for practical reasons, there is a method
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SL2GetElementCoordinates which turns this notation into the classical coor-
dinates.
Remark 6.2.3. All these methods are not foolproof and when they do not re-
ceive valid descriptions for modules the result is indeterminate. This is why
Tables 5.1, 5.2, 5.3 and 5.4 are quite useful.

Finally, as a visual aid, we can get information aboutmodules, dimensions
or even the lattices of ideals of those chains:

• SL2ModuleSizes[n1,n2,...] receives up to 4 descriptors and returns
the degree of modulesm1,m2,. . . (see equation (5.15)).

• SL2ModuleDimensions[n1,n2,...], similar to the previous one but in
this case it return dimm1, dimm2, . . .

• SL2ChainDescription[n1,n2,...] describes in a natural way the de-
composition of the algebra.

• SL2ChainDimensionList[n1,n2,...] gives the total algebra dimension
and the dimension of each factor in its decomposition (including sl2).

• SL2ChainGraph[n1,n2,...] shows the lattices of ideals.

An example of use of these last methods is given in Figure 6.5.

6.2.5 Other auxiliar methods

The package also includes some more generic functions to compute wider
problems which are not specific to our matter. All these methods are used
along previous sections in an auxiliar way. Their implementations is fairly
simply and involve the use of the instruction Table to do the loops.

6.2.5.1 Matrices

Here we can find methods to generate matrices:

• Null matrices of any dimension build. Depending on whether the ma-
trix is square or not, we use NullMatrix[rows,columns] or, when it is
an square matrix, we use NullMatrix[order].
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In[1]:= SL2ModuleSizes[2, 1, 0]

Out[1]= {2, 2, 4}

In[2]:= SL2ModuleDimensions[2, 1, 0]

Out[2]= {3, 3, 5}

In[3]:= SL2ChainDescription[2, 1, 0]

Out[3]= ()2 ⊕V(2)⊕ V(2)⊕V(4)

In[4]:= SL2ChainDimensionList[2, 1, 0]

Out[4]= {14, {3, 3, 3, 5}}

In[5]:= SL2ChainGraph[2, 1, 0]

Out[5]=

EjemplosTesis.nb     7

Figure 6.5: Example of chained structures, dimensions and lattices.

• Generic matrices (variables). We can obtain them calling the function
GenericMatrix[rows, columns, var] or GenericMatrix[order, var]
when rows = columns.

• Generic symmetric or skew-symmetric matrix full of variables. The syn-
tax is the same as the previous onewith name GenericSymmetricMatrix
or GenericSkewSymmetricMatrix but this time only the square matrix
case is valid.

We also have functions to check some conditions over matrices. These
methods receive a matrix and return a boolean depending on whether the
condition is fulfiled or not.

• Symmetry, checked with method SymmetricQ.

• Skew-symmetry, tested with SkewSymmetricQ.
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• Maximum rank, or non-degenerate when it represents a bilinear form,
is verified via NonDegenerateQ.

• Function CubicMatrixQ checks if the received list is a list of nmatrices of
order n× n. It fails, when called with less matrices or when this are not
squarematrices for example. This is used for instances when checking if
some list of matrices represent the list of adjoint matrices in some basis.

When the result is not clear, they return the condition needed. This is for
example the difference between our method SkewSymmetricQ and the native
version SkewSymmetricMatrixQ. All methods in this section up to this point
can be observed in action in Figure 6.6.

In[1]:= NullMatrix[2, 3] // MatrixForm
Out[1]//MatrixForm=

0 0 0
0 0 0

In[2]:= MatrixForm[GenericSymmetricMatrix[2, x]]
Out[2]//MatrixForm=

x[1] x[2]
x[2] x[3]

In[3]:= SymmetricMatrixQ[{{a, b}, {c, d}}]

Out[3]= False

In[4]:= SymmetricQ[{{a, b}, {c, d}}]

Out[4]= b ⩵ c

2     

Figure 6.6: Example of matrix generation and checking its properties.

In relation with basis we have a method to obtain the canonical vectors of
any dimension. This can be obtained calling EC[i,dim] where i denotes the
position and dim the length. For example EC[2,4] refers to (0, 1, 0, 0).

Moreover, to help us compute products of matrices involving blocks in-
stead of numbers we have two additional methods:

• BTranspose that given a blocked matrix computes is transpose.

• BDot that recibes two or more blocked matrices and returns its product.
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The difference with the common transpose and product is that it takes into
account the product of each block (submatrices) is not commutative. In order
to do so, it uses product **, which is the native non-commutative product.
Blocked matrices can contain inside variables, 1 to denote the identity matrix
or 0 to denote the null matrix. In the following codewe can see these methods
being used in Figure 6.7.

In[1]:= bA = {{A, 1}, {0, B}};
BDot[BTranspose[bA], bA] // MatrixForm

Out[2]//MatrixForm=

Transpose[A] ** A Transpose[A]
A 1 + Transpose[B] ** B

    3

Figure 6.7: Example of a blocked matrix operation (bA)t · bA.

6.2.5.2 Variables

The symbolic power of Mathematica is one of the key features that made us
decide using it. But symbolic operations are full of variables and we need
some help when working with them:

• SymbolQ[expression] checks if expression is a variable or not. This
method comes with his brother UndefinedSymbolQ, which is similar but
it also checks if there are values assigned on it or not. This way, if
a[1]=1 the value of only a remains unknown, thus SymbolQ[a] is true,
but UndefinedSymbolQ[a] is false.

• NumberOfVariables[expression] is self-explanatory. One posible use
of this method appears when counting variables in a generic bilinear
form to obtain the quadratic dimension.

• Sometimes after applying several restrictions and assignments you end
up with several non-consecutive variables. To sort that mess we can use
ReindexVariable[var,expression].

• In relation to those some indices given a variable and a expression we
can also use MaxIndexOfVariable, MinIndexOfVariable or to obtain the
list of indices IndicesOfVariable.
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Some examples of use of these methods are found in Figure 6.8. Apart from
this list we can also find PositiveIntegerQ[n]which was used to check valid
indices which start at 1 in Wolfram language. And we also have the method
PolynomialDegree[polynomial] which gives the sum of the degrees of the
variables involved in each monomial when they are all the same degree.

In[1]:= v = {a[1], a[2], a[5] + a[2], b[2]};
NumberOfVariables[v]

Out[2]= 4

In[3]:= IndicesOfVariable[a, v]

Out[3]= {1, 2, 5}

In[4]:= ReindexVariable[a, v]

Out[4]= {a[1], a[2], a[2] + a[3], b[2]}

EjemplosTesis.nb     5

Figure 6.8: Working with symbols and variables in Mathematica.

6.3 Support and future development

This Mathematica package is a continuos work, and it is open to the inclusion
of new capabilities or refinements over the existing methods. This improve-
ments will be made available at the repository of the package. In that same
webpage, anyone can report bugs (code mistakes), make suggestions or con-
tribute with new code. Even more, they can clone the repository and adapt
everything to their needs.
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Conclusions, results and
open questions

n this dissertation we have been able to obtain our goals reviewing,
sorting and expanding previous results on quadratic Lie algebras and
developing new ones. These have been explained in detailed in the

summary after each chapter. Some of the main results include:

• Ideal structure of quadratic Lie algebras (main ideals inclusion relation-
ships, full lattices of ideals, algebras whose ideals form a chain. . . )

• Explicit and general formula for obtaining quadratic reduced Lie alge-
bras as double extensions. This was achieved after locating some impor-
tant ideals to make quotients.

• New method for constructing 2-step nilpotent Lie algebras based on
multilinear algebra techniques. The name of themethod is “n-quadratic
family of matrices” and gives us a computational approach for getting
this type of algebras.

• Equivalence theorem which relates n-quadratic family of matrices and
double and T ∗-extensionsmethodswhen applied to obtain 2-step nilpo-
tent Lie algebras. It includes our telescopic expansion technique of suc-
cessive 1-dimensional double extensions.

• Classification of quadratic reduced 2-step nilpotent Lie algebras up di-
mension 17 thanks to its relationwith trivectorswhose classificationwas
already known.
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• Automorphisms of free nilpotent Lie algebras quotients. This result ex-
tends a similar property for derivations.

• Algorithms to obtain Lie algebras whose lattice of ideals is a chain using
sl2 representation theory.

All these results, among many others, come with a wide variety of
examples to illustrate them.

Moreover, we have developed a Wolfram Mathematica package imple-
menting many of the tools used in the thesis. This open source software is
available online allowing people to use or modify it in order to adapt and
build new algebras, check identities. . .

However, despite all the work included in the memoir, there are still some
open questions which can be studied in the near future. These include:

• How double extensions affect the quadratic dimension.

• Identify, via invariants, for any quadratic 2-step Lie algebra the corre-
sponding one in our classification list of small dimensional algebras.

• Partial classification of the variety of 3-step nilpotent quadratic Lie alge-
bras, as the full classification seems unreachable.

• Quadratic extensions of 2 and 3.step quadratic Lie algebras.

• Quadratic structures on current Lie algebras, including our conjecture
in sl2-chains.

• Deep study on structure of generalized oscillator Lie algebras and their
quadratic extensions.

• Different applications of the real oscillator algebras.

• Better and more general study of quadratic Lie algebras whose ideal is
a chain.

• Relations of quadratic Lie algebras and other non-associative structures
as: Lie triple systems and symmetric spaces, Manin pairs and triples,
among others.

• Expanding our Mathematica package to include more functions. For
example double extensions.
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Conclusiones, resultados y
problemas abiertos

n esta tesis hemos sido capaces de obtener nuestros objetivos revisan-
do, ordenando y expandiendo resultados previos sobre álgebras de
Lie cuadráticas, así como desarrollando nuevos. Estos han sido expli-

cados en detalle en el resumen final de cada capítulo. Los principales logros
son:

• Estructura de los ideales de las álgebras de Lie cuadráticas (relaciones
de inclusión entre los ideales más importantes, retículo de ideales com-
pleto, álgebras cuyos ideales están en cadena. . . )

• Fórmula general y explícita para obtener álgebras cuadráticas reducidas
a través de dobles extensiones. Esto se ha logrado tras localizar ciertos
ideales para hacer cocientes.

• Nuevo método para construir álgebras 2-step nilpotentes basado en téc-
nicas de álgebra multilineal. El nombre del método es “familia dematri-
ces n-cuadráticas” y nos aporta una aproximación computacional para
obtener estas álgebras.

• Teorema de equivalencia que relaciona las familias de matrices n-cua-
dráticas y los métodos de doble y T ∗-extensión cuando obtenemos álge-
bras de Lie de índice de nilpotencia 2. Incluye una técnica de expansión
telescópica a través de sucesivas dobles extensiones 1-dimensionales.
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• Clasificación de las álgebras de Lie cuadráticas reducidas 2-step hasta
dimensión 17 usando la conocida clasificación de trivectores.

• Automorfismos de cocientes álgebras de Lie nilpotentes libres. Este re-
sultado extiende una propiedad similar en derivaciones.

• Algoritmos para obtener álgebras de Lie cuyo retículo de ideales es una
cadena usando teoría de representación de sl2.

Todos estos resultados, entre muchos otros, vienen acompañados de
una gran variedad de ejemplos ilustrativos.

Además, hemos desarrollado un paquete en Wolfram Mathematica que
implementa muchas de las herramientas utilizadas en la tesis. Este programa
libre está disponible en internet permitiendo a cualquiera usarlo omodificarlo
para adaptarlo y construir nuevas álgebras, comprobar identidades. . .

Sin embargo, a pesar de todo el trabajo realizado, todavía quedan pregun-
tas abiertas a estudiadar en un futuro próximo. Aquí encontramos:

• Cómo la doble extensión afecta a la dimensión cuadrática.

• Identificar, vía invariantes, a qué algebra de Lie de nuestra clasificación
en baja dimensión se corresponde un álgebra cuadrática de índice de
nilpotencia dos.

• Clasificación parcial de la variedad de álgebras cuadráticas con índice
de nilpotencia 3, ya que la clasificación completa parece inalcanzable.

• Extensiones cuadráticas de álgebras con índice de nilpotencia 2 o 3.

• Estructuras cuadráticas en álgebras de Lie current, incluyendo nuestra
conjetura en sl2-cadenas.

• Estudio profundo de las estructuras de la osciladora generalizada y sus
extensiones cuadráticas.

• Diferentes aplicaciones de las álgebras osciladoras reales.

• Detallar el estudio de las álgebras cuadráticas con retículo en cadena.

• Relaciones de las álgebras de Lie cuadráticas y otras estructuras no aso-
ciativas: sistemas triples de Lie y espacios simétricos, pares y triples de
Manin, entre otros.
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• Continuar el desarrollo de nuestro paquete deMathematica incluyendo
más funciones. Por ejemplo la doble extensión.
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Obj object 76
proj projection 136
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Radφ radical of the form φ 35
sgn sign 113
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