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Abstract 

Students often do not experience the relevance of learning mathematics. This paper reports on an 
exploratory case study, in which a class of grade 8 students (n=35) was introduced to Sankey diagrams. 
The aim was to explore to what extent these students could appropriate Sankey diagrams, meaning: they 
could describe these as objects in themselves and they could use them to model and visualize 
phenomena relevant to them. Based on Cultural-Historical Activity Theory, we developed an analytical 
construct defined as the object-tool duality, coordinating mathematics as a set of objects and as a set of 
tools. The analysis of students’ answers showed that they could use these diagrams as tools to visualize 
phenomena. When asked to describe the object, all mentioned the tool-side. So, in their appropriation 
the tool-side came before the object-side. Our contribution is that teaching the tool-side of mathematics 
before the object-side may increase students’ sense of the relevance of mathematics, which is a topic to 
develop for future research. 

Keywords. Appropriation; mathematical modelling; object-tool duality; relevance (of 
mathematics); Sankey diagrams. 

La dualidad objeto-herramienta en la modelización matemática. Un marco de análisis de la 
apropiación de los estudiantes de diagramas Sankey para modelar procesos dinámicos  

Resumen 

A menudo los estudiantes no perciben la relevancia de las matemáticas y de su aprendizaje. Este 
artículo presenta un análisis exploratorio de un caso de estudio, en el cual se introducen los diagramas 
de Sankey para estudiantes de octavo grado. El objetivo fue explorar hasta qué punto estos estudiantes 
se apropiaron de los diagramas Sankey, es decir, si los describían como objetos en sí mismos y si eran 
capaces de utilizarlos para modelizar y visualizar fenómenos relevantes para ellos. Con base en la 
Teoría Cultural-Histórica de la Actividad, desarrollamos un constructo analítico definido como la 
dualidad objeto-herramienta, que coordinan las matemáticas como conjunto de objetos y conjunto de 
herramientas. El análisis de respuestas de los estudiantes mostró cómo usaron estos diagramas a modo 
de herramientas para visualizar ciertos fenómenos. Cuando se les pidió que describieran el objeto, 
todos mencionaron los aspectos como herramienta. Así, en su proceso de apropiación la interpretación 
como herramienta se antepuso a la de objeto. Nuestra contribución es que el trabajo con la vertiente 
herramienta de las matemáticas antes que con la de objeto puede aumentar la relevancia que los 
estudiantes dan a las matemáticas, resultando ser una línea a desarrollar en futuras investigaciones. 

Palabras clave. Apropiación; diagramas Sankey; dualidad objeto-herramienta; modelización 
matemática; relevancia (de la matemática). 

1. Introduction 

Within mathematics classrooms, some students ask about the relevance of what 
they are learning (Hernández-Martínez & Vos, 2018). Researchers observed that 
mathematics teachers then promise “it will come in useful”, whilst simultaneously 
offering students artificial mathematical activities that neither connect to students’ 
daily life experiences nor to future workplaces (Boaler, 2000; Gainsburg, 2008). The 
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reasons given by mathematics teachers for not conveying relevance are lack of ideas, 
resources, and preparation time to search for good examples (Gainsburg, 2008). The 
teacher’s message contrasts with the implicit message that mathematics is somehow 
important, since it is compulsory and prominent within the school timetable. Niss 
(1994) captured this situation as the relevance paradox, whereby the subjective 
irrelevance of mathematics as experienced by students in classrooms contrasts with its 
importance as expressed by teachers, parents, policy makers, and so forth.  

To address the relevance paradox, there have been calls to better connect school 
mathematics to the world outside school by offering mathematical modelling tasks 
(Kaiser, 2014). These tasks start from real-life problems, for which mathematics is a 
tool needed in the process of answering them. Such tasks should assist students in 
experiencing the relevance of mathematics. However, many modelling tasks are paper-
and pencil problems with constructed situations, ready-made formulas, and questions 
that would not have been asked by people in the situation (Vos, 2013, 2020). In fact, 
conveying the relevance of mathematics and connecting school mathematics to 
students’ daily lives or to their future workplaces is not without problems. First, many 
mathematics teachers have little experience in designing tasks (1) that align with 
students’ mathematical levels and interests, and (2) that offer an authentic context and 
have a question that people in that situation would pose (Vos, 2011). For example, in 
connecting industrial contexts to mathematics, Nilsen and Vegusdal (2017) observed 
teachers offering authentic figures from an enterprise, and then asking students to 
calculate the radius of a tank, or the surface area of a warehouse. In such tasks, the 
workplace is a context for a dressed-up word problem (Blum, 2015) and the answer 
neither solves a problem from the enterprise, nor assists a better understanding of 
industrial processes. Second, professionals in industries and governments perform 
contextualized activities like measuring, estimating error margins, and planning, which 
they often do not recognize as mathematical; Andreassen, Nilsen and Vos (submitted) 
report of workers in a sewage plant who stated to only use primary school mathematics 
(addition, multiplication and percentages) ignoring their constant administering and 
monitoring of measurements, reading off data from tables and graphs, working with 
uncertainty, relationships, and constantly interpreting the data in the situated context of 
the enterprise. These mathematical activities were hidden in routines and in 
instruments, and looked unrelated to school mathematics (Wake, 2014). 

Thus, resolving the relevance paradox by connecting civic and industrial contexts 
to school-based mathematical activities is not straightforward, since both are rooted in 
different cultures, consist of different practices, and have different goals (FitzSimons 
& Boistrup, 2017; Frejd & Bergsten, 2016). On the one hand, there is the school 
culture, in which classroom activities are guided by short tasks detached from daily 
life, with the aim to prepare students for exams and more distantly, for later life. On 
the other hand, the out-of-school culture displays ongoing datafication with the aim to 
efficiently support administration, safety, customer service, planning and so forth. To 
access and operationalize the increasingly complex data, professionals are trained to 
apply routines, use instruments, and read and interpret the supply of data, which are 
increasingly displayed in colorful visualizations (Mayer-Schönberger & Cukier, 2013). 

This paper draws on a research project that addresses the relevance paradox. We 
study how the relevance of mathematics for students’ future lives can be conveyed, in 
particular for societal issues, such as recycling waste (Vos & Frejd, submitted), or 
sewage cleaning (Andreassen, Nilsen & Vos, submitted). The project aims to 
contribute to research on mathematical modelling education and the discussion 
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whether modelling is taught to develop mathematics or as content in itself (Julie & 
Mudaly, 2007). We take a middle position is saying that neither mathematics nor 
mathematical modelling are aims in themselves, but that (1) both are useful in society 
and potentially in students’ future lives, (2) students will be more motivated to learn 
mathematics when they understand its relevance, (3) this relevance can be conveyed 
through mathematical modelling experiences, and (4) students will be better at 
modelling in new situations when they already have rich modelling experiences. 

 
Figure 1. Grade 8 students’ spontaneous diagram to describe a sewage process  

We report from a lesson with students in 8th grade (13-14 years old) about the 
modelling of dynamic processes (demography, industries, etc.). The lesson built on a 
project where another group of 8th grade students had visited a sewage plant and 
sketched a diagram of the sewage process (Andreassen, Nilsen & Vos, submitted). 
Figure 1 shows this process: the excretion starts from the homes, goes through pipes, 
filters physical objects (e.g., toilet paper), it is chemically treated, mixed with air, 
separated from a sludge and safely released into the sea. After observing students’ 
attempt to visualize the sewage process, we decided to offer another group of 8th grade 
students a tool: Sankey diagrams (explained below). We describe the lesson on Sankey 
diagrams, and how they appropriated them for use in situations that mattered to them. 

2. Background and theoretical framework  

2.1. Sankey diagrams 

A Sankey diagram shows flows, of which the width represents the flow’s quantity. 
Figure 2 shows a Sankey diagram of the population dynamics of Norway between 
1978 and 2018. On the left a large vertical bar represents the 4.1 million inhabitants in 
1978. From its top, there are two flows departing: 0.4 million inhabitants died and 0.2 
million emigrated between 1978 and 1988. In this diagram, the widths of flows 
represent numbers of people, so the flow of 0.2 million deaths is twice as wide as the 
flow of 0.4 million emigrants. By comparing the width of the flows, one can see that 
the numbers of deaths and births hardly changed over the four decades after 1978, but 
the numbers for emigration and immigration did. In general, Sankey diagrams are data 
visualizations (i.e. data representations, statistical graphics) that can be used when all 
variables have the same unit (e.g. frequencies, liters, Euros, Joule). The name giver is 
Capt. Matthew Sankey, who around 1900 visualized energy loss in steam engines. 
However, forty years earlier, the French engineer Charles J. Minard already created 
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Sankey diagrams to visualize flows of people over time and space, like military 
movements in warfare, and cross-continental migration (Tufte, 2001). 

 
Figure 2. Norway’s population dynamics 1978-2018 visualized through a Sankey diagram 

Data visualized in a pie chart can be visualized in a Sankey diagram, but not vice-
versa. A pie chart shows a whole and its parts, which can be displayed by a Sankey 
diagram as a flow dividing into sub-flows. A Sankey diagram has the additional option 
to visualize sub-flows of sub-flows, and the diverse flows and sub-flows then can be 
woven and make a new whole. In this way, they can represent a process, for example 
how magnitudes change over time (Figure 2) or place. The sewage process in Figure 1 
can be redrawn with flows, of which the width represents the sewage fluid quantities. 
Sankey diagrams are also used to visualize complex data sets, for example how voters 
move from one party to another between elections (British Election Study, 2019). 

Sankey diagrams have gained popularity, driven by a growing datafication in 
society (Mayer-Schönberger & Cukier, 2013), and media becoming more visual. These 
diagrams cannot be created with standard spreadsheet programs, but there are simple, 
free, web-based tools, like SankeyMATIC, allowing to code each flow through its 
starting point, quantity and end point. The first codes for Figure 2 were: 

1978 [424697] Deaths 1978-1987; 1978 [155351] Emigration 1978-1987; 1978 
[3471160] 1988; Births 1978-1987 [514207] 1988; Immigration 1978-1987 [155351] 
1988; 1988 [450515] Deaths 1988-1997; 1988 [205481] Emigration 1988-1997; …. 

Sankey diagrams, just like all data visualizations, are tools of a mathematical 
nature to visualize, and thereby model, large or complex data. They can be used to 
describe phenomena from real life, and eventually analyze or solve problems. Thus, a 
Sankey diagram is a mathematical model, in which quantitative information is 
structured visually through colorful nodes and flows with two goals: to analyze data 
(for oneself to understand) and to communicate these (for others to understand). 

2.2. Theoretical stance and the object-tool duality in mathematical modelling  

In our study, we use Cultural-Historical Activity Theory (CHAT) to analyze 
students’ work with Sankey diagrams. CHAT builds on Vygotsky (1978) who 
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Object Subject 

Tools 

Derivative 
functions 

Student 

Digital tools, language, 
gestures, symbols, etc. 

Student 

Books, language, data 
visualizations, mathematical 

symbols, etc. 

Population 
dynamics 

developed psychological research with the premise that people and their minds cannot 
be studied detached from the activities and the socio-cultural environment. In CHAT, 
an activity is framed as a triad consisting of a subject (a person), an object (what the 
activity is about), and the cultural tools used (language, gestures, physical objects, 
etc.), see Figure 3 (top). An example of such a triad is a student (subject) studying the 
derivative (object) using textbooks, a digital graph plotter, symbols and verbal 
language (tools), see Figure 3 (bottom, left). According to CHAT, all tools are cultural 
and historical, since they originate from a wider world beyond the activity and were 
developed by people who, most likely, aren’t involved in the present activity (Roth & 
Radford, 2011). In the example of the student learning the derivative, the symbols, the 
textbooks and the graph plotter are tools that were developed by people external to the 
classroom and taken into use by others (cultural), and there is a time lapse between the 
development of the tools and the present learning activity (historical).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. Vygotsky’s Mediational Triangle (top) with two concretizations 

An important element in CHAT is that the subject’s activity is mediated (guided, 
facilitated, and modified) by the tools used in the activity. For example, the digital 
graph plotter allows for varying graphs of functions dynamically. Before such plotters 
became available to students, the learning activities were based on static graphs of 
functions in a textbook, which made the learning different in many ways. 

Since CHAT offers a frame to analyze how cultural tools mediate activities, it is a 
helpful theory for researchers of mathematics education analyzing teaching and 
learning activities and the mediation thereof by, for example, signs and gestures 
(Radford, 2010), or by digital tools (Monaghan, 2016; Williams & Goos, 2012). When 
researching mathematical modelling education, the CHAT triad can yet again be used, 
but now, the position of mathematics changes. It is no longer the object, but one of the 
tools to solve real-life problems. For example, when a student works on a task about 
population dynamics and uses a Sankey diagram to model these, the diagram is not the 
object of the activity, but the tool used in the activity (Figure 3, bottom right). The 
combination of, and the difference between, mathematics as a set of objects and as a 
set of tools is what we indicate by the object-tool duality in mathematical modelling. 



The object-tool duality in mathematical modelling 

57                                                                                                                                         AIEM, 17, 2020                                                                                                               

To see mathematics primarily as a set of objects is often the perspective of 
mathematics teachers. As described in the introduction, many teach the subject as aim 
in itself, disconnected from the tool-side. In fact, when people encounter mathematical 
objects, such as derivatives, for the first time in their lives, these objects are neither 
presented nor experienced as tools. This leads students to ask for the relevance of what 
they learn, which points at their need to understand the tool-side of the object. 

To see mathematics as a set of tools is the perspective of users, like the biological 
or psychological researchers who click some buttons in a statistical package to obtain a 
p-value for their experimental results. Also, this perspective is the one of the people in 
history, who developed mathematical concepts because they needed these. In the 17th 
century, Newton and others developed the derivative as a tool to study gravity and 
astronomy (Boyer, 1959). Minard developed the Sankey diagram to visualize flows of 
large groups. Both needed mathematical tools to model non-mathematical phenomena. 

Using CHAT as a lens, we perceive Sankey diagrams as both mathematical objects 
in themselves, since they can be defined as a class of data visualizations 
decontextualized from their use. Simultaneously, we perceive them as cultural-
historical tools that proved useful in modelling phenomena. Following CHAT, tools 
mediate activities, which applies to mathematical tools as well. Whether one uses 
tables or Sankey diagrams will affect the people studying, for example, population 
dynamics. The mathematical tools impact their insights into relationships, their trust in 
the analysis, their joy in the activity, or their status when showing their work to others. 

In mathematical modelling, when people use mathematics as a set of tools, they 
most likely consciously use these, and hence the use of mathematical tools differs from 
how we unconsciously use language, and how some people unconsciously use pens or 
smart phones. To use mathematical tools requires learning. After having encountered 
them, their use requires reflection, for example on how to represent the object 
(algebraically, graphically, etc.), or how to adapt the object to specific activity. The 
mathematical tool is thus an object of learning and, while in use, an object of 
reflection, which justifies speaking of the object-tool duality in mathematical 
modelling. This duality sustains our analysis of Sankey diagrams as objects of learning 
in schools and as tools to model and visualize phenomena. CHAT enables us to 
capture both the object-side and the tool-side of the diagrams. This object-tool duality 
in mathematical modelling frames the analysis in our research as an analytic construct. 

The object-tool duality offers a perspective on mathematical objects like division 
algorithms, percentages, or Pythagoras’ Theorem, indicating that each of these objects 
also has a tool-side, which shows when these are used in mathematical modelling. The 
object-tool duality as a lens on (pure) mathematics education opens a window on 
analyzing how mathematical objects are taught for the sake of an abstract curriculum, 
as objects of learning without considering their history, the rationale for humans to 
develop them, and their usefulness in non-mathematical activities in real life beyond 
the school. The object-tool duality then reveals how mathematical objects lack 
connections by being stripped of their tool-side, which leads to the relevance questions 
asked by students, as described in the introduction of this paper. 

2.3.1 Appropriating mathematical object-tools  

Following educational researchers who applied CHAT, we speak of learning as 
appropriation (Moschkovich, 2004; Radford, 2010; Säljö, 1991). Appropriation is the 
process of making something one’s ‘property’. Radford (2010) says: “we do not mean 
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that students’ knowledge appropriation is achieved through a kind of crude transfer of 
information coming from the teacher. As we see it, knowledge appropriation is 
achieved through the tension between the students’ subjectivity and the social means 
of semiotic objectification” (p.241). Vos and Roorda (2018) explain that the process of 
appropriation is hard to capture by a researcher, but the result of a successful 
appropriation can be observed: it is when a student has ownership over a mathematical 
object as a personalized tool, when (s)he can use it flexibly, confidently and 
strategically in a variety of non-routine situations, without being prompted. In this 
definition, one can recognize the object-tool duality described before. A successful 
appropriation implies that a student knows what the object is (factual knowledge), how 
it can be used (procedures, algorithms), can make connections to different situations 
and with other objects (conceptual knowledge), and has knowledge of it as a tool: of 
its aims, its limitations, and when/where/for what purpose it can be used. In case of 
Sankey diagrams, this means that students understand how they are constructed as 
tools for visualizing phenomena with nodes and flows, recognize that the width 
represents the flow’s quantity, can read off data, can explain how they differ from 
other visualizations (e.g. pie charts), and can use them creatively in new situations. 

For researching learning processes in mathematical modelling education, the 
appropriation of mathematical object-tools is as an analytic construct that addresses 
that mathematical tools for solving real life problems still have an object side. This 
means that students need opportunities to encounter and learn about these cultural 
tools, that is, how these mathematical tools are constructed and used by others. In this 
appropriation process, the tools are objects of learning, which subsequently and 
hopefully, become personalized tools. In the present paper, the object-tool duality and 
students’ appropriation are central tenets. The research question was: to what extent 
can grade-8 students appropriate Sankey diagrams as object-tools, so they can 
describe them as objects in themselves and use them for situations that matter to them?  

3. Methods 

We introduced Sankey diagrams to a class of 35 grade 8 students (13-14 years old) 
from an urban school in Norway within a mathematics lesson of 90 minutes. The class 
was split in two halves (n=17 and n=18) and their lesson could be scheduled within the 
same week, so all students were at the same level of learning. The first author was the 
teacher, whilst the regular mathematics teacher remained in the background. The aim 
was to offer students a variety of Sankey diagrams so they could gradually generalize 
across contexts, describe features of the diagrams, and use them in new situations. 

The lesson was based on a booklet with tasks (Vos, 2019) described below. The 
lesson had a short introduction (5 minutes), in which the teacher introduced herself and 
how the students were to work with the booklet. She did inform the students of the 
topic of the lesson, but no Sankey diagrams were shown or explained at that stage. The 
students sat in groups of 2 or 3, making 15 groups in total. The groups received jointly 
one booklet, so students alternated their reading of texts and their writing of answers 
into the booklet. Both teachers were available for consults, sometimes helping to 
interpret tasks. However, they were often chatting with each other, since the groups 
mostly worked independently. After 40 minutes there was a 5-minute break, in which 
the students left the classroom for the playground. In the part after the break, all 
student groups reached the final page of the booklet. In the final 5 minutes, the teacher 
offered a summary, thanked the group, and collected the booklets.  
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The booklet consisted of seven pages and covered four topics: Norway’s population 
dynamics 1978-2018, the milk factory, grade 10 students’ choices for theoretical or 
vocational tracks, and energy conversion in light bulbs. Each topic centered on a 
Sankey diagram visualizing a phenomenon, about which several tasks were to be 
completed. For each topic, the tasks increased in complexity and were concluded by a 
modelling problem, such as what are reasons for Norway’s population growth? Or, 
what are differences in energy usage between classical light bulbs and energy saving 
bulbs? To frame the increasing complexity, the task design was based on the levels of 
reading, interpreting and creating mathematical graphics from Friel, Curcio and Bright 
(2001) and Prodromou (2017): (1) reading data in the diagram, which entails looking 
at local features in the diagram, (2) ‘reading between’ data in the diagram, which 
entails examining relationships between variables, or between variables and the 
described phenomena, (3) ‘reading beyond’ the diagram, which entails analyzing the 
diagram from a meta-perspective, for example by asking “what if..?” questions (e.g. 
what if one variable increases?), and by critiquing (“if the diagram shows flows of 
milk, yoghurt and ice cream, it will not show the financial profit”), and (4) creating 
diagrams, which entails calculating widths for the flows to be drawn. 

 
Figure 4. Tasks on Norway’s population dynamics (for translation, see the text below)  

We illustrate these levels through the first tasks in the booklet, see Figure 4. These 
tasks are about the population dynamics in Figure 2. Tasks a) and b) ask how many 
inhabitants lived in Norway in 1978 and 1988. So, students had to read in the diagram. 
Task c) ask to calculate the growth in this decade. The answer cannot be read in the 
diagram, requires a calculation, and this is termed as ‘reading between’ data in the 
diagram. Task d) offer numbers for migration and deaths, and asked students to find 
the number of births between 1978 and 1988. This task is, yet again, a ‘reading 
between’. Only later-on in the booklet came tasks of a higher level, for example in 
comparing a Sankey diagram to a pie chart. The tasks to create a Sankey diagram, 
requiring calculations of the widths of flows were scaffolded as follows. There was no 
creating task with the first Sankey diagram. With the second, the students were offered 
a Sankey diagram, in which on the left-hand side, the cow and goat milk flowed into 
the factory, and on the right-hand side, the milk cartons, cheese, yoghurt and ice cream 
exited the factory. Here, students had to reason about widths of flows, and to calculate 
how many liters of milk were represented by a flow drawn 1 cm wide. With the third 
diagram, students were to draw sub-flows for girls and boys within the flows of 
students choosing health studies and electronics. This, again, required them to 
calculate widths. In the fourth topic, on the conversion of electricity into light and heat, 
there was a given Sankey diagram about a classical lightbulb, and students were asked 
to draw one for the energy saving bulb. They were asked to calculate widths of flows, 
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with the hint: “Take 1 Joule = 1 mm”. This was the first occasion, where a modelling 
problem (what are differences in energy usage between classical light bulbs and 
energy saving bulbs?) required students to draw their own Sankey diagram. 

We assumed that with four different Sankey diagrams, students would be able to 
find common characteristics. The tasks on calculating widths aimed at raising 
awareness on the quantitative nature of the diagrams. Throughout the booklet, there 
was no definition of Sankey diagrams given, since this would guide students when 
being asked, on the final page, what a Sankey diagram is (object-side) and to draw a 
Sankey diagram visualizing an issue of their own choice (tool-side). This final page 
was designed as main data source for analyzing students’ appropriation of Sankey 
diagrams. At the end of the lesson, we collected the 15 booklets with students’ 
answers. We supplemented these with observation notes made during the lesson, and a 
report written after the lesson. We didn’t film or audiotape the students, not wanting to 
disturb them. We analyzed the students’ written answers by evaluating to what extent 
they showed appropriation of Sankey diagrams as a tool and a as an object. 

4. Results 

The first tasks in the booklet concerned the population dynamics in Norway 
between 1978 and 1988, see Figure 4. The answers show that most students were well 
able to interpret the data in the diagram and meaningfully make calculations with 
these. One of the observers noted that a student explained her peers that immigrants 
were to be “plussed” and emigrants and deaths were to be “minussed” from the total. 
This illustrates how the students used mathematical operations as a tool in the tasks. 
All but one student group found correct answers, which shows that many started to 
appropriate the diagram as a visualization tool showing data of population dynamics. 
One group interpreted question d), see Figure 4, as a task to perform an addition, since 
it showed three numbers written vertically; they wrote 0,8 (= 0,2 + 0,2 + 0,4) as 
answer. These students perceived this task as a mathematical object, detached from it 
being a tool to meaningfully describe population dynamics. However, on the ensuing 
tasks in the booklet, this group picked up in understanding the diagram as a tool for 
visualizing population dynamics. In the end, all students groups were able to use the 
Sankey diagram in Figure 2 as a tool for giving satisfactory answers to the modelling 
problem: what are reasons for Norway’s population growth? 

In the next tasks regarding the Sankey diagram of the milk factory, the students 
were asked to reason about the widths of the different flows (of milk, yoghurt, etc.). In 
comparing the widths of flows, they calculated widths, and some used their ruler to 
rather measure these. They wrote sentences like “when the liters are more, the bar is 
thicker” or “when the goat milk is half the ecological milk, the arrow is half as big”. 
Here, the flows were objects of reasoning, and also tools for representing milk 
quantities. Thereafter, the students encountered a Sankey diagram showing the 
distribution of students in senior secondary and their numbers in the different 
vocational and theoretical tracks. Here, students analyzed what tracks were mostly 
chosen by girls (health) and boys (electronics) and drew these as flows. All groups did 
well in using the width of the flows as a tool to visualize the different quantities. 
Thereafter came the tasks about the conversion of electrical energy in light bulbs. Here 
we saw groups correctly use the hint “Take 1 Joule = 1 mm” and draw the flow of 20 
Joule with a width of 2 cm. This enabled them to visualize the energy conversion in an 
energy saving bulb and explain differences with a classical bulb. So, they were able to 
create a new Sankey diagram as an object requiring mathematical calculations, and as 
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a tool to visualize energy flows. The remaining groups drew qualitative flow charts. In 
the observation notes, it was written that this task was considered less interesting and 
that when seeing others advancing to the next tasks, they wanted to catch up. 

On the last page of the booklet, the students were asked: what is a Sankey 
diagram, and what it can be used for? Typical student answers were: 

“ It now shows, for example, what parts a thing goes into. Statistics” 

“You can use it to show what goes in and what goes out.” 

“A diagram that shows development” 

Many answers contained the word ‘it’, indicating that the students, to a certain 
extent, recognized commonalities across the four Sankey diagrams they had seen. 
These diagrams together had become one object for them. Also, most answers 
contained the word ‘show’ indicating that the students recognized that Sankey 
diagrams could be used purposefully as a tool to visualize phenomena from real life. 

     
Figure 5. Two different Sankey diagrams creaated by the students 

The final question in the booklet asked students to create a Sankey diagram on an 
issue of their interest. All student groups engaged in this enthusiastically. Most created 
diagrams like Figure 5 left, showing a whole and its parts, for example visualizing 
“what people do in their free time” or “how I spend my pocket money”. The data 
visualized could also have been shown through a circle diagram. These diagrams were 
probably inspired by the third Sankey diagram in the booklet, displaying grade 10 
students’ choices for vocational or theoretical tracks. A different type of Sankey 
diagram was created by two groups, one in each of the half classes. It showed the 
population dynamics of how their class had evolved historically. One group showed it 
for the past four years, the other for the past eight years (Figure 5, right). The diagram 
showed that the students had come from two different primary schools, that some 
individuals had joined, and some had left. In this diagram, parts became a whole, and 
further developed over time into a new whole, showing a dynamic process that one 
cannot display through the standard data visualizations available in standard 
spreadsheet programs. Most likely, such a class population diagram was inspired by 
the first Sankey diagram in the booklet (Figure 2). In all self-produced Sankey 
diagrams, the students had drawn the flows that visualized smaller quantities clearly 
thinner, but in none they drew the width of flows proportionally to their quantity. Not 
one group made an effort to calculate accurately the width of flows in their self-
designed Sankey diagrams. Despite the tasks on calculating widths, students’ own 
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Sankey diagrams were qualitative tools, similar to the somewhat naive diagram that 
their peers had created earlier visualizing the sewage process (Figure 1).  

When we analyze students’ appropriation of Sankey diagrams in light of the 
object-tool duality, we can see, on the one hand, that students understood them as 
objects, since they were able to describe them and knew what to do when asked to 
create one. However, the characteristic regarding the proportionality of the widths of 
flows hadn’t been appropriated, neither in their descriptions nor in their drawings. 
They primarily saw them as qualitative objects. On the other hand, the students 
understood well that Sankey diagrams could be tools to visualize data, and they could 
use them creatively to represent situations different from the ones presented to them, 
such as for their sports, their pocket money or for their own class population dynamics. 
So, they could use them to visualize issues that mattered to them.  

5. Conclusion 

In the present study, we carried out an exploratory classroom experiment guided 
by the research question: to what extent can grade-8 students appropriate Sankey 
diagrams as object-tools, so they can describe them as objects in themselves and use 
them for situations that matter to them? Some students told us they had not seen such 
diagrams before, and they engaged with them for only 90 minutes. We observed them 
appropriating the Sankey diagrams as objects to a certain extent: they started to use the 
name, they were able to indicate commonalities across the different Sankey diagrams; 
they could describe some characteristics. Since we did not ask them to compare with 
other tools (e.g., pie charts), we do not know whether they could do so. We observed 
the students disregarded that the widths of the flows really mattered; they seemed to 
take the flows more qualitatively. We also looked at critical aspects of students’ 
appropriation of Sankey diagrams as tools; we did not see them use these flexibly and 
confidently without being prompted. That would be a too high expectation for 8th 
grade students after having encountered four Sankey diagrams and being prompted to 
draw a fifth. However, all were well able to describe the tool-side of the diagram, as 
expressed in sentences like “a diagram that shows development”. They understood that 
the Sankey diagrams could be useful for visualizing and modelling phenomena. 

Our study indicates that students can learn about the tool-side of a mathematical 
object before fully grasping the object-side and without having seen a definition. 
However, this indication should be seen in relation to the design of the 90 minutes 
explorative classroom study, the sample of students and the design of the booklet. It is 
therefore not possible to generalize our findings, yet these confirm results from 
previous research showing that one does not need to teach mathematical concepts as 
isolated objects before teaching applications. This approach, known as applicationism, 
wrongly assumes a deductive order in teaching the abstract before the use (Barquero, 
Bosch & Gascón, 2013). Second, our study shows that students can gain a sense of the 
relevance of mathematics, without fully grasping the underlying mathematics; they can 
comprehend that the tool-side of mathematics can assist in visualizing phenomena, and 
that this assists in better understanding such phenomena. Third, when students learn 
about the tool-side in conjunction with, or even before the object-side, many of them 
will be more motivated to learn the abstract object-side, since they start from an 
answer to their relevance question. They will then better see a purpose in their learning 
efforts, knowing they will obtain a tool for solving problems on issues that matter to 
them. This will mitigate the relevance paradox in mathematics (Niss, 1994). 
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By appropriating Sankey diagrams, the students in our study experienced a certain 
relevance of mathematics (Hernández-Martínez & Vos, 2018), on the one hand by 
using these diagrams to visualize phenomena and understand these for themselves, but 
also to the tool for communicating with others. We observe potential areas for further 
studies, namely regarding the use of mathematical models not only to solve real-life 
problems, but also to use these as tools for communication with those whose problems 
are addressed. Also, research could reach beyond Sankey diagrams, exploring the use 
of computational tools, simulations, or animated data visualizations, what role these 
can play in mathematical modelling education, what position these could have in the 
curriculum, how these can play a role in inter-disciplinary education, and so forth.  

Finally, the study presented shows how the object-tool duality is a simple, yet 
powerful construct for analyzing mathematical modelling activities. By discerning 
between the more abstract object-side and the applicable tool-side, we do justice to 
how humans historically developed mathematical objects for their usefulness to model 
and visualize non-mathematical phenomena. The object-tool duality acknowledges the 
abstract side of mathematics, whilst simultaneously including its concrete usefulness. 
Tensions between both sides are not easily resolved, and we recommend further 
research into educational settings that build on the object-tool duality of mathematics. 
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Students often do not experience the relevance of learning mathematics. To address 
this relevance problem, we run a mathematical modelling project, in which we create 
links between school mathematics and enterprises in the region. In an earlier project, 
we had observed that students needed a tool to describe dynamic processes. This paper 
reports on an exploratory case study, in which a class of grade-8 students was 
introduced to Sankey diagrams, a type of flow diagram to model and visualize 
dynamic processes. In Sankey diagrams, the width of a flow is drawn proportionally to 
the quantity depicted. The aim of the study was to explore to what extent the students 
could appropriate Sankey diagrams, meaning: they could describe these as objects in 
themselves and they could use them to model and visualize dynamic phenomena 
relevant to them. Based on Cultural-Historical Activity Theory, we developed an 
analytical construct defined as the object-tool duality, coordinating mathematics as a 
set of objects and as a set of tools. The object-tool duality has a historical base, since 
mathematical concepts, theorems or algorithms were developed by people, who needed 
these mathematical objects to solve non-mathematical problems, like in physics, 
astronomy, demography, and so forth. The object-tool duality emphasizes that 
mathematical objects have a tool-side. Detaching mathematical objects from their 
usefulness, as it is done in traditional mathematics teaching, explains students’ lack of 
relevance experiences in mathematics classrooms. The empirical base of our study was 
a lesson of 90 minutes, in which students worked in small groups on tasks featuring 
Sankey diagrams. The diagrams depicted, for example, the population growth of 
Norway in the past 40 years, and another one showed the industrial process, in which 
milk becomes yoghurt or ice cream. Students worked on what are reasons for 
Norway’s population growth? Or what are differences in energy usage between 
classical light bulbs and energy saving bulbs? They did ample tasks calculating the 
widths of the flows proportionally to the quantities. At the end of the lesson, students 
were asked to describe Sankey diagrams (object-side) and to draw one about an issue 
of their interest (tool-side). The analysis of students’ answers showed that they could 
use these diagrams as tools to visualize phenomena, but they did this qualitatively. In 
their descriptions of the object, they used the name and mentioned the visualizing 
property, that is, the tool-side. None of them mentioned the proportionality of the 
widths of flows despite having done exercises on this. The lesson was too short, and 
the students were too few to enable us to draw general conclusions, but we it seems 
that in students’ appropriation the tool-side was prominent. Our contribution is that 
teaching the tool-side of mathematics before the object-side may increase students’ 
sense of the relevance of mathematics, which is a topic to develop for future research. 


