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Abstract

Artificial Intelligence, and specifically Deep Learning, has gained great importance in

recent years due to the rapid increase in processing capacity, the availability of a large

amount of data and the emergence of different open source libraries that allow its use

in a simple and free way. Due to this fact, Deep Learning techniques have become

the state-of-the-art approach to work on different scientific problems and specifically

on image analysis. Image analysis problems often require repetitive time-consuming

tasks, and Deep Learning techniques are able to solve these repetitive tasks faster,

and in an efficient way. Specifically, these techniques have allowed great advances

in different fields such as security, medicine or biology. However, the use of Deep

Learning techniques is not trivial since they require a large amount of computational

resources, for example specific hardware such as GPUS or TPUS. In addition, it is

necessary to have a large amount of annotated data, a requirement that in fields such

as medicine or biology can be difficult to fulfil. Finally, expert knowledge of these

techniques is required both to build Deep Learning models and to use them. These

needs hinder the adoption and democratisation of Deep Learning methods in fields such

as medicine or biology where the amount of data resources is limited, and in general,

outside the field of computer science due to the need to expert knowledge. Thus, we

have identified three challenges related to the use of Deep Learning techniques: the

amount of data necessary for the use of these techniques, the democratisation of the

construction of Deep Learning models, and the democratisation of the use of Deep

Learning models.

The objective of this work is to analyse these challenges and create techniques and

tools that help mitigate them in the context of image classification models. First of

all, we have focused on reducing the amount of data required to use Deep Learning

techniques. In particular, we have developed a framework called CLoDSA that allows

anyone to use data augmentation methods for image classification, detection and seg-

mentation problems. In addition, we have created two semi-supervised learning algo-

rithms that allow us to train Deep Learning models using annotated and non-annotated

data. The first algorithm is based on data and model distillation, whereas the second

uses topological data analysis techniques.

In order to democratise the construction of Deep image classifications models, we

have developed an AutoML tool, called ATLASS, which assists the user in the entire

process of creating an image classification model, from annotating the images, yo the

creation and usage of such a Deep Learning model. This tool has been validated with

several datasets obtaining better results than other AutoML tools.
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The problem of democratising the use of Deep Learning models has been ap-

proached in two different ways. In the first place, to reduce the amount of resources

needed to use Deep Learning models, we have studied the combination of a semi-

supervised method with compact networks and quantification techniques. This ap-

proach has reduced the amount of computational resources needed to train and use

Deep Learning models. Moreover, models created with this approach have similar or

even better performance than standard size models and are also faster and lighter. Sec-

ondly, the democratisation of the use of Deep Learning models has been addressed by

creating a framework called DeepClas4Bio, which provides a common access point

for the classification models of various Deep Learning libraries and facilitates the in-

teroperability of bioimaging tools with Deep Learning models. In addition, a series of

plugins have been created to connect the main biomedical tools with such a framework.

Finally, the aforementioned techniques have been the basis to deal with two real

biomedical problems: the measurement of the propagation of bacteria in motility im-

ages, and the detection of diseases of the epiretinal membrane from fundus images.



Resumen

La Inteligencia Artificial, y en concreto el Aprendizaje Profundo (en inglés Deep
Learning), ha cobrado gran importancia en los últimos años debido al rápido aumento

de la capacidad de procesamiento, a la disponibilidad de una gran cantidad de datos y

al surgimiento de diferentes librerı́as de código abierto que permiten su uso de manera

sencilla y libre. Es por esto que las técnicas de Deep Learning se han convertido en

el estado del arte para trabajar en diferentes problemas cientı́ficos y en concreto en el

análisis de imágenes. A menudo, los problemas de análisis de imágenes requieren re-

alizar tareas repetitivas que consumen una gran cantidad de tiempo, y las técnicas de

Deep Learning son capaces de resolver estas tareas repetitivas de manera más rápida

y eficiente. En concreto, estas técnicas han permitido grandes avances en diferentes

campos como la seguridad, la medicina o la biologı́a. Sin embargo, el uso de las

técnicas de Deep Learning no es trivial. Para su uso es necesario contar con una gran

cantidad de recursos computacionales, por ejemplo hardware especifico como GPUS

o TPUS. Además, es necesario contar con una gran cantidad de datos anotados, algo

que en campos como la medicina o la biologı́a puede ser difı́cil de conseguir. Por

último, es necesario contar con un conocimiento experto de estas técnicas tanto para

construir modelos de Deep Learning como para usarlos. Estas necesidades dificultan

la adopción y democratización del Deep Learning en campos como la medicina o la

biologı́a, donde la cantidad de recursos de datos es limitada, y en general, en cualquier

campo distinto a las ciencias de la computación debido a la necesidad de un conoci-

mento experto. Ası́, hemos identificado tres desafios relacionados con el uso de las

técnicas de Deep Learning, que son: la cantidad de datos necesaria para el uso de es-

tas técnicas, la democratización de la construcción de modelos de Deep Learning y la

democratización del uso de modelos de Deep Learning.

El objetivo de este trabajo es analizar estos desafios y crear técnicas y herramientas

que ayuden a mitigarlos en el contexto de la clasificación de imágenes. En primer lugar

nos hemos centrado en reducir la cantidad de datos necesarios para usar las técnicas de

Deep Learning. Para ello, hemos desarrollado un framework llamado CLoDSA que

permite realizar aumento de datos para problemas de clasificación, detección y seg-

mentación de imágenes. Además, hemos creado dos algoritmos de aprendizaje semi-

supevisado que permiten entrenar modelos de Deep Learning usando datos anotados

y sin anotar. El primer algoritmo está basado en la destilación de datos y modelos,

mientras que el segundo utiliza técnicas del análisis topológico de datos.

Con el fin de democratizar la construcción de modelos de Deep Learning, hemos

desarrollado una herramienta de AutoML, llamada ATLASS, que asiste al usuario en
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todo el proceso de creación de un modelo de clasificación de imágenes, desde la ano-

tación de las imágenes, hasta la creación y uso de dicho modelo de Deep Learning.

Esta herramienta ha sido validada con varios datasets obteniendo mejores resultados

que otras herramientas de AutoML.

El problema de la democratización del uso de modelos de Deep Learning se ha

abordado de dos maneras distintas. En primer lugar, para tratar de reducir la cantidad

de recursos necesarios para el uso de estos modelos, se ha estudiado la combinación de

métodos semi-supervisados con redes compactas y técnicas de quantificación, lo que

ha permitido reducir la cantidad de recursos computacionales necesarios para entrenar

y usar modelos de Deep Learning. Los modelos creados con esta aproximación tienen

un rendimiento similar, o incluso superior, a los modelos de tamaño estandar y además

son más rápidos y ligeros. En segundo lugar se ha abordado la democratización del

uso de modelos de Deep Learning creando un framework llamado DeepClas4Bio, que

proporciona un punto de acceso común para los modelos de clasificación de varias

librerı́as de Deep Learning y facilita la interoperabilidad de las herramientas de bioima-

gen con modelos de Deep Learning. Además, se han creado una serie de plugins para

la conexión de las principales herramientas biomédicas con dicho framework.

Por último, las técnicas y herramientas nombradas previamente han sido la base

para abordar dos problemas biomédicos reales, como son la medición de la propagación

de bacterias en imágenes de motilidad y la detección de enfermedades de la membrana

epirretiniana a partir de imágenes de fondo de ojo.
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Connecting bioimaging tools with Deep Learning frameworks for image classi-

fication”. In: Computers in Biology and Medicine 108 (2019), pp. 49–56. ISSN:

0010-4825. DOI: 10.1016/j.compbiomed.2019.03.026. Impact Fac-

tor: 3.434, Q1(JCR).

• A. Inés, C. Domı́nguez, J. Heras, E. Mata, and V. Pascual. “Biomedical image

classification made easier thanks to transfer and semi-supervised learning”. In:
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0169-2607. DOI: 10.1016/j.cmpb.2020.105782. Impact Factor: 5.428,

Q1(JCR).

• A. Casado-Garcı́a, G. Chichón, C. Domı́nguez, M. Garcı́a-Domı́nguez, J. Heras

and A. Inés, M. López, E. Mata, V. Pascual, and Y. Sáenz. “MotilityJ: An open-

source tool for the classification and segmentation of bacteria on motility im-

ages”. In: Computers in Biology and Medicine 136 (2021), p. 104673. ISSN:

0010-4825. DOI: 10.1016/j.compbiomed.2021.104673. Impact

Factor: 4.589, Q1(JCR).

The rest of the memoir is organised as follows. The first chapter presents the mo-

tivation of our work, the problems that have been addressed and the objectives that we

would like to achieve. The second chapter shows the results obtained with our work,

and Chapter 3 summarises our contributions. Finally, in the last chapter, we present the

conclusions of this work and future lines of research. As appendixes, we provide the

research papers that form this work.

All the code associated with the projects developed in this work can be found in the

following repository https://github.com/adines/Thesis.
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Chapter 1

Introduction

In this chapter, we present the general context wherein our work is framed. In addition,

we study the challenges and problems that arise within the field of study of this work,

explaining in detail how they have been addressed in the literature, and the limitations

of those approaches. Finally, we set our objectives.

1.1 Motivation

Artificial Intelligence is a term that was coined in 1956 at the Dartmouth College Ar-

tificial Intelligence Conference [1], but it has been in recent years when it has become

one of the most important and promising fields of research in Computer Science. Ar-

tificial Intelligence is a set of techniques that try to imitate the capacity for analysis

and decision-making of human beings, allowing computers to solve repetitive prob-

lems and labour-intensive human tasks, but in a fast and automatic way [2]. Thus,

the advancement of this technology not only brings benefits and results in the field of

Computer Science, but it is also used in fields as diverse as Robotics [3], Biology [4]

or Medicine [5], among others. However, despite the fact that the usage of Artificial

Intelligence is widespread, and that we often interact with this technology in our daily

lives, the adoption of these new techniques is not straightforward in many fields. This is

because most users do not know how Artificial Intelligence works, and it is simply seen

as a black box that magically performs tasks [6]. Therefore, for Artificial Intelligence

researchers, in addition to make new advances in the field, one of their most impor-

tant tasks should be to democratise these new techniques and develop human-centred

systems which bring Artificial Intelligence closer to the real needs of people [7].

Within Artificial Intelligence, Computer Vision is a discipline where the democrati-

sation of the tools is utterly important. Computer Vision methods are focused on

analysing and processing images and videos, and extracting information from them.

Some examples where Computer Vision methods are applied are: disease detection [8],

facial recognition [9], or autonomous driving [10]. These applications are usually

based on classifying, detecting, measuring or counting elements within an image or

video; and most of these tasks might seem simple since human beings carry them out
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4 Chapter 1: Introduction

instinctively, but we have been trained throughout our entire lives to conduct them in

an automatic way. However, these tasks are complicated for a computer due to the

semantic gap [11]. This term refers to the fact that computers see images as matrices,

which entails a series of challenges such as changes in point of view or scale, lighting

changes, or warping, that make studying images with a computer complex. In addition,

as the number of images increases, manually analysing images becomes an unafford-

able task; and, therefore, computer-based methods are required. A context where this

is common is life-science research.

The analysis of images in life-science is, in many cases, conducted manually [12].

This is a tedious, expensive and unreproducible process; specially, when the number of

images increases — a common scenario due to the new image acquisition methods [13].

Therefore, computer based methods are gaining great importance to tackle life-science

tasks such as the diagnosis of diseases not only in humans [8] but also in plants [14],

drug discovery [15], or monitoring climate change [16]. These tasks involve solving

problems such as identifying, detecting and segmenting objects of interest in a given

image; and one of the most common problems in this context is image classification.

Image classification is a computer vision task that assigns a label chosen from a

fixed set of categories to a given image. Image classification methods have become

an instrumental tool in life-sciences for tasks such as the classification of breast can-

cer histology images [5], the classification of echocardiograms [17], the detection and

classification of nuclei in routine colon cancer histology images [18], the classification

of lung nodules on computed tomography images [19], or the classification of skin

cancer images [20]. Image classification problems have been tackled in the literature

using different techniques [21–23], but Machine Learning and more concretely Deep
Learning methods have offered the best results in recent years.

Up to 2010, the traditional approach to deal with image classification tasks was to

use supervised Machine Learning techniques. Machine Learning is a set of Artificial

Intelligence techniques based on the idea that systems can learn from data, identify

patterns, and make decisions with minimal human intervention [24]. Specifically, su-

pervised Machine Learning techniques are based on optimising a set of parameters

from a mathematical function using annotated data (that is, data with the expected re-

sponse value) [25]. Such a process is known as training and produces a model (the

optimised function) that allows us to extract information for new data. In the context

of image classification, the classification process had two phases, see Figure 1.1. In

a first step, a series of descriptors were extracted from the image, using techniques

such as LBP [26], SIFT [27], SURF [28], or ORB [29]. These descriptors were the

input data of the Machine Learning model, called the classifier. In a second step, this

model was trained with these descriptors. Finally, the trained model allowed us, from

the descriptors of a new image, to classify it. The main problem with this process is

that its performance is closely linked to the selection of good descriptors. This fact

makes expert knowledge necessary for their extraction. Furthermore, this process is

specific to each problem, which makes automation more difficult and avoids reusing

the knowledge learned in one task for another. Deep Learning methods allow us to

solve these problems because they learn the necessary descriptors for a given problem

automatically.

The explosion of Deep Learning techniques has been one of the fundamental rea-
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son of the rise of Computer Vision and Artificial Intelligence in the last 10 years [30].

Deep Learning is a set of Machine Learning techniques, see Figure 1.2, that are based

on neural networks, and that arose from the idea of the perceptron developed by Frank

Rosenblatt in 1959 [31]. These networks offer numerous layers of abstraction that

make possible to automatically learn representations of unstructured data such as im-

ages, text or audio. In particular, the layers of these networks allow us to learn the

descriptors of the data, from very basic descriptors in the lower layers to high-level

descriptors in the upper layers. There are several types of neural networks including

Convolutional Neural Networks (CNNs) [32], Recurrent Neural Networks [33], Graph

Neural Networks [34] or Transformers [35]; and CNNs, and recently Transformers,

are the most widely used networks for Computer Vision since lines, edges or shapes

are detected in the lower layers, and as we progress through the layers, more complex

and specific features related to the particular problem are learned, such as eyes, ears or

even faces [36]. In this way, the learning process of Deep Learning models is carried

out in a single step where the descriptors are learned and the model is trained, unlike

the traditional approach where the learning process was carried out in two steps, see

Figure 1.1.

Figure 1.1: Comparative diagram of the traditional approach versus the Deep Learning approach.

Deep Learning techniques have gained importance in recent years due to three rea-

sons [37]. First of all, the fast increase in computer processing capacity, with the cre-

ation of specific hardware such as GPUs (Graphical Processing Units) or TPUs (Ten-

sor Processing Units) which allows us to train Deep Learning models in a reasonable

time. Secondly, the availability of a large amount of data, an instrumental ingredient

to train Deep Learning models, has considerably grown. And finally, the availability

of open-source libraries that allow scientists to use these techniques simply and freely.

For all these reasons, Deep Learning techniques have become part of the toolbox of

numerous life scientists, allowing numerous advances in the analysis of images, texts

or audios, and facilitating numerous contributions in different fields [13]. However,

the use of these techniques is not straightforward and they have different limitations

and problems that must be addressed. In this work, we have focused on three of them

that are especially relevant in the context of image classification in life-sciences: the
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great amount of resources (both data and computational) that are required to train the

Deep Learning models, the challenges of constructing Deep Learning models, and, the

difficulties of using trained Deep Learning models.

Figure 1.2: General diagram of the relations among Artificial Intelligence, Machine Learning,

Deep Learning and Computer Vision.

The next three sections are devoted to explain these problems in detail and to

present the available solutions in the literature.

1.2 Challenge 1: The amount of resources
Deep Learning methods are data hungry; that is, they require a great amount of anno-

tated images to obtain good results [38]. At first glance, this may not seem a problem

due to the large amount of images that is generated in a daily basis, and the existence

of large datasets such as Imagenet [39], with more than 14 million images; CoCo [40],

with more than 330 thousand images; or JFT [38], with 300 million images. However,

image acquisition is not easy in some biomedical contexts due to, for example, a lim-

ited budget to obtain samples, the privacy of the data, the need to perform an invasive

medical procedure, or destructive imaging processes that limit the amount of images

that can be acquired. In addition, the images have to be annotated. This means that, for

instance, in the image classification context for each image we must provide its asso-

ciated label. The annotation of images is one of the main problems of Deep Learning

because it is a very time-consuming task and, in biomedical contexts, it requires expert

knowledge. For this reason, the application of Deep Learning models in the biomedical

field is not straightforward [41] and it is necessary to use different techniques, such as

transfer learning, semi-supervised learning or data augmentation, that allow us to apply

Deep Learning techniques without having a large amount of annotated data. In addi-

tion, Deep Learning models are not only data demanding, but also, computationally

demanding in training time. For instance, training ResNet-50, an image classification
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model, with the ImageNet dataset took 8.7 minutes in 1024 Pascal GPUs [42], and such

an amount of computational resources is not affordable by everyone.

Transfer learning is one of the most used techniques to solve the problem of work-

ing with limited resources [43]. This technique has been successfully used for clas-

sifying medical images [44], high-resolution images [45] and brain tumours in MR

images [46]. Transfer learning consists in learning a general representation for solving

a problem where we have enough annotated data, and, then, transferring such a knowl-

edge to a more specific task wherein we have less data. As we can see in Figure 1.3,

in the first stage of transfer learning, we (1) train a model in a general task of classi-

fying natural images using a dataset like ImageNet [39], which allows the models to

learn a large number of useful features. Then, in a second stage, we (2) initialise a

model with the weights learned in (1), and (3) refine this model using a small dataset

for a particular task. The problem with this approach is that when the domain of the

target task is far from the domain of the source task; that is, the characteristics of the

target images differ considerably from the characteristics of the source images, transfer

learning does not obtain results as good as when the domains of the tasks are closer [47,

48]. This happens especially when working with biomedical images such as magnetic

resonance images, OCT images or infrared images. Namely, the datasets available in

the biomedical field are usually relatively small compared to the large datasets like Im-

ageNet, CoCo or JFT used for transfer learning, and when models are trained in those

small biomedical datasets, problems such as overfitting arise [49].

Deep Learning networks are giant mathematical models capable of learning a large

number of features; however, when the number of examples used for learning is not

large enough, these models are capable of memorising all the characteristics of these

examples, resulting in a model that perfectly recognises the training data but it is un-

able to generalise this knowledge to new samples. This problem is called overfitting,

see Figure 1.4. In order to avoid overfitting, regularisation techniques [50] can be

applied during the training process. The main regularisation techniques used in the

literature are L1 and L2 regularisation [51], dropout [52], data augmentation [53] and

early stopping [54]. Among them, the technique that offers the best results is data aug-

mentation [53]. Data augmentation, see Figure 1.5, consists in increasing the number

of training images by carrying out small transformations that do not alter the class of

the images, and then training a model with both the initial images and the augmented

ones. Some of those transformations are translations, rotations or colour changes. The

problem with these transformations is that they cannot always be applied since some-

times they can change the interpretation of the image when applied to them. In the

classification context, transformation techniques for image augmentation do not gener-

ally change the class of an image, but they might alter the annotation in other problems

like detection or segmentation. For instance, applying the vertical flip operation to

a melanoma image does not change the class of the image; but the position of the

melanoma in the new image has changed from the original image. Therefore, it is

necessary to develop different techniques for increasing data suitable for each specific

task.

Data augmentation makes possible to largely fix the overfitting problem produced

when we have few data points by introducing new examples artificially. However, in

many cases this increment is insufficient and it is necessary to obtain more annotated
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Figure 1.3: General diagram of the training process of a Deep Learning model using transfer

learning.

data. Sometimes, it is relatively easy to acquire new images but label them becomes

a complicated task. To solve this problem, two learning methods have arisen: semi-

supervised [55] and self-supervised [56] methods.

Semi-supervised learning methods use both labelled and unlabelled data, whereas

self-supervised methods use only unlabelled data. In particular, as we can see in Fig-

ure 1.6, semi-supervised methods are an approach that in general (1) defines a base

model that is trained on labelled data, (2) uses the model to predict labels for unla-

belled data, and, finally, (3) initialise a model with the weights learned in (1), and (4)

retrains the model with both the most confident predictions produced in (2) and the

initial data; thus, enlarging the labelled training set. Semi-supervised learning meth-

ods can be grouped into three main types: self-training, consistency regularisation and

hybrid methods [57]. In self-training methods, a model is trained on labelled data and

used to predict pseudo-labels for the unlabelled data. The model is then trained on both

ground truth labels and pseudo-labels simultaneously. Some examples of these meth-

ods are pseudo label [58] and noisy student [59]. Consistency regularisation methods,

such as virtual adversarial training [60], mean teacher [61] or π-models [62]; use the

idea that the model prediction on an unlabelled image should remain the same even
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(a) (b) (c)

Figure 1.4: (a) Underfitting, (b) correct desired performance and (c) overfitting.

DB 1 DB 1'
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Figure 1.5: General diagram of the training process of a Deep Learning model using data aug-

mentation.

after adding some noise. Finally, hybrid methods combine ideas from self-training and

consistency regularisation along with additional components for performance improve-

ment. These methods include FixMatch [63] and MixMatch [64].

In the case of self-supervised methods, see Figure 1.7, they (1) define a base model

that is trained on unlabelled images using an auxiliary task that aims to learn a general

representation of images. Then, (2) a model is initialised with the weights learned in

(1) and retrained with the labelled data. Self-supervised methods learn useful represen-

tations without using a large amount of labelled data. These auxiliary tasks employed

in self-supervised learning can be grouped into three main types: image reconstruc-

tion [65], visual common sense tasks [66] and contrastive learning [67]. Image recon-

struction refers to tasks that consist in correcting the information of an image, which

is either corrupt or has partial only information. Examples of these tasks are denois-

ing autoencoders [68], in-painting [69] or colourisation [69]. Visual common sense

tasks, such as rotation [70], relative position [66] or jigsaw puzzles [66], focus on the

positions of the main features within an image by detecting possible changes such as

rotations or rearrangements. Finally, contrastive learning methods [67] are a popular

form of self-supervised learning that aim to learn representations by enforcing similar

elements to be equal, and dissimilar elements to be different. The main problem with

all self-supervised learning methods is that they have been mainly tested with huge

natural image datasets [56], and it is not clear whether they are applicable to other kind

of images, in particular in life-science.

In this section, we have seen that to solve the problem of the large amount of an-

notated images necessary to obtain a good performance of Deep Learning techniques,

there are several alternatives, such as transfer learning, data augmentation or semi-
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Figure 1.6: General diagram of the training process of a Deep Learning model using semi-

supervised learning.

supervised and self-supervised techniques, but they still have some limitations. In

addition, except in the case of data augmentation, most of these techniques are not

implemented in simple to use libraries that facilitate their use. Due to this fact, it is

difficult to create Deep Learning models using these techniques as we will see in the

next section.

1.3 Challenge 2: Democratisation of models’ construc-
tion

The construction of Deep Learning models is not straightforward since it often requires

expert knowledge about libraries and tools that do not usually belong to the toolbox of

life scientists. For example, some programming and image processing skills and some

experience with Deep Learning techniques are required. In addition, there are currently

a large number of approaches that allow users to solve the same problem (for instance,

the timm library1 provides more than 300 models for image classification); so, it is

interesting to try different alternatives [71]. This can be tricky due to the large number

of different frameworks, models, settings and hyperparameters of each alternative. This

selection process is usually called a Machine Learning pipeline. Unfortunately, there

1https://timm.fast.ai/
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Figure 1.7: General diagram of the training process of a Deep Learning model using self-

supervised learning.

is no rule of thumb in about which direction to go to select the correct parameters in

such a pipeline.

To solve this problem, AutoML systems have arisen [72]. These systems aim to fa-

cilitate the construction of models for domain experts with a limited Machine Learning

background. Since there are a lot of alternatives for each step of a Machine Learning

pipeline (for instance, the algorithm used, or the selection of hyperparameters) Au-

toML techniques try to find the best combination for each particular problem. In the

context of image classification, we can find different AutoML tools, such as, Google

AutoML [73], AutoKeras [74] or AutoGluon [75]. However, these systems are focused

on Neural Architecture Search (NAS) methods [76] for image recognition, a technique

for automating the design of artificial neural networks. NAS methods learn a network

topology that can achieve the best performance on a certain task based on three com-

ponents: search space, search algorithm and child model evolution strategy. Even if

this approach has outperformed manually designed architectures [77], the adoption of

NAS techniques by non-expert users to construct recognition models is far from triv-

ial; mainly, because these techniques are computationally intensive (for instance, the

design of the NasNet architecture took 1800 GPU days [77], and the AmoebaNet ar-

chitecture took 3150 GPU days [78]) and require huge datasets (usually, datasets like

ImageNet [39] or CIFAR [79], that contain hundred of thousands, or even millions,

annotated images). In addition, NAS techniques require some prior knowledge about
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typical properties of Deep Learning architectures to simplify the search [76], and also

require experience to configure the tools implementing those methods.

Another limitation of AutoML tools is that they do not include techniques such

as transfer learning, data augmentation, semi-supervised learning or self-supervised

methods that we have seen before and that could help to improve the construction of

models. However, integrating these methods into an AutoML tool is not simple since

these techniques also have a large number of hyperparameters that need to be config-

ured, which makes their adoption more difficult. This problem can be solved by using a

different AutoML approach focused on automatically searching the best configuration

from a set of given Machine Learning algorithms. This approach has been successfully

implemented in tools like SMAC [80], Auto-WEKA [81], Auto-Sklearn [82] or Au-

toAlbument [83] for structured data but it has not been studied for unstructured data

(like images or text). Due to these reasons, AutoML methods and tools are difficult to

adopt in the life-science context, and it is necessary the development of new AutoML

methods and tools that work with a limited amount of annotated images and resources.

Up to now, we have seen a lot of solutions that are focused on how to build and

train a Deep Learning model; however, there is still a very important step remaining,

that is how to use those trained models.

1.4 Challenge 3: Democratisation of models’ usage

Currently, we can find a large number of trained models ready to be used2. However,

the use of these models by life scientists without a Deep Learning background, or by

users in general, is not straightforward. This is due to the fact that to use these mod-

els it is necessary to have some knowledge about programming and the framework

where the model was trained. To avoid this situation, and bring Deep Learning models

closer to the end users, the usual procedure is to embed these models into applica-

tions, allowing their use in a transparent way. Thus, we can find Deep Learning models

in applications and devices that we use in a daily basis, such as smartphones, smart-

watches or electronic devices in general [84]. These devices have space and resource

restrictions, however traditional Deep Learning models are expensive in terms of com-

putation, memory and power consumption, which make it difficult to integrate them

into these devices [85]. Furthermore, in the biomedical field, the adoption of these

models by life scientist is not straightforward since Deep Learning models should be

integrated into bioimaging tools such as ImageJ [86], Icy [87] or CellProfiler [88].

Usually the connection between these tools and Deep Learning models is not easy due

to the different characteristics of each application, or the language in which they were

implemented. So, we can detect two major problems in the democratisation of Deep

Learning models’ usage: (1) the resource constraints of the electronic devices and (2)

the difficulties of connecting these models with specific tools.

The first problem that we have mentioned is that Deep Learning models are not

only data demanding, but also, computationally demanding during inference time (for

instance, a VGG16 model takes 0.125 seconds to infer the result for a given image

2https://huggingface.co/
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in a NVIDIA TX1 [89]). To solve this problem, and reduce the resources that are

required when deploying and using a model in edge devices, a new kind of deep neural

networks, called compact networks or hardware-aware networks, have been designed

taking into account not only their accuracy, but also its computational complexity [90].

Initially, those networks were manually designed by pruning bigger networks [91],

building networks based on operations that are cost-friendly [92], or applying a number

of network compression techniques [93]. Those manual methods have been recently

replaced by neural architecture search (NAS) techniques that automatically search for

the most accurate and efficient architecture under memory and space constraints [90].

However, the performance in terms of accuracy of compact networks is usually lower

than standard size networks, which can be a problem in fields where a high performance

is necessary. Furthermore, most of these networks have been designed, trained and

tested using large natural image datasets such as Imagenet [39], and it is worth studying

whether they work well in life science tasks.

A different approach that tackle the problem of constrained resources is the use of

techniques that reduce the size of standard-size networks while preserving their perfor-

mance, such as pruning [91] or quantification [94]. Pruning is a technique that consists

in eliminating connections and parameters of a network in order to reduce its size and

maintain the precision of the network; whereas, model quantisation consists in convert-

ing the parameters of the network from floating point numbers to 4 or 8 bit integers,

which greatly reduces the size of the network as well as increases its speed due to the

fewer number of floating point operations that have to be performed.

Both compact deep networks, and pruning and quantisation methods have been

successfully employed in the biomedical context for glaucoma detection [95], diabetic

retinopathy diagnosis [96] or skin cancer classification [97]. Those models are usually

trained by applying transfer learning and generally using manually designed compact

networks such as ResNet-18 [95] or MobileNet [97]. However, automatically designed

and quantized compact models are scarce in this context; probably, due to the fact that

they are optimised for natural images from the ImageNet challenge; and, it is not clear

whether these models can be properly transferred to biomedical images, or whether

they obtain better results than manually designed compact networks. In addition, these

networks are usually the ones that are largely forgotten when trying new techniques

such as semi-supervised or self-supervised methods, since accuracy tends to prevail

over efficiency. Something similar happens when we use AutoML tools to build Deep

Learning models since these compact networks are not usually considered.

The second problem to be addressed for the democratisation of models’ usage in

life-science is their connection with bioimaging tools. Most bioimaging applications

such as ImageJ [86], Icy [87] or ImagePy [98] have the common feature that they

allow their users to make plugins to increase their functionality. There are several

projects that connect a concrete bioimaging tool with a particular Deep Learning or

Machine Learning library. The ImageJ-TensorFlow plugin [99] connects ImageJ with

the Machine Learning framework TensorFlow [100]; similarly, CellProfiler [88] has

been connected with both TensorFlow and Caffe [101]; another project that integrates

Machine Learning techniques in ImageJ is Trainable Weka Segmentation [102]. Rapid

Learning [103] is a similar project that integrates Machine Learning techniques into

Icy. Also, KNIME [104], a data analytics platform, has included some Deep Learning
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frameworks and models in its platform. These are some of the tools and plugins that

connect biomedical tools with Deep Learning models. However, this approximation

usually leads to the creation of ad-hoc plugins and not in a general approach that facili-

tates the connection with new models. Recently, a more general approach has emerged,

called DeepImageJ [105], which allows the connection of Deep Learning models and

tools for pixel and object classification, instance segmentation, denoising and virtual

staining with ImageJ. However, this approach focuses exclusively on ImageJ; and it

cannot be used in other bioimaging tools. Therefore, it is necessary the creation of a

common procedure that allows the general connection of biomedical tools and Deep

Learning models.

1.5 Objectives
Up to now, we have presented the context where we can frame our research: the

democratisation of Deep Learning methods. Taking into account the challenges and

problems posed in the previous sections, this work proposes a series of objectives that

would help to reduce the amount of resources that are required to train Deep Learn-

ing models, and facilitate their construction and usage. Thus, the achievement of the

following objectives will mark the lines of our work.

O1. Develop techniques that reduce the amount of annotated images and computa-

tional resources that are required to train and use Deep Learning models.

O2. Develop techniques and tools that allow users to automatically construct Deep

Learning models without having expert knowledge.

O3. Develop techniques to reduce the size and computational resources required to

apply Deep Learning techniques. In addition, these techniques have to allow the

construction of new models capable of have a good performance on edge devices

in various fields of life sciences.

O4. Implement libraries and tools that facilitate the connection of Deep Learning

techniques with image analysis tools used in different fields. These libraries and

tools must be simple and adapted to be used by life scientists without a Deep

Learning background.

O5. Use the methods, libraries and tools developed in the previous objectives to

tackle actual life science tasks to show the applicability and usefulness of our

methods.

In the next chapter, we present how these objectives have been achieved, as well as

the main results that we have obtained.
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Results and discussion

This chapter presents the results obtained in this work, and that have been collected in

the different publications that make up this memoir. These results are the consequence

of completing the objectives set at the end of the previous chapter. In Table 2.1, we

can see a summary of our results together with their corresponding objective, and the

publications wherein they have been presented. Each of these results and how they

have been achieved are detailed below.

2.1 Objective O1: Reducing the amount of data
resources

To achieve our first objective, which consists in reducing the amount of annotated im-

ages and computational resources that are required to train and use Deep Learning

models, we have studied two different approaches that are: (1) developing techniques

to increase the number of images available to train a model; and (2) studying tech-

niques that allow the reduction of the number of annotated images that are needed to

train a model.

2.1.1 Facilitating Data Augmentation
First, we have studied data augmentation techniques to increase the number of images

available to train a given model [53]. There are numerous libraries that allow us to

perform data augmentation in a simple way, such as Imgaug [112], Augmentor [113],

Albumentations [114] and AutoAugment [115]. These libraries were initially devel-

oped by focusing on data augmentation for classification problems; however, in recent

years they have increased their functionality allowing users to perform data augmen-

tation for detection and segmentation task regardless of the underlying Deep Learning

framework. By reviewing existing data augmentation tools, we found out that most

of these tools were designed to perform data augmentation on classification problems

for 2-dimensional images. In addition, each tool had different image augmentation

techniques. Our work has been focused on allowing the use of data augmentation

15
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N. Results Objective Contributions

R1 Creation of a data augmentation library for object classification, localisation,

detection, semantic segmentation and instance segmentation.

O.1 [106]

R2 Development of several semi-supervised methods to create Deep Learning mod-

els from a small number of images.

O.1 [107]

R3 Development of a Deep Learning library and an application that assists the user

in the entire process of creating a Deep Learning model, from the annotation of

images to the final creation of the model.

O.2 [107]

R4 Development of a library that facilitates the creation of networks adapted to

edge-devices, using different techniques such as compact networks or quantifi-

cation.

O.3 [108]

R5 Creation of a library that provides a common access point for classification

models of several Deep Learning frameworks and several plugins that connect

this API with different bioimaging tools.

O.4 [109]

R6 Resolution of different problems in the biomedical field using the techniques

previously developed.

O.5 [110, 111]

Table 2.1: Results obtained during the completion of this work, together with the objectives

reached with each result and the publication in which it was collected.

techniques on different problems. As a result, we have created a data augmentation

library, called CLoDSA, that was the first image augmentation library for object clas-

sification, localisation, detection, semantic segmentation, and instance segmentation

that worked not only with 2-dimensional images but also with multi-dimensional im-

ages. Currently, data augmentation tools have included more functionalities and most

of them can be used for detection, semantic segmentation, and instance segmentation.

However, CLoDSA is still the only one that allows users to work with videos as well

as changing the annotation of an image. Furthermore, this library is independent of

the format of the images to be augmented as well as the Deep Learning library that is

going to be used to train the models.

CLoDSA augmentation procedure is flexible to adapt to different needs and it is

based on six parameters: the dataset of images, the kind of problem, the input annota-

tion mode, the output annotation mode, the generation mode, and the techniques to be

applied. The dataset of images is given by the path where the images are located; and

the kind of problem is either classification, localization, detection, semantic segmenta-

tion, instance segmentation, stack classification, stack detection, or stack segmentation

(the former five can be applied to datasets of 2-dimensional images, and the latter 3 to

datasets of multi-dimensional images). A summary of the different options for the input

and output annotation mode can be seen in Table 2.2. The generation mode indicates

how the augmentation techniques will be applied, linear or power. In the linear mode,

given a dataset of n images, and a list of m augmentation techniques, each technique

is applied to the n images producing n × m images. The power mode is a pipeline

approach where augmentation techniques are chained together. In this approach, the

images produced in one step of the pipeline are added to the dataset that will be fed in

the next step of the pipeline producing a total of (2m − 1) × n new images (where n
is the size of the original dataset and m is the cardinal of the set of techniques of the

pipeline). Finally, the last parameter is the set of augmentation techniques to apply. We

can distinguish two types of techniques depending on whether they change the position

of the object, position variant techniques, or not, position invariant techniques. The list
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of techniques available in CLoDSA is given in Table 2.3, and a more detailed explana-

tion of the techniques and the parameters to configure them is provided in the project

webpage1.

Data Task Input format Output format

2D Images

Classification A folder for each class of image

A folder for each class of image

An HDF5 file

A Keras generator

Localization Pascal VOC format
Pascal VOC format

An HDF5 file

Detection
Pascal VOC format Pascal VOC format

YOLO format YOLO format

Segmentation A folder with masks and images

A folder with masks and images

An HDF5 file

A Keras generator

Inst. Seg
COCO format COCO format

JSON format from ImageJ JSON format from ImageJ

ND Images

Vid Class A folder for each class of video A folder for each class of video

Vid Detect Youtube BB format Youtube BB format

Stack seg Tiff files with stack and mask Tiff files with stack and mask

Table 2.2: List of supported annotations formats in CLoDSA.

Therefore, the first contribution of this work is an approach that allows anyone to

automatically apply image augmentation techniques to several computer vision prob-

lems. Such a method was implemented in CLoDSA, the first library devoted to image

augmentation for object classification, localization, detection and semantic segmenta-

tion.

2.1.2 Semi-supervised learning methods
With CLoDSA, we studied how to augment the size of a dataset of images for train-

ing Deep Learning models; in addition, we have also studied different techniques that

allow us to reduce the number of annotated images that are needed to train a model.

In particular, we have studied two different approaches, a classical approach using

semi-supervised learning methods and transfer learning techniques, and a topological

approach that combines semi-supervised learning with Topological Data Analysis.

Distillation approach

In the first approach, the techniques that we studied were semi-supervised learning

methods, in particular, data and model distillation, and transfer learning. Data and

model distillation are two forms of self-training [55], a special kind of semi-supervised

1https://github.com/joheras/CLoDSA
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Position invariant techniques Position variant techniques

Average blur Crop

Bilateral blur Elastic deformation

Brightness noising Flip

Color noising Rescale

Contrast noising Rotation

Dropout Skewing

Gamma correction Translation

Gaussian blur

Gaussian noise

Hue jitter

Median blur

Normalization

Random erasing

Salt and pepper

Saturation jitter

Sharpen

Value jitter

Channel shift

Lightning

Change space color

Table 2.3: List of augmentation techniques available in CLoDSA divided into two types of tech-

niques depending on whether they change the position of the object, position variant techniques,

or not, position invariant techniques.

learning. In the case of data distillation [116], given a model trained on manually

labelled data, this technique applies such a model to multiple transformations of unla-

belled data, ensembles the multiple predictions, and, finally, retrains the model on the

union of manually labelled data and automatically labelled data. In the case of model

distillation [117], several models are employed to obtain predictions of unlabelled data;

subsequently, those predictions are ensembled, and used to train a new model. Both

techniques can also be combined as shown in [116]. A simpler variant is plain distilla-

tion, which consists in using a single model trained on manually labelled data to obtain

predictions of unlabelled data.

We also studied the application of these techniques into the biomedical field, whose

images differ from the natural images generally used. Specifically, we carried out an

exhaustive study of the behaviour of different models trained by combining a new semi-

supervised method with transfer learning in 10 biomedical datasets with few annotated

images, see Table 2.4. In particular, we developed an iterative process, see Figure 2.1.

The process starts by training m models {M1, . . . ,Mm} using an annotated dataset

(X,Y ) where X is a set of images and Y the corresponding labels. We train each

model by applying fine-tuning from the ImageNet challenge and following the two-

stage procedure presented in [118] — in this way, we take advantage of the numerous
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descriptors learned from the Imagenet dataset. In the first stage of the training process,

we replace the last layers of the model (that is, the layers that give us the classification

of the images), with new layers adapted to the number of classes of each particular

dataset. Then, we train these new layers with the data of each particular dataset for two

epochs. Since training only the last layers of a model may not be enough to obtain a

good performance in the new dataset, it is necessary to conduct a second stage. In the

second stage, we unfreeze the whole model and retrain all the layers of the model with

the new data for several epochs – this parameter can be configured. When training all

layers of the model, we should be careful with the learning rate used. The lower layers

of the model have the most basic descriptors (colours, borders, shapes, . . .), which are

common for all images, and as we go up of our model, the descriptors become more

specific to the used data. Thus, the idea is to modify the lowest descriptors minimally,

and make a greater modification in the upper layers of the model. This is translated

into using a low learning rate, lr, in the initial layers and a higher learning rate in the

following layers. Then, to train our models, we use a learning rate slice ( lr
100 , lr), that

starts at a low learning rate ( lr
100 ) for the lower layers and increases as we move through

the layers until we reach lr in the higher layers. In addition, we look for this specific

lr that improves the performance of our model; i.e., we select lr that decreases the loss

to the minimum possible value using the approach presented in [119]. In particular, we

select the learning rate with the lowest loss value, and, in case that this learning rate is

too small (lr < 1e−5), we change its value to 1e−3 – this parameter was experimentally

fixed.

Dataset Number of Images Number of Classes Description

Blindness [120] 3662 5 Diabetic retinopathy images

Chest X Ray [121] 2355 2 Chest X-Rays images

Fungi [122] 1204 4 Dye decolourisation of fungal strain

HAM 10000 [123] 10015 7 Dermatoscopic images of skin lesions

ISIC [124] 1500 7 Colour images of skin lesions

Kvasir [125] 8000 8 Gastrointestinal disease images

Open Sprayer [126] 6697 2 Dron pictures of broad leaved docks

Plants [127] 5500 12 Colour images of plants

Retinal OCT [121] 84484 4 Retinal OCT images

Tobacco [128] 3492 10 Document images

Table 2.4: Description of the biomedical datasets employed in our experiments.

Now, for each unlabelled image x̄ ∈ X̄ , where X̄ is a dataset of unlabelled images,

and using t image transformations T = {T1, . . . , Tt}, we generate t + 1 new images

T0(x̄), T1(x̄), . . . , Tt(x̄), where T0 is the identity. Subsequently, we apply each model

Mi to each Tj(x̄) and obtain as a result (ȳi,j , p̄i,j) where ȳi,j is the class predicted by

Mi for Tj(x̄), and p̄i,j is its associated confidence. After that, we ensemble the pre-

dictions {(ȳi,j , p̄i,j)}i∈[1,...,m],j∈[0,...,t] by using the weighted majority voting scheme,

where the weights are the confidence score of each prediction, and obtain (ȳ, p̄). Fi-

nally, if p̄ is over a fixed threshold, then we add {(x̄, ȳ)} to (X,Y ) and remove x̄ from

X̄; and, the process is iterated. The process ends when there are not unlabelled images

— this condition can be replaced by others, such as a maximum number of iterations,
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Manually labelled
images

(1) Train models
(2) Ensemble + 

Test-time augmentation

Iteration n

Images 
remain

Threshold
passed

Models

[yes]

[no]

[yes]

[no]

Automatically labelled
images

Unlabelled images

Automatically labelled
images

Unlabelled images

Trained model

Figure 2.1: Workflow of an iteration of our semi-supervised learning method. Inputs of the iter-
ation: set of manually labelled images, set of automatically labelled images and set of unlabelled

images. Outputs of the iteration: set of automatically labelled images and set of unlabelled im-

ages. Output of the process: Trained model.

or a condition on model improvement. The result of this process is a model; in par-

ticular, the model with the best performance with respect to an independent labelled

test set, in the last iteration. From this general process we defined 7 semi-supervised

learning methods:

No Distillation (N.D.): This is the most basic case and occurs when there are not

unlabelled images in the original dataset, that is, X̄ = ∅. Then, the process is reduced

to train and select the best model model with respect to an independent test set.

Data Distillation without thresholding (D.D.): This case appears when, instead of

having a set of base models, we only train one model (M = {M1}), and we do not set

a threshold; that is, the threshold value is 0. In this case, the process does not iterate,

since all the unlabelled images are annotated in the first iteration.

Iterative Data Distillation (I.D.D.): As in the previous case, a single model is trained

(M = {M1}); but we establish a threshold to be passed, which leads us to have, prob-
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ably, several iterations.

Model Distillation without thresholding (M.D.): This case starts by training a set

of models; but, we do not perform test-time augmentation of the unlabelled images,

that is, (T = {T0}), and only ensemble the model predictions of the given image.

In addition, the value of the threshold is set to 0; that is, we do not have an iterative

process.

Iterative Model Distillation (I.M.D.): In this case, we also start by training a set of

models, and as in the previous case, we do not perform test-time augmentation (T =
{T0}). The main difference with the previous case is that we establish a threshold,

which leads us to have an iterative process.

Model + Data Distillation without thresholding (M.D.D): This case is very similar

to the general workflow. We use a set of models and test-time augmentation to anno-

tate the unlabelled images. The only difference is that the threshold is set to 0; and,

therefore, we do not have an iterative process.

Iterative Model + Data Distillation (I.M.D.D): This is the general workflow ex-

plained previously.

For testing the aforementioned methods, we split our 10 datasets of the benchmark

into two different sets: a training set with the 75% of images and a testing set with the

25% of the images. With this division, we performed an analysis of the seven processes

explained before: No Distillation (N.D.), Data Distillation (D.D.), Iterative Data Distil-

lation (I.D.D), Model Distillation (M.D.), Iterative Model Distillation (I.M.D.), Model

+ Data Distillation (M.D.D.) and Iterative Model + Data Distillation (I.M.D.D). For

each process, we carried out three different experiments, starting from 25, 50 and 75

annotated images of the training set per class and considering the rest of the training

images as unlabelled, we applied the seven processes; and, additionally, we applied the

N.D. process to the whole dataset. Furthermore, for the processes that use test-time

augmentation, we selected five augmentation techniques, namely, horizontal flip, ver-

tical flip, horizontal and vertical flip, blurring, and gamma correction. In the model

distillation processes, we used the architectures ResNet34, ResNet50, ResNet101 and

DenseNet121. Finally, for the iterative processes, we established a threshold value of

0.8.

The result of these experiments can be seen in Table 2.5 and Figure 2.2, we can

notice that the improvements regarding the ND method achieved by using our methods

range from a 3% in the worst case, up to a 10% in the best case. We can also notice

that the iterative versions of our processes produce better results than their non-iterative

counterparts in all the cases but one. In addition, we can observe that as we increase

the number of images initially annotated, the results considerably improve. Moreover,

in some cases, it is possible to get results close to those obtained using the N.D. process

applied to the whole dataset by using just a small part of the data.
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25 per class 50 per class 75 per class
Full

N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D. N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D. N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D.

Blindness 0.66 0.71 0.73 0.70 0.72 0.70 0.73 0.71 0.76 0.78 0.72 0.71 0.74 0.76 0.72 0.76 0.76 0.75 0.76 0.75 0.76 0.83

Chest X Ray 0.73 0.73 0.78 0.74 0.74 0.76 0.83 0.85 0.91 0.90 0.88 0.92 0.89 0.88 0.87 0.88 0.83 0.90 0.91 0.90 0.90 0.93

Fungi 0.74 0.69 0.73 0.74 0.74 0.74 0.75 0.80 0.82 0.79 0.82 0.83 0.84 0.83 0.90 0.87 0.89 0.91 0.91 0.91 0.92 0.96

HAM10000 0.55 0.61 0.65 0.60 0.63 0.63 0.63 0.63 0.67 0.72 0.64 0.66 0.65 0.66 0.64 0.69 0.74 0.69 0.72 0.69 0.74 0.88

ISIC 0.74 0.77 0.78 0.78 0.83 0.80 0.83 0.81 0.81 0.84 0.82 0.83 0.82 0.85 0.84 0.83 0.85 0.85 0.87 0.84 0.87 0.87

Kvasir 0.79 0.85 0.88 0.88 0.89 0.88 0.89 0.84 0.86 0.88 0.88 0.90 0.88 0.90 0.87 0.90 0.91 0.90 0.91 0.90 0.91 0.93

Open Sprayer 0.84 0.90 0.91 0.83 0.84 0.85 0.93 0.87 0.86 0.90 0.90 0.91 0.91 0.92 0.90 0.92 0.94 0.94 0.94 0.94 0.94 0.97

Plants 0.83 0.86 0.89 0.88 0.91 0.88 0.91 0.89 0.91 0.93 0.93 0.93 0.92 0.93 0.91 0.92 0.93 0.94 0.95 0.93 0.95 0.96

Retinal OCT 0.90 0.90 0.86 0.93 0.96 0.93 0.94 0.93 0.95 0.95 0.96 0.98 0.97 0.97 0.94 0.97 0.93 0.98 0.99 0.98 0.98 0.99

Tobacco 0.66 0.69 0.70 0.74 0.76 0.72 0.74 0.72 0.75 0.77 0.77 0.80 0.79 0.76 0.78 0.81 0.84 0.81 0.81 0.81 0.79 0.86

Mean 0.74 0.77 0.79 0.78 0.80 0.79 0.82 0.81 0.83 0.85 0.83 0.85 0.84 0.85 0.84 0.86 0.86 0.87 0.88 0.87 0.88 0.92

S.D. 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.10 0.10 0.10 0.10 0.10 0.08 0.07 0.09 0.09 0.9 0.08 0.05

z (Wilcoxon) -1.91 -2.40 -2.49 -2.53 -2.67 -2.81 -2.57 -2.71 -2.82 -2.67 -2.84 -2.83 -1.96 -1.75 -2.84 -2.84 -2.69 -2.84

p 0.056 0.016 0.013 0.011 0.008 0.006 0.010 0.007 0.005 0.008 0.004 0.005 0.051 0.080 0.004 0.004 0.007 0.004

r -0.43 -0.54 -0.56 -0.57 -0.60 -0.63 -0.57 -0.61 -0.63 -0.60 -0.64 -0.63 -0.44 -0.39 -0.64 -0.64 -0.60 -0.64

Table 2.5: Comparison of the performance of the seven different processes (N.D.: No distillation,

D.D.: Data distillation, I.D.D.: Iterative Data distillation, M.D.: Model distillation, I.M.D.:

Iterative Model distillation, M.D.D.: Model + Data distillation, I.M.D.D.: Iterative Model +

Data distillation) in 10 datasets with 25, 50 and 75 annotated images per class. The “Full”

column indicates the accuracy of the N.D. method applied to the whole dataset. The best results

are highlighted in bold face. Wilcoxon signed-rank tests for comparing the results obtained by

the N.D process with respect to the other six processes in each block of 25, 50 and 75 annotated

images per class are also included.

Figure 2.2: Comparison of the performance of the seven different processes (N.D.: No distilla-

tion, D.D.: Data distillation, I.D.D.: Iterative Data distillation, M.D.: Model distillation, I.M.D.:

Iterative Model distillation, M.D.D.: Model + Data distillation, I.M.D.D.: Iterative Model + Data

distillation) in 10 datasets with 25, 50 and 75 annotated images per class.

Hence, the second contribution of this work is a semi-supervised learning method

that allows the use of deep learning techniques to solve an image classification prob-

lem with few resources. In particular, this method, that combines transfer learning and

semi-supervised learning, allows users to train deep models with small, and partially

annotated datasets of images. Furthermore, our semi-supervised learning method im-

proves the accuracy of models up to a 10% when working with partially annotated

datasets.

Topological approach

In our second approach to reduce the amount of annotated data that is necessary to train

Deep Learning models, we have started to explore techniques from Topological Data

Analysis (TDA) [129], a field that extracts topological and geometrical information

from data, to define different semi-supervised learning methods to solve binary clas-

sification problems. In particular, we created several semi-supervised learning meth-
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ods following two different topological approaches. We assume some familiarity with

notions employed in TDA such as Vietoris-Rips filtration (we denote by VX to the

Vietoris-Rips filtration associated with a set X), persistence diagrams (we denote by

P (F ) to the persistence diagram associated with a filtration F ), and the bottleneck and

Wasserstein distances (denoted by dB and dW respectively). For a detailed introduction

to these topics see [129].

An important concept in TDA is the Manifold Hypothesis [130], that considers that

high dimensional data tends to lie in low dimensional manifolds, and that inspired our

definition of a semi-supervised learning method for binary classification tasks. Intu-

itively, our method is based on the idea that given two sets of data points A and B, we

can define two manifolds associated with each set, MA and MB respectively. Now,

given an unlabelled data point x that belongs to either A or B; if x belongs to A, analo-

gously for B, then the manifold associated with A∪{x} and MA will be more similar

than the manifold associated with B ∪ {x} and MB . Then, we start with a set X1 of

points from class 1, a set X2 of points from class 2, and a set X of unlabelled points.

The objective of our algorithms is to annotate the elements of X by using topological

properties of X1 and X2. In particular, our semi-supervised learning algorithm takes

as input the sets X1 and X2, a point x ∈ X , a threshold value t, and a flag that in-

dicates whether the bottleneck or the Wasserstein distance should be used, we denote

the chosen distance as d. The output produced by our algorithm is whether the point

x belongs to X1, X2 or none of them. In order to decide the output of the algorithm,

our hypothesis is that if a point belongs to X1, analogously for X2, the topological

variation that X1 will suffer when adding the point will be minimal; whereas if the

point does not belong to X1, the variation will be greater. In particular, we proceed as

follows:

1. Construct the Vietoris-Rips filtrations VX1
, VX2

, VX1∪{x} and VX2∪{x};

2. Construct the persistence diagrams P (VX1
), P (VX2

), P (VX1∪{x}) and

P (VX2∪{x});

3. Compute the distances d(P (VX1
), P (VX1∪{x})) and d(P (VX2

), P (VX2∪{x})),
from now on d1 and d2 respectively;

4. If both d1 and d2 are greater than the threshold t, return none; otherwise, return

the set associated with the minimum of the distances d1 and d2.

The above algorithm is diagrammatically described in Figure 2.3, and it is applied

for all the points of the set of unlabelled points X . Note that if we use a threshold value

of 0, the algorithm will annotate all the points of X; however, this might introduce

some noise.

In the second approach, we looked at the connectivity of the data. In particular, we

focused on the minimum radius that the Vietoris-Rips complex associated with a set

has to take to be connected. As in the previous case, we start with a set X1 of points

from class 1, a set X2 of points from class 2, and a set X of unlabelled points. Our

semi-supervised learning algorithm takes as input the sets X1 and X2, a point x ∈ X .

The output produced by our algorithm is whether the point x belongs to X1, X2 or
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distance 0.1285

distance 0.4958

Figure 2.3: Example of the application of our homological semi-supervised method using the

bottleneck distance, and using 0.6 as threshold value.

none of them. In order to decide the output of the algorithm, our hypothesis is that

if a point belongs to X1, analogously for X2, the minimum connectivity radius of the

associated Vietoris-Rips complex does not change considerably; on the contrary, if the

point does not belong to the set X1, analogously for X2, the radius will increase. In

particular, we proceed as follows:

1. Construct the Vietoris-Rips complex VX1
, VX2

, VX1∪{x} and VX2∪{x};

2. Compute the minimum connectivity radius r(VX1
), r(VX2

), r(VX1∪{x}) and

r(VX2∪{x}), from now on r1, r2, r′1 and r′2 respectively;

3. Compute the radius variation |r1 − r′1| and |r2 − r′2| from now on d1 and d2
respectively;

4. If both d1 and d2 are zero, return none; otherwise, return the set associated with

the minimum of the differences d1 and d2.
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The above algorithm is diagrammatically described in Figure 2.4, and it is applied

for all the points of the set of unlabelled points X .

radius 1.9021

radius 1.9439

diff 0.0418

radius 2.0611

radius 2.9915

diff 0.9304

Figure 2.4: Example of the application of our connectivity semi-supervised method.

We carried out a thorough analysis of the developed methods by using 3 synthetic

datasets, 5 structured datasets, and 2 datasets of images. The results show that the semi-

supervised methods developed using a homological annotation method improve both

the base results and those obtained with the classical semi-supervised learning methods

like pseudo-labelling [58], reaching improvements of up to a 16%. Nevertheless, this

work has only been tested on small datasets, so it is necessary to see how it behaves in

real problems with larger datasets, a task that remains as further work.

Therefore, the third contribution of this work is twofold: a semi-supervised learning

method using a homological annotation method that allows the use of Deep Learning

and Machine Learning techniques to solve a binary classification problem with a small

amount of data, and a connectivity method wit the same aim. In particular, these meth-

ods, that use TDA techniques and are based in the homological properties of the data

reaches improvements of up to a 16% in structured datasets.
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2.2 Objective O2: Democratising Deep Learning mod-
els’ construction

For our second objective, we aimed to democratise the construction of Deep Learn-

ing models. Specifically, we developed a set of techniques and tools that allow the

automatic and simple construction of Deep Learning models without having expert

knowledge. The solutions that exist to deal with this problem are AutoML tools, such

as AutoKeras, Google AutoML or AutoGluon among others. However, most of these

tools are based on Network Automatic Search (NAS) methods, which require a lot

of computational resources, and also expert knowledge to be able to obtain good re-

sults, see Table 2.6. Our idea was to use the combination of transfer learning and

semi-supervised learning methods developed to tackle Objective O1, to create accu-

rate models in a simple way. In particular, we have created an AutoML tool based

on semi-supervised methods that assists the user throughout the process of creating a

model.

Our AutoML tool, called ATLASS, allows the user to annotate the images in a sim-

ple way using a graphical user interface (GUI), implemented in Java, that provides all

the necessary features to annotate a dataset of images. This includes the functionality to

visualise and organise the images by categories. In addition, the GUI includes a wizard

that allows the users to configure the training process, choose the model to be trained,

and also the desired training method. In addition, to help non-expert users, by-default

options have been set to allow them to create accurate models automatically. With all

this information, the tool creates a Jupyter notebook that can be executed locally or in

the cloud (for instance, using Google Colab 2) to obtain the trained model. This tool

has been tested on both small datasets and partially annotated datasets, obtaining bet-

ter results than the existing AutoML tools in terms of accuracy and training times. In

particular, in Table 2.7, we can see a comparison of 5 different AutoML tools (AutoK-

eras [74], Devol [131], Ludwig [132], WndCharm [133] and AutoGluon [75]) with our

methods, that are the semi-supervised learning methods presented in Section 2.1.2, us-

ing 11 small annotated biomedical datasets presented in [134]. From these results, we

can conclude that our AutoML tool greatly outperforms other tools when working with

small datasets in both, accuracy and speed. This is mainly due to the fact that AutoK-

eras, Devol, Ludwig, and AutoGluon employ Neural Architecture Search algorithms,

a family of techniques that require large corpora of data to be trained; and WndCharm

employs manually engineered features, that are fixed for all the dataset independently

of the concrete problem. In contrast, our method is adapted to each particular problem,

and applies transfer learning to reuse the knowledge learned from big datasets.

In summary, the fourth contribution of this work is a general AutoML method

that combines transfer and semi-supervised learning techniques. In addition, we have

proven that our AutoML method outperforms other AutoML tools both in terms of ac-

curacy and speed when working with small datasets. Finally, we have developed an

open-source tool, that allows users to annotate a dataset, and use it for training a model

with our method in an easy way. Altogether, our approach simplifies the construction

of fairly good image classification models in the biomedical context when working

2https://colab.research.google.com
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Open-source Cloud-based Framework Language Supports Techniques

AutoKeras Yes No Keras Python CNN, RNN and LSTM NAS

AutoGluon Yes No MxNet Python CNN, RNN NAS

Google AutoML No Yes TensorFlow Python CNN, RNN and LSTM NAS and Reinforcement Learning

Devol Yes No - Python CNN, RNN NAS and Hyperparameter optimization

Ludwig Yes Yes PyTorch Python CNN, RNN NAS

WndCharm Yes No - Python and C++ CNN, RNN Manually engineered features

ATLASS Yes No Fastai Python CNN, RNN and compact networks Semi-supervised learning and transfer learning

Table 2.6: Comparison of the characteristics of the main AutoML tools for Deep Learning.

Binu. CEle. Cho Hela
Liver Liver Liver

Lymp. Pollen RNAI Term.
Mean Mean Time

aging (AL) (CR) (S.D.) (min)

AutoKeras 0.63 0.66 0.91 0.78 0.91 0.69 1.00 0.73 0.94 0.52 0.49 0.75 (0.17) 30

Devol 0.73 0.42 0.61 0.38 0.33 0.81 0.71 0.56 0.56 0.20 0.33 0.51 (0.19) 16

Ludwig 0.54 0.48 0.64 0.51 0.33 0.65 0.90 0.57 0.58 0 0.50 0.52 (0.22) 31

WndCharm 1.00 0.60 0.95 0.85 0.92 1.00 0.97 0.79 0.96 0.68 0.50 0.84 (0.17) 53

AutoGluon 0.46 0.80 0.97 0.88 0.71 0.94 0.71 0.57 0.84 0.36 0.55 0.71 (0.20) 10

Ours 1.00 1.00 0.97 0.99 0.98 1.00 1.00 0.95 0.97 0.77 0.73 0.94 (0.10) 16

Table 2.7: Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, Auto-

Gluon, and our AutoML method for automatically constructing models for 11 image classifica-

tion problems using the accuracy metric. The last column provides the mean time required for

training the models with each tool. The best results are highlighted in bold face.

with small, or partially annotated datasets.

2.3 Objective O3: Reducing the amount of computa-
tional resources

The next step in our work was to reduce the computational resources required to train

and use Deep Learning models. Specifically, for Objective O3, we analysed techniques

to reduce the size and computational resources required to apply Deep Learning tech-

niques, allowing the construction of new models capable of having a good performance

on edge devices in various fields of life sciences. Our solution to this problem was the

study of compact networks, and methods like pruning and quantification. However, it is

known that when using these networks and techniques, we might lose some accuracy

with respect to standard-size networks [90, 92]. Our idea to solve this problem was

to combine compact networks, both manually and automatically designed, with semi-

supervised learning and transfer learning methods. This approach allowed us to obtain

compact networks with a similar performance to standard size networks in biomedi-

cal tasks with a small amount of annotated images. In particular, we used the semi-

supervised methods developed for the previous objectives, see Section 2.1.2, to train

these compact networks. To do this, we carried out an exhaustive study of this com-

bination of techniques using 10 partially annotated biomedical datasets, described in

Table 2.4, and evaluate the performance of deep learning models and semi-supervised

methods using such a benchmark.

For our study, we have split each of the datasets of the benchmark into two different

sets: a training set with the 75% of images and a testing set with the 25% of the

images. In addition, for each dataset we have selected 75 images per class using them
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as labelled images and leaving the rest of the training images as unlabelled images

to apply the semi-supervised learning methods. The splits used in our experiments

and more information about datasets are available in the project webpage 3. With this

benchmark we studied the performance of 3 standard-size networks, 3 automatically

designed compact networks, 4 manually designed networks, and 2 quantified networks

presented in Table 2.8.

Name Params (M) FLOPs (M) Top-1 acc (%) Top-5 acc (%) Design

ResNet-50 26 4100 76.0 93.0 Manual

ResNet-101 44 8540 80.9 95.6 Manual

EfficientNet-B3 12 1800 81.6 95.7 Auto

FBNet 9.4 753 78.9 94.3 Auto

MixNet 5 360 78.9 94.2 Auto

MNasnet 5.2 403 75.6 92.7 Auto

MobileNet v2 3.4 300 74.7 92.5 Manual

ResNet-18 11 1300 69.6 89.2 Manual

SqueezeNet 1.3 833 57.5 80.3 Manual

ShuffleNet v2 5.3 524 69.4 88.3 Manual

ResNet-18 quantized 11 - 69.5 88.9 Quantized

ResNet-50 quantized 26 - 75.9 92.8 Quantized

Table 2.8: Features of the architectures employed in this work. We measure the number of

parameters (in millions), the FLOPs (in millions), and the Top-1 and Top-5 accuracy for the

ImageNet challenge. In addition, we include how these architectures were designed. Quantized

networks change the floating point parameters of the standard version for integer parameters,

therefore they have the same number of parameters but do not perform floating point operations.

The results presented in Table 2.9 show that, with the combination of compact net-

works and semi-supervised methods, we can create compact models that are not only

as accurate as bigger models, but also faster and lighter. In particular, we noticed that

when training a model without using semi-supervised methods there are compact net-

works such as FBNet [90], MixNet [135], MNasNet [136] and ResNet-18 [137] that

obtain a similar performance to standard size networks. Also, when we applied semi-

supervised learning methods, specifically, the Plain Distillation method and the Data

Distillation method introduced in Section 2.1, those models outperform the standard

size models. In particular, the best results were obtained when we applied Data Distil-

lation to MixNet and Plain Distillation to ResNet-18. Another conclusion that we drew

from our study was that, in general, automatically designed networks obtain better re-

sults than manually designed networks and quantized networks, with the exception of

ResNet-18 that obtained similar results than automatically designed networks. Regard-

ing the question of which semi-supervised method produced the best results for each

kind of architecture, see Table 2.10, we concluded that the Data Model Distillation

method is the best option for standard size networks; that Data Distillation is the best

for automatically designed networks; and, in the rest of cases, there is no a general rule,

although the Data Distillation approach generally obtains good results.

3https://github.com/adines/SemiCompact
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Blindness Chest X Ray Fungi HAM 10000 ISIC Kvasir Open Sprayer Plants Retinal OCT Tobacco Mean(std)

ResNet-50 59.3 89.9 91.0 54.3 87.6 89.0 91.3 84.3 97.4 81.8 82.5(13.5)
ResNet-101 58.2 90.7 86.9 52.0 84.0 83.8 95.8 84.3 96.4 80.1 81.2(14.1)

EfficientNet 53.6 84.1 84.7 52.8 85.0 85.4 96.8 84.0 98.1 72.9 79.7(14.8)

FBNet 57.5 87.4 89.0 47.2 85.2 88.9 95.4 81.8 94.9 73.3 80.1(15.3)

MixNet 61.8 89.5 89.7 46.9 89.9 86.8 95.5 86.2 98.9 76.7 82.2(15.3)

MNasNet 56.2 89.2 90.3 55.8 81.9 84.6 95.7 82.5 97.4 75.3 80.9(13.9)

MobileNet 52 86.9 89.0 46.7 84.1 82.1 89.1 82.9 91.0 69.4 77.3(15.1)

ResNet-18 56.3 90.3 94.2 53.7 86.8 84.1 91.6 80.0 97.7 77.5 81.2(14.4)

SqueezeNet 50.3 88.3 79.3 43.6 76.8 80.1 90.9 78.9 93.2 75.5 75.7(15.5)

ShuffleNet 39.5 85.7 69.9 37.6 78.9 67.0 89.6 51.9 33.9 40.7 59.5(20.2)

ResNet-18 quantized 45.1 77.8 88.1 47.0 86.5 84.2 91.3 75.1 91.6 55.8 74.3(17.2)

ResNet-50 quantized 48.6 77.2 83.2 42.9 78.6 81.1 85.4 77.7 91.6 69.7 73.6(15.0)

Table 2.9: Mean (and standard deviation) F1-score for the standard size models (ResNet-50,

ResNet-101 and EfficientNet), compact models (FBNet, MixNet, MNasNet, MobileNet, ResNet-

18, SqueezeNet, and ShuffleNet) and quantized models (ResNet-18 quantized and ResNet-50

quantized) for the base training method on the 10 biomedical datasets. The best result is high-

lighted in bold face.

ResNet-50 ResNet-101 EfficientNet FBNet MixNet MNasNet MobileNet ResNet-18 SqueezeNet ShuffleNet ResNet-18 quantized ResNet-50 quantized

Base 82.6(13.5) 81.2(14.1) 79.7(14.8) 80.1 (15.3) 82.2(15.3) 80.9(13.9) 77.3(15.1) 81.2(14.4) 75.7(15.5) 59.5(20.2) 74.3(17.2) 73.6(15.0)

Plain 83.6(13.4) 82.9(13.3) 82.8(13.3) 82.6(12.8) 83.8(13.3) 82.6(14.2) 79.1(17.6) 84.2(13.8) 81.4(14.9) 57.8(22.7) 77.0(15.8) 70.7(21.2)

Data 83.1(13.7) 83.0(13.2) 83.1(14.5) 83.2(12.2) 84.7(12.6) 83.5(12.7) 81.4(15.4) 82.5(15.5) 81.7(13.7) 58.7(21.9) 77.5(13.5) 74.4(17.7)

Model 83.3(14.3) 83.0(14.2) 81.0(15.2) 80.5(15.0) 80.8(12.7) 77.9(14.8) 81.2(14.9) 82.9(14.4) 79.0(16.9) 56.2(23.9) 56.2(33.5) 62.7(26.7)

DataModel 83.7(14.0) 82.7(15.2) 82.0(15.7) 80.7(14.6) 80.8(14.2) 80.0(13.9) 80.5(15.9) 82.8(14.8) 79.2(16.6) 57.5(23.1) 53.1(32.1) 61.8(26.5)

FixMatch 64.2(20.0) 40.1(25.2) 55.4(26.4) 60.7(22.0) 74.4(25.1) 76.2(22.3) 74.8(22.9) 81.2(15.0) 52.0(18.3) 53.3(21.2) 74.4(22.9) 78.4(18.0)

MixMatch 47.1(28.8) 51.0(23.2) 64.3(22.6) 69.3(17.5) 49.1(28.9) 79.4(12.9) 68.1(25.6) 51.5(36.8) 57.7(19.4) 56.4(20.4) 61.7(25.9) 64.5(17.5)

Table 2.10: Mean (and standard deviation) F1-score for the different studied models and applying

several semi-supervised methods. Methods: Base training (Base), Plain Distillation (Plain), Data

Distillation (Data), Data Model Distillation (DataModel), FixMatch procedure (FixMatch), and

MixMatch procedure (MixMatch). The best result is highlighted in bold face.

Finally, we studied the efficiency of the different networks, see Table 2.11. In

particular, we analysed the model size, the time that takes each model to complete a

training epoch, and the time that takes each model when applied for inference with a

given image. From the results presented in Table 2.11, we can see that there is a great

difference in size between the standard size and compact models. In particular, the dif-

ference in size between compact and standard size networks ranges from 30% to 97%,

standing out the ShuffleNet network, however the accuracy of this model is usually

lower than the rest. We can also notice that the quantized models reduce the size of

original models by almost a 90%. Another important point when we test the efficiency

of a model is the training time per epoch. In our experiments, using a Nvidia RTX 2080

Ti GPU with 11 GB RAM, standard size networks took approximately between 3 and

4 minutes per epoch. On the contrary, compact networks took less than 100 seconds

per epoch (being MixNet the only exception). Finally, we studied the inference time of

each model. We calculated the time that takes each model to infer the class of an image

in a Intel(R) Xeon(R) W-2145 CPU with 3.70GHz, 16 CPUs cores and 32 GB. While

standard size models took between 200 and 300 ms to classify an image, the compact

networks take, at maximum, half the time. This is even more prominent in the case of

ResNet-18, SqueezeNet, ShuffleNet, ResNet-18 quantized, and ResNet-50 quantized,

that take, at least 4 less time than standard size networks. In particular, quantized

versions of the models tool between 60% and 80% less time than their standard size

versions.
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Network Size (MB) Train Time (s) Inference Time (ms)

ResNet-50 294 151 231

ResNet-101 512 263 238

EfficientNet 124 210 301

FBNet 42 78 121

MixNet 67 174 222

MNasNet 36 64 84

MobileNet 41 70 109

ResNet-18 135 51 63

SqueezeNet 15 52 57

ShuffleNet 0.36 15 14

ResNet-18 quantized 11 40 25

ResNet-50 quantized 23 100 44

Table 2.11: Efficiency of standard size models (ResNet-50, ResNet-101 and EfficientNet), com-

pact models (FBNet, MixNet, MNasNet, MobileNet, ResNet-18, SqueezeNet, and ShuffleNet)

and quantized models (ResNet-18 quantized and ResNet-50 quantized). We measure size (in

MB), the training time per epoch (in seconds) and the inference time per image (in millisec-

onds).

In summary, the fifth contribution of this work is an exhaustive study that allow us

to conclude that by applying the Data Distillation method to MixNet, or Plain Distil-

lation to ResNet-18 we obtained models as accurate as standard size models but, also,

faster and lighter. In addition, to facilitate the application of the methods studied in this

work, we developed a library that simplifies the construction of compact models using

semi-supervised learning methods.

2.4 Objective O4: Democratising Deep Learning mod-
els’ usage

The next objective set for this work was related to the democratisation of the mod-

els’ usage, specifically, for Objective O4, we aimed to facilitate the connection be-

tween Deep Learning models and bioimaging tools. We studied the different solutions

given in the literature, and we saw that they consisted in ad-hoc plugins that only solve

specific problems. Our idea was to create a general solution that allows the use of

different Deep Learning models in different bioimaging tools. As a result, we cre-

ated DeepClas4Bio, a project that aimed to facilitate the interoperability of bioimag-

ing tools with Deep Learning frameworks. In particular, we developed an extensible

API that provides a common access point for classification models of several Deep

Learning frameworks, see Figure 2.5. This project groups the main Deep Learning

frameworks, namely, Keras [138], Caffe [139], DeepLearning4J [140], MxNet [141]

and PyTorch [142]. The users can use the pretrained models included in the API or

they can train their own models and load them in the API to use them in a simple way.

In addition, we created plugins for each of the most important biomedical tools such as
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ImageJ, Icy and ImagePy, which allow users to easily use this API.

DeepClas4Bio
API

<<uses>>

ImageJ

ImagePy

Icy

<<uses>>

<<uses>>

Bio-toolsFrameworks

Figure 2.5: DeepClas4Bio is an API that sits in between Deep Learning frameworks and pre-

trained models, and common bioimaging tools. It enables users to employ those models to make

predictions on new images with minimal code from model developers and no code from the end

user.

The main difference between DeepClas4Bio and other libraries, see Table 2.12,

is that DeepClas4Bio is not focused on a specific task, framework or tool. As we

can see in Table 2.12, RapidLearning [103] was developed in the RapidMiner [143]

framework and it is only possible to use it with the Icy tool, while KNIME [104] is

available for the Keras and TensorFlow frameworks, but its functionalities are only

accessible through ImageJ. Instead, DeepClas4Bio is created as an extensible API that

allows the connection between different Deep Learning frameworks and bioimaging

tools through the creation of plugins. Our API is independent of the framework and the

tool to use. DeepImageJ is a recent solution, created in 2021, that, as DeepClas4Bio,

is independent of the framework to be used, however its use is restricted to ImageJ.

RapidLearning KNIME DeepImageJ DeepClas4Bio

Open-source Yes Yes Yes Yes

Year 2013 2006 2021 2019

Framework RapidMiner (ML) Keras and TensorFlow Independent Independet

Language Java Java Python Python

Bioimage tools Icy ImageJ ImageJ Independent

Table 2.12: Comparison of the characteristics of the main tools that try to connect Deep Learning

techniques with bioimaging tools.

Hence, the sixth contribution of this work is a framework called DeepClas4Bio. It

is a free and open-source project that allows the collaboration of bioimaging tools with

image classification models developed in deep learning frameworks. This project has

been successfully employed to construct several plugins in different bioimaging tools.

Thanks to the DeepClas4Bio API, and the methodology developed to integrate it in the
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workflow of life scientists’ research, the development efforts can be greatly reduced

when creating new tools for bioimaging that use deep learning classification models.

2.5 Objective O5: Applying developed methods
Finally, in order to verify that the methods developed during this work contribute to the

life-science community, and, specifically, to the biomedical field, we have applied the

developed methods to two actual biomedical problems proposed by life-scientists. In

particular, we have applied the developed techniques to: (1) measure bacteria spread

on motility images, and (2) predict epiretinal membrane (ERM) from retinal fundus

images.

2.5.1 Measuring Bacteria Spread
Infectious diseases produced by antimicrobial resistant microorganisms are a major

threat to human and animal health worldwide [144]. This problem is increased by

the virulence and spread of these bacteria. Surface motility has been regarded as a

pathogenicity element because it is essential for many biological functions, but also

for disease spreading; hence, investigations on the motility behaviour of bacteria are

crucial to understand chemotaxis, biofilm formation and virulence in general. To iden-

tify a motile strain in the laboratory, the bacterial spread area is observed on media

solidified with agar. Up to now, the task of measuring bacteria spread was a manual,

and, therefore, tedious and time-consuming task. In collaboration with the Centre of

Biomedical Research of La Rioja, we addressed the problem of measuring bacteria

spread on motility images by creating an automatic pipeline based on Deep Learning

models. Such a pipeline consists of a classification model, with a F1-score of 99.85%,

to determine whether the bacteria has spread to cover completely the Petri dish and

a segmentation model, with a Dice coefficient of 95.66%, to determine the spread of

those bacteria that do not fully cover the Petri dishes, see Figure 2.6.

To create the classification model, we fine-tuned several convolutional neural net-

works pretrained on the ImageNet dataset [39]; namely, the last layer of the convolu-

tional networks was replaced with a sequence of linear layers where batch normalisa-

tion, dropout and a ReLU activation function were applied. In our experiments, we

trained two ResNet architectures (Resnet 50 and 101), an EfficientNet architecture (Ef-

ficientNet B3), and a FBNet architecture. For each architecture, we constructed three

models by using two different input image sizes (224× 224 and 512× 512), and using

the progressive resizing approach – in this approach, we first trained the model using as

input images of size 224 × 224, and, then, used the resulting model as a basis to train

another model using images of size 512 × 512. We can notice from the results pre-

sented in Table 2.13 the benefits of using resizing since all the models were improved

by using this approach.

To create the segmentation model, we fine-tuned several deep-learning segmenta-

tion algorithms using images of size 1002×1002. Namely, we have trained 5 architec-

tures: U-Net [145] (with a Resnet 34 backbone), DeepLabV3+ [146] (with a Resnet 50

backbone), Mask RCNN [147] (with a Resnet 50 backbone), HRNet-Seg [148] (with
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Size Architecture Precision Recall F1-score

224× 224

ResNet-50 100 (100-100) 96.14 (94.55–97.73) 98.03 (96.88–99.18)

ResNet-101 100 (100–100) 97.62 (96.36–98.88) 98.79 (97.89–99.69)

EfficientNet-B3 99.38 (98.73–100) 95.84 (94.19–97.49) 97.58 (96.31–98.85)

FBNet 100 (100–100) 97.62 (96.36–98.88) 98.79 (97.89–99.69)

512× 512

ResNet-50 99.39 (98.75-100) 97.03 (95.63–98.43) 98.19 (97.09–99.2*)

ResNet-101 99.39 (98.75–100) 97.32 (95.99–98.65) 98.35 (97.30–99.40)

EfficientNet-B3 99.38 (98.73–100) 95.54 (93.84–97.24) 97.42 (96.11–98.73)

FBNet 98.80 (97.90–99.70) 98.51 (97.51–99.51) 98.66 (97.71–99.61)

Resizing

ResNet-50 100 (100-100) 99.70 (99.25–100) 99.85 (99.53–100)

ResNet-101 100 (100-100) 97.92 (96.74–99.10) 98.95 (98.11–99.79)

EfficientNet-B3 97.94 (96.77–99.11) 98.81 (97.92–99.70) 98.37 (97.33–99.41)

FBNet 100 (100–100) 98.51 (97.51–99.51) 99.25 (98.54–99.96)

Table 2.13: Performance (95% CI) for the test set obtained by each classification model. The

best result is highlighted in bold face.

Model Dice coefficient Jaccard index

DeepLabV3+ 95.66 (93.40–97.92) 91.68 (88.62–94.74)

HRNet-seg 95.31 (95.97–97.65) 91.05 (87.89–94.21)

Mask-RCNN 91.18 (88.04–94.32) 83.80 (79.72–87.88)

U-Net 60.14 (54.72–65.56) 43.00 (37.52–48.48)

U2-Net 66.94 (61.73–72.15) 50.31 (44.77–55.85)

Table 2.14: Performance (95% CI) for the test set obtained by each segmentation model. The

best result is highlighted in bold face.

an HRNet W30 backbone) and U2-net [149] (with its underlying backbone). As can

be seen in Table 2.14, the best model is obtained using the DeepLabV3+ architecture

with a Dice coefficient of 95.66% and a Jaccard index of 91.68%. A similar result is

also obtained using the HRNet-seg architecture, whereas the other models obtain much

worse results.

In order to annotate enough images to train our Deep Learning models, we pre-

sented a pipeline to analyse motility images using image processing techniques. Using

this pipeline we produced a semi-automatic annotation of images that was validated and

corrected by experts; hence, the tedious task of annotating images was simplified. This

annotation method can be seen as a semi-supervised approach in which human beings

intervene. Using this approach, we have created the first publicly available annotated

dataset for measuring bacterial spread on motility images. Finally, we deployed our

models in an open-source and user-friendly application called MotilityJ. This applica-

tion internally makes a connection between the developed PyTorch models and ImageJ

using the approach developed in the previous work of DeepClas4Bio.

MotilityJ was, at least up to the best our knowledge, the first application for the

automatic analysis of bacteria spread in motility images. The underlying algorithms of

MotilityJ are based on highly accurate Deep Learning models that generate a segmen-
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tation comparable to those produced by experts; but, considerably reducing the effort

required to obtain them. Thanks to the development of the Deep Learning models and

their deployment in MotilityJ, the analysis of motility images will be faster, less subjec-

tive, more reliable and comparable among different laboratories all over the world. The

developed tools will help to advance our understanding of the behaviour and virulence

of bacteria.

Figure 2.6: Example of the result obtained when segmenting a motility image to determine the

spread of a bacteria that do not fully cover the Petri dishes with our tool.

2.5.2 Predicting Epitretinal Membrane
We focus now on the problem of diagnosis Epiretinal Membrane (ERM) from retinal

fundus images. An epiretinal membrane is an eye disease that can lead to visual distor-

tion and, in some cases, to loss of vision [150]. Screening retinal fundus images allows

ophthalmologists to early detect and diagnose this disease; however, the manual inter-

pretation of images is a time-consuming task. In spite of the existence of several com-

puter vision tools for analysing retinal fundus images, they are mainly focused on the

diagnosis of diabetic retinopathy and glaucoma. In collaboration with Hospital Vall D’

Hebron, we conducted a thorough study of several Deep Learning architectures, and a

variety of techniques to train them, in order to build a model for automatically diagnos-

ing epiretinal membrane from retinal fundus images. In particular, we used 3 manually

designed convolutional neural networks (namely, ResNet [151], ResNeSt [137] and

HRnet [148]), 2 architectures found by neural architecture search (EfficientNet [152]

and NasNet [77]); and 2 transformer-based architectures that are ViT [153], and its

training efficient version, Deit [154].
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In such a study, we tested several approaches for training Deep Learning archi-

tectures, including data augmentation using Generative Adversarial Networks, transfer

learning from two different datasets, some bag of tricks (a set of techniques used in

the literature to train image classification models and improve their performance), or

ensemble methods. First of all, and in order to establish a baseline for our models, we

used the transfer-learning method presented in [155] and used in ATLASS. The second

approach consisted in using a Generative Adversarial Network (GAN) to synthesise

new retinal images [156]. In particular, we trained a CycleGAN model [157] that al-

lowed us to synthesise ERM images from healthy images and viceversa (1652 healthy

images, and 1622 ERM images were generated using this procedure). The generated

images were combined with the original dataset and used for training the new models.

In the third set of experiments, we employed a bag of tricks that have been successfully

employed in the literature to improve the performance of deep classification models.

First of all, we replaced the Adam optimisation algorithm, the by-default optimiser

used in FastAI, with the Ranger algorithm, which combines ideas from the RAdam op-

timisation algorithm [158] and the Lookahead optimiser [159]. Moreover, we used two

regularisation techniques that are Label Smoothing [160] and MixUp [161]. Finally,

we applied the cyclical learning rate policy for convergence proposed in [162]. In order

to identify the benefits provided by each trick, an ablation study was conducted. From

the ablation study, see Table 2.15, we can notice that there is not a single technique,

or combination of techniques, that always produce the best results. However, the us-

age of Label Smoothing and MixUp as regularisation techniques consistently produced

good results. It is also worth mentioning that the benefits obtained with each individual

technique did not stack when combined with other techniques. This hinders the appli-

cability of this bag of tricks since lots of experiments must be conducted to find which

methods should be applied to produce the best result for each architecture.

The last approach that we explored to train our models was based on the fact that

transfer learning produces better results when there is a close relation between the

source and target task. Hence, we started by training the models with the RIADD

dataset [163] (a dataset of 8289 images for multi-disease detection on retinal images);

and, subsequently, we fine-tuned the models for our ERM dataset.

Finally, and in order to further improve the performance of our models, we em-

ployed ensemble methods. Namely, we tested the ensemble of several models [164],

the application of test-time augmentation [165], and the combination of these two tech-

niques.

The results presented in Table 2.16 show that the best approach to tackle the diag-

nosis of ERM consisted in ensembling a variety of models (both convolutional models

and transformer-based architectures) that were pre-trained on a multi-disease detection

dataset for fundus images, and then fine-tuned in our ERM dataset. Such an approach

achieved a F1-score of 86.82%. This result highlights the advantages of close-transfer,

that is, transfer learning from a close domain that allows us to take advantage of simi-

lar characteristics. In addition, it should be noted that the tools previously developed,

see Sections 2.2 and 2.4, allowed us to perform this close-transfer in a simple way.

Finally, we demonstrated the usage of occlusion based attribution (a technique that al-

lowed us to estimate which areas of the image were critical for the classifiers’ decision

by occluding them and quantifying how the decision changed) to interpret the outputs
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B R F L M RF RM FM RL FL LM RFL RFM RFLM

R-34 55.22 59.54 72.21 59.92 66.02 66.96 58.27 0.00 57.04 71.30 65.33 60.02 54.29 61.03

R-50 49.53 60.86 1.29 75.23 74.55 52.83 59.57 72.21 48.59 11.62 74.09 59.85 67.97 65.35

R-101 53.04 57.30 49.82 68.10 54.48 54.42 51.42 33.06 50.82 0.00 71.85 67.35 43.18 45.60

RS-26 55.18 58.54 0.42 66.67 64.85 72.43 62.60 72.21 57.52 72.21 71.48 73.62 60.92 72.17

RS-50 56.02 62.01 71.81 76.72 73.59 54.81 47.53 72.21 57.65 0.00 74.19 60.40 65.61 59.68

RS-50d 56.12 61.67 1.30 75.81 78.36 65.10 67.13 0.00 65.44 72.19 69.90 64.06 69.31 70.49

RS-101 59.03 60.64 39.11 74.35 76.31 58.37 49.34 2.98 59.93 7.49 70.49 59.68 68.33 62.07

E-0 51.16 55.89 0.00 72.10 69.60 68.81 62.65 68.25 55.60 25.54 67.27 66.75 73.83 73.83

E-1 48.62 55.84 56.43 69.03 67.28 66.67 55.13 0.00 63.96 0.00 68.41 70.14 66.49 66.58

E-2 60.20 63.49 71.98 67.42 66.92 69.21 55.93 58.75 58.69 0.00 65.82 71.14 70.49 65.59

E-3 56.68 61.20 71.22 72.81 57.55 68.91 57.52 69.22 60.09 64.04 67.88 73.41 64.65 68.26

ViT-244 69.41 68.40 0.00 72.21 70.92 0.00 67.20 72.21 72.21 72.21 72.21 0.00 72.21 0.00

ViT-384 81.29 67.39 67.74 60.84 59.74 65.14 66.28 2.17 38.07 62.15 57.28 66.21 66.13 66.27

Deit-384 74.85 70.73 72.21 80.39 81.52 63.86 76.94 72.21 72.21 72.18 77.77 72.66 77.51 76.40

N-050 55.55 59.72 27.19 58.63 50.18 54.38 52.55 71.30 54.45 70.60 54.17 52.73 52.22 52.96

H-32 73.74 55.23 77.51 77.51 80.50 79.82 53.81 78.27 76.74 70.34 74.27 79.26 54.30 50.75

H-40 71.09 54.00 58.89 69.76 70.76 58.93 60.99 24.38 61.92 70.11 65.04 64.56 66.59 62.06

H-44 72.33 55.33 62.57 63.85 69.96 67.32 66.16 70.28 71.30 64.17 70.46 69.59 68.29 67.33

H-48 70.60 49.42 70.53 73.95 73.49 72.34 73.90 67.68 67.74 67.69 69.58 72.26 73.55 72.86

H-64 73.78 55.02 71.24 76.56 77.88 61.89 72.01 0.00 0.85 69.60 70.34 66.75 72.70 74.47

F1-score colour scale: 0 18 36 54 72 90

Table 2.15: Ablation study of the bag of tricks using F1-score as metric. Each column represents

a technique (B: baseline, R: Ranger optimiser, F: Flat cosine annealing, L: Label Smoothing,

M: MixUp; and the rest of columns are combinations of the previous techniques). Each row

represents an architecture (R: Resnet, RS: ResNeSt, E: EfficientNet, ViT: ViT, Deit: Deit, N:

Nasnet, H: HRNet).

produced by our models, see Figure 2.7.

In this work, we thoroughly studied several approaches to build deep learning mod-

els for diagnosing epiretinal membrane. The best results, with a F1-score of 86.82%,

was achieved by using the HRNet and transformer-based architectures, and combining

3 techniques (transfer learning from the RIADD dataset, test-time augmentation and

model ensemble).

In summary, the seventh contribution of this work is the resolution of two real

problems applying the techniques and knowledge developed during this work. First,

we have developed an open-source application, called MotilityJ, able to automatically

analyse the bacteria spread in motility images. Thanks to this work, the analysis of

motility images will be faster, less subjective, more reliable and comparable among

different laboratories all over the world. Second, we have build deep learning models

for diagnosing epiretinal membrane surpassing the results obtained previously. Thanks

to this work, we have a solution capable of assisting in the detection of epiretinal mem-

brane in fundus images.
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Architecture Baseline CycleGAN Tricks Transfer TTA RIADD

Resnet-34 55.22 55.18 72.21 59.09 65.69 75.04

Resnet-50 49.53 58.04 75.23 72.18 72.63 73.93

Resnet-101 53.04 46.53 71.85 72.20 72.20 68.38

Resnest-26 55.18 53.59 73.62 62.68 66.36 75.57

Resnest-50 56.02 56.22 76.72 49.22 55.57 75.76

Resnest50d 4s2x40d 56.12 61.99 78.36 63.38 68.10 73.05

Resnest101 59.03 49.63 76.31 56.92 64.00 76.07

EfficientNet-B0 51.16 60.47 73.83 67.43 65.05 78.87

EfficientNet-B1 48.62 47.26 70.14 66.09 71.16 79.05

EfficientNet-B2 60.20 49.94 71.98 61.82 65.30 79.19

EfficientNet-B3 56.68 50.20 73.41 66.96 65.67 79.45

VIT-B/16-244 69.41 62.80 72.21 73.13 76.25 83.01

ViT-B/16-R50-384 81.29 62.91 67.39 83.86 84.23 87.44

Deit-B/16-384 74.85 72.11 81.52 76.46 76.77 87.01

Nasnet-050 55.55 49.76 71.30 55.23 50.66 52.65

HRNet-w32 73.74 67.15 80.50 79.22 81.17 87.98
HRNet-w40 71.09 52.53 70.76 84.00 85.52 87.30

HRNet-w44 72.33 60.79 71.30 82.61 83.27 87.50

HRNet-w48 70.60 76.12 73.95 82.17 84.59 86.32

HRNet-w64 73.78 50.27 77.88 83.70 84.35 87.59

Table 2.16: F1-score achieved by the studied architectures using the baseline procedure, the

CycleGAN dataset, the bag-of-tricks, and transfer learning from a close domain. Moreover, we

include the results obtained by applying test-time augmentation (TTA) to the models fine-tuned

from a close domain, and the results for the RIADD dataset. In italics the best model for each

approach, and in bold face the best overall model without TTA.

Figure 2.7: Sample of occlusion-based attribution confusion matrix on the HRNet-w40 model.

The red pixels in the heatmap indicate a negative attribution region (areas whose absence in-

creases the score), whereas the green pixels indicate a positive attribution region (areas whose

presence increase the prediction score).





Chapter 3

Contributions

In this chapter, the main contributions that make up the memoir are presented. In

particular, for each of these contributions its summary and a small table with its most

important data is presented.

3.1 DeepClas4Bio: Connecting bioimaging tools with
Deep Learning frameworks for image classification

Deep Learning techniques have been successfully applied to tackle several image clas-

sification problems in bioimaging. However, the models created from Deep Learning

frameworks cannot be easily accessed from bioimaging tools such as ImageJ or Icy;

this means that life scientists are not able to take advantage of the results obtained with

those models from their usual tools. In this paper, we aim to facilitate the interop-

erability of bioimaging tools with Deep Learning frameworks. In this project, called

DeepClas4Bio, we have developed an extensible API that provides a common access

point for classification models of several Deep Learning frameworks. In addition, this

API might be employed to compare Deep Learning models, and to extend the function-

ality of bioimaging programs by creating plugins. Using the DeepClas4Bio API, we

have developed a metagenerator to easily create ImageJ plugins. In addition, we have

implemented a Java application that allows users to compare several Deep Learning

models in a simple way using the DeepClas4Bio API. Moreover, we present three ex-

amples where we show how to work with different models and frameworks included in

the DeepClas4Bio API using several bioimaging tools — namely, ImageJ, Icy and Im-

agePy. This project brings to the table benefits from several perspectives. Developers

of Deep Learning models can disseminate those models using well-known tools widely

employed by life-scientists. Developers of bioimaging programs can easily create plu-

gins that use models from Deep Learning frameworks. Finally, users of bioimaging

tools have access to powerful tools in a known environment for them.
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3.2 CLoDSA: A tool for augmentation in classification,
localization, detection, semantic segmentation and
instance segmentation tasks

Deep Learning techniques have been successfully applied to bioimaging problems;

however, these methods are highly data demanding. An approach to deal with the lack

of data and avoid overfitting is the application of data augmentation, a technique that

generates new training samples from the original dataset by applying different kinds

of transformations. Several tools exist to apply data augmentation in the context of

image classification, but it does not exist a similar tool for the problems of localiza-

tion, detection, semantic segmentation or instance segmentation that works not only

with 2 dimensional images but also with multi-dimensional images (such as stacks or

videos). In this paper, we present a generic strategy that can be applied to automat-

ically augment a dataset of images, or multi-dimensional images, devoted to classifi-

cation, localization, detection, semantic segmentation or instance segmentation. The

augmentation method presented in this paper has been implemented in the open-source

package CLoDSA. To prove the benefits of using CLoDSA, we have employed this

library to improve the accuracy of models for Malaria parasite classification, stomata

detection, and automatic segmentation of neural structures. CLoDSA is the first, at

least up to the best of our knowledge, image augmentation library for object classifi-

cation, localization, detection, semantic segmentation, and instance segmentation that

works not only with 2 dimensional images but also with multi-dimensional images.
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3.3 Biomedical image classification made easier thanks
to transfer and semi-supervised learning

Deep Learning techniques are the state-of-the-art approach to solve image classifica-

tion problems in biomedicine; however, they require the acquisition and annotation

of a considerable volume of images. In addition, using Deep Learning libraries and

tuning the hyperparameters of the networks trained with them might be challenging

for several users. These drawbacks prevent the adoption of these techniques outside

the machine-learning community. In this work, we present an Automated Machine

Learning (AutoML) method to deal with these problems. Our AutoML method com-

bines transfer learning with a new semi-supervised learning procedure to train models

when few annotated images are available. In order to facilitate the dissemination of our

method, we have implemented it as an open-source tool called ATLASS. Finally, we

have evaluated our method with two benchmarks of biomedical image classification

datasets. Our method has been thoroughly tested both with small datasets and partially

annotated biomedical datasets; and, it outperforms, both in terms of speed and accu-

racy, the existing AutoML tools when working with small datasets; and, might improve

the accuracy of models up to a 10% when working with partially annotated datasets.

The work presented in this paper allows the use of Deep Learning techniques to solve

an image classification problem with few resources. Namely, it is possible to train

deep models with small, and partially annotated datasets of images. In addition, we

have proven that our AutoML method outperforms other AutoML tools both in terms

of accuracy and speed when working with small datasets.
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3.4 MotilityJ: An open-source tool for the classification
and segmentation of bacteria on motility images

Infectious diseases produced by antimicrobial resistant microorganisms are a major

threat to human, and animal health worldwide. This problem is increased by the viru-

lence and spread of these bacteria. Surface motility has been regarded as a pathogenic-

ity element because it is essential for many biological functions, but also for disease

spreading; hence, investigations on the motility behaviour of bacteria are crucial to un-

derstand chemotaxis, biofilm formation and virulence in general. To identify a motile

strain in the laboratory, the bacterial spread area is observed on media solidified with

agar. Up to now, the task of measuring bacteria spread was a manual, and, therefore,

tedious and time-consuming task. The aim of this work is the development of a set of

tools for bacteria segmentation in motility images. In this work, we address the prob-

lem of measuring bacteria spread on motility images by creating an automatic pipeline

based on Deep Learning models. Such a pipeline consists of a classification model to

determine whether the bacteria has spread to cover completely the Petri dish, and a

segmentation model to determine the spread of those bacteria that do not fully cover

the Petri dishes. In order to annotate enough images to train our Deep Learning mod-

els, a semi-automatic annotation procedure is presented. The classification model of

our pipeline achieved a F1-score of 99.85%, and the segmentation model achieved a

Dice coefficient of 95.66%. In addition, the segmentation model produces results that

are indistinguishable, and in many cases preferred, from those produced manually by

experts. Finally, we facilitate the dissemination of our pipeline with the development of

MotilityJ, an open-source and user-friendly application for measuring bacteria spread

on motility images. In this work, we have developed an algorithm and trained several

models for measuring bacteria spread on motility images. Thanks to this work, the

analysis of motility images will be faster and more reliable. The developed tools will

help to advance our understanding of the behaviour and virulence of bacteria.
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3.5 Prediction of Epiretinal Membrane from Retinal Fun-
dus Images Using Deep Learning

An epiretinal membrane (ERM) is an eye disease that can lead to visual distortion and,

in some cases, to loss of vision. Screening retinal fundus images allows ophthalmol-

ogists to early detect and diagnose this disease; however, the manual interpretation of

images is a time-consuming task. In spite of the existence of several computer vision

tools for analysing retinal fundus images, they are mainly focused on the diagnosis of

diabetic retinopathy and glaucoma. In this work, we have conducted a thorough study

of several Deep Learning architectures, and a variety of techniques to train them, in

order to build a model for automatically diagnosing ERM. As a result, we have built

several models that can be ensembled to achieve a F1-score of 86.82%. The lessons

learned in this work can serve as a basis for the construction of Deep Learning models

for diagnosing other eye diseases.
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3.6 Semi-Supervised Learning for Image Classification
using Compact Networks in the BioMedical Con-
text

The development of mobile and on the edge applications that embed deep convolu-

tional neural models has the potential to revolutionise biomedicine. However, most

Deep Learning models require computational resources that are not available in smart-

phones or edge devices; an issue that can be faced by means of compact models that

require less resources than standard Deep Learning models. The problem with such

models is that they are, at least usually, less accurate than bigger models. In this work,

we study how this limitation can be addressed with the application of semi-supervised

learning techniques. We conduct several statistical analyses to compare performance

of deep compact architectures when trained using semi-supervised learning methods

for tackling image classification tasks in the biomedical context. In particular, we ex-

plore three families of compact networks (manually designed, automatically designed,

and quantized), and two families of semi-supervised learning techniques (self-training

and consistency regularisation methods) for 10 biomedical tasks. By combining semi-

supervised learning methods with compact networks such as FBNet, MixNet, MNas-

Net and ResNet-18, it is possible to obtain a similar performance to standard size net-

works. In general, the best results are obtained when combining data distillation (a

self-training method) with MixNet, and plain distillation (another self-training method)

with ResNet-18. Another conclusion that we can draw from our study is that, in gen-

eral, NAS networks obtain better results than manually designed networks and quan-

tized networks, with the exception of ResNet-18 that obtains similar results than NAS

networks. Regarding to semi-supervised learning methods, the data & model distilla-

tion method is the best option for standard size networks; data distillation produces the

best results for NAS networks; and for the other types of networks, there is no a general

rule, although the data distillation approach generally produces good results. Finally,

we have developed a Python library in order to facilitate the combination of compact

networks and semi-supervised learning methods to tackle image classification tasks.

The work presented in this paper shows the benefits of apply semi-supervised meth-

ods to compact networks. Namely, combining semi-supervised methods and compact

networks, we can create compact models that are not only as accurate as standard size

models, but also faster and lighter. Finally, to facilitate the application of the methods

studied in this work, we have developed a library that simplifies the construction of

compact models using semi-supervised learning methods.
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Chapter 4

Conclusions and further work

In this work, we have addressed the problem of democratising the use of Deep Learning

techniques to solve image classification problems. Specifically, we have developed

different tools and techniques that try to solve three challenges in the use of Deep

Learning techniques for image classification that are: the reduction of the amount of

data necessary to use these techniques, the democratisation of the construction of Deep

Learning models, and the democratisation of the use of Deep Learning models.

To reduce the amount of necessary data to use Deep Learning techniques, we stud-

ied two different approaches. In the former, we used a technique that consists in aug-

menting the data by creating new artificial data. For this, we developed a data aug-

mentation framework called CLoDSA, that allows us to increase the amount of images

for a wide variety of computer vision problems by using different data augmentation

techniques. This tool allows us to perform data augmentation not only on classification

problems, but also on detection and segmentation problems. In the future, we plan to

expand the functionality of CLoDSA by including more augmentation techniques, in-

tegrating more frameworks and including GAN based methods that provide new data

augmentation.

In addition, we studied the use of unlabelled data to train Deep Learning models

for image classification by creating new semi-supervised methods. Specifically, we

developed two semi-supervised methods. The first one is based on the concept of data

and model distillation that has allowed us to increase the performance of Deep Learning

models by 10% using a reduced number of annotated images. In the future, we want to

be able to automatically select the transformations and models to be used in this semi-

supervised method depending on the type of problem to be solved. In addition, we

want to transfer this method to other computer vision tasks, such as, object detection

or image segmentation. We also developed a semi-supervised method based on the

topological data analysis techniques that improves up to 16% the classical annotation

methods. In the future, it is intended to extend this method to no binary classification

problems, as well as the investigation of new TDA techniques.

Furthermore, we are studying the few-shot learning problem, in collaboration with

the research group of Professor Thomas Brox of the Albert-Ludwigs University of

Freiburg. The few-shot learning problem is an image classification problem where
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the training dataset contains limited information; that is, a limited number of labelled

images per class. In this collaboration, we are working on an approach based on Gen-

erative Adversarial Networks.

The second challenge that we addressed was the democratisation of the construc-

tion of Deep Learning models. To solve this problem, we developed an AutoML

tool, called ATLASS, that assists the user in the entire process of creating a classifica-

tion Deep Learning model, from annotating the images to creating the Deep Learning

model. In this framework, one of the semi-supervised methods developed before was

used in order to improve the accuracy of the models obtained as well as give the pos-

sibility of using unlabelled images. The developed framework can be used both on a

local server, with the complexity of maintenance and configuration that this entails, or

can be used in the cloud, with Google Colaboratoy or Amazon Web Services for ex-

ample, with all the security problems that this entails; hence, in the future we want to

improve the security of our Deep Learning models by using data privacy techniques.

To address the third challenge, the democratisation of the use of Deep Learning

models, we studied two approaches. In the former, we tried to reduce the amount of

computational resources necessary for the use of Deep Learning models, as well as

reduce their size. For this, we carried out an exhaustive study of the combination of

compact networks and quantisation techniques with semi-supervised learning methods.

As a result, we were able to conclude that by combining these two techniques we can

obtain compact models that are as accurate as standard-size models and also faster and

lighter. This fact allows us to include these models in smartphones or edge devices.

Our next goal is to transfer this study to other computer vision problems trying to

replace existing backbones with compact networks. Moreover, we developed a library

called DeepClas4Bio that groups the main Deep Learning frameworks and facilitates

the interoperability between these frameworks and the main bioimaging tools, such as

ImageJ or Icy. In addition, we developed some plugins for each of these tools that

allow an easy integration with DeepClas4Bio. We also intend to extend our framework

to other computer vision tasks, such as object detection or image segmentation.

Finally, the techniques and methods developed in this work were used in two real

biomedical problems, that were the measurement of the propagation of bacteria in

motility images, and the detection of the epiretinal membrane disease from fundus

images. This allowed us to see that the developed methods have an impact on real life

problems, a research line that we will keep exploring in the future.



Chapter 5

Conclusiones y trabajo futuro

En este trabajo hemos abordado el problema de democratizar el uso de las técnicas

de Deep Learning para resolver problemas de clasificación de imágenes. En concreto,

hemos desarrollado diferentes herramientas y técnicas que intentan solucionar tres re-

tos en el uso de técnicas de Deep Learning que son: la reducción de la cantidad de

datos necesarios para utilizar estas técnicas, la democratización de la construcción de

modelos de Deep Learning, y la democratización del uso de modelos de Deep Learn-
ing.

Para reducir la cantidad de datos necesarios para utilizar técnicas de Deep Learning,

hemos estudiado dos enfoques diferentes. En el primero hemos utilizado una técnica

que consiste en aumentar los datos creando nuevos datos artificiales. Para ello, hemos

desarrollado un framework de aumento de datos llamado CLoDSA, que nos permite

aumentar la cantidad de imágenes de un problema utilizando diferentes técnicas de

aumento de datos. Esta herramienta nos permite realizar aumento de datos no solo en

problemas de clasificación, sino también en otros problemas de visión por computador.

En el futuro, planeamos expandir la funcionalidad de CLoDSA al incluir más técnicas

de aumento, integrar más frameworks e incluir métodos basados en GAN (Generative
Adversarial Networks) que permitan el aumento de nuevos datos.

Además, hemos estudiado el uso de datos no etiquetados mediante la creación de

nuevos métodos semi-supervisados. En concreto, hemos desarrollado dos métodos

semi-supervisados. El primero se basa en el concepto de destilación de datos y modelos

que nos ha permitido aumentar el rendimiento de los modelos de Deep Learning en un

10% utilizando un número reducido de imágenes anotadas. En el futuro queremos

poder seleccionar automáticamente las transformaciones y modelos a utilizar de los

métodos semi-supervisados dependiendo del tipo de problema a resolver. Además,

queremos trasladar estos métodos a otras tareas de visión artificial, como la detección

de objetos o la segmentación de imágenes. También hemos desarrollado un método

semi-supervisado basado en las técnicas de análisis de datos topológicos que mejora

hasta un 16% los métodos clásicos de anotación. En el futuro se pretende extender este

método a problemas de clasificación no binaria, ası́ como a la investigación de nuevas

técnicas de TDA.

Además, estamos estudiando el problema del few-shot learning, en colaboración
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con el grupo de investigación del profesor Thomas Brox de la Universidad Albert-

Ludwigs de Friburgo. El problema de few-shot learning es un problema de clasificación

de imágenes en el que el conjunto de datos de entrenamiento contiene información

limitada, es decir, pocas imágenes etiquetadas por clase. En esta colaboración estamos

trabajando en un enfoque de redes generativas.

El segundo reto que hemos abordado es la democratización de la construcción de

modelos de Deep Learning. Para resolver este problema, hemos desarrollado una her-

ramienta de AutoML, llamada ATLASS, que ayuda al usuario en todo el proceso de

creación de un modelo de clasificación de aprendizaje profundo, desde la anotación de

las imágenes hasta la creación del modelo de aprendizaje profundo. En este marco, se

ha utilizado uno de los métodos semi-supervisados desarrollados anteriormente para

mejorar la precisión de los modelos obtenidos ası́ como dar la posibilidad de utilizar

imágenes sin etiquetar. El framework desarrollado se puede utilizar tanto en un servi-

dor local, con la complejidad de mantenimiento y configuración que ello conlleva, o se

puede utilizar en la nube, con Google Colaboratoy o Amazon Web Services por ejem-

plo, con todos los problemas de seguridad que ello conlleva; es por ello que en el futuro

queremos mejorar la seguridad de nuestros modelos de aprendizaje profundo mediante

el uso de técnicas de privacidad de datos.

Para abordar el tercer desafı́o, la democratización del uso de modelos de Deep
Learning, hemos estudiado dos enfoques. En el primero, se ha intentado reducir

la cantidad de recursos computacionales necesarios para el uso de modelos de Deep
Learning, ası́ como reducir su tamaño. Para ello, hemos realizado un estudio exhaus-

tivo de la combinación de redes compactas y técnicas de cuantificación con métodos

de aprendizaje semi-supervisado. Como resultado, hemos podido concluir que com-

binando estas dos técnicas podemos obtener modelos compactos, tan precisos como

los modelos de tamaño estándar y también más rápidos y ligeros. Este hecho nos

permite incluir estos modelos en smartphones o dispositivos edge. Nuestro siguiente

objetivo es trasladar este estudio a la segmentación de imágenes, intentando sustituir

los backbones existentes por redes compactas. Además, hemos desarrollado una li-

brerı́a llamada DeepClas4Bio que agrupa los principales frameworks de Deep Learn-
ing y facilita la interoperabilidad entre estos frameworks y las principales herramientas

de bioimagen, como ImageJ o Icy. Además, se han desarrollado unos plugins para

cada una de estas herramientas que permiten una fácil integración con DeepClas4Bio.

También tenemos la intención de extender nuestro framework a otras tareas de visión

artificial, como la detección de objetos o la segmentación de imágenes.

Finalmente, las técnicas y métodos desarrollados en este trabajo se han utilizado en

dos problemas biomédicos reales, que son la medición de la propagación de bacterias

en imágenes de motilidad, y la detección de la enfermedad de la membrana epirretini-

ana a partir de imágenes de fondo de ojo. Esto nos ha permitido ver que los métodos

desarrollados tienen impacto en problemas de la vida real, lı́nea de investigación que

seguiremos explorando en el futuro.
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