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On spectral properties and extensions of
bounded linear operators

Sobre propiedades espectrales y extensiones de operadores lineales
acotados
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Abstract. If T is a bounded linear operator on some Banach space and T has
a bounded extension T on another space. In general, almost nothing can be
said concerning the relationship between the spectral properties of T and T .
In this paper, we give several sufficient conditions for which a large number of
spectral properties introduced recently are transmitted from an operator T to
T and vice-versa.
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1. Introduction and preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X. For T ∈ L(X), we
denote by N(T ) the null space of T and by R(T ) = T (X) the range of T . We
denote by α(T ) = dimN(T ) the nullity of T and by β(T ) = codim R(T ) =
dimX/R(T ) the defect of T . Other two classical quantities in operator theory
are the ascent p = p(T ) of an operator T , defined as the smallest non-negative
integer p such that N(T p) = N(T p+1) (if such an integer does not exist, we
put p(T ) =∞), and the descent q = q(T ), defined as the smallest non-negative
integer q such that R(T q) = R(T q+1) (if such an integer does not exist, we
put q(T ) = ∞). It is well known that if p(T ) and q(T ) are both finite then
p(T ) = q(T ). Furthermore, 0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ
is a pole of the resolvent, see [15, Prop. 50.2]. An operator T ∈ L(X) is said
to be Fredholm (resp. upper semi -Fredholm, lower semi-Fredholm), if α(T ),
β(T ) are both finite (resp. R(T ) closed and α(T ) <∞, β(T ) <∞). T ∈ L(X)
is said to be semi-Fredholm if T is either an upper semi-Fredholm or a lower
semi-Fredholm operator. If T is semi-Fredholm then the index of T defined by
ind T = α(T ) − β(T ). Other two important classes of operators in Fredholm
theory are the classes of upper/lower semi-Browder operators. These classes are
defined as follows: T ∈ L(X) is said to be Browder (resp. upper semi-Browder,
lower semi-Browder) if T is a Fredholm (resp. upper semi-Fredholm, lower
semi-Fredholm) operator and both p(T ) and q(T ) are finite (resp. p(T ) < ∞,
q(T ) < ∞). A operator T ∈ L(X) is said to be upper semi-Weyl (resp. lower
semi-Weyl) if T is upper Fredholm (resp. lower semi-Fredholm) operator and
index indT ≤ 0 (resp. indT ≥ 0). T ∈ L(X) is said to be Weyl if T is both
upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0.

The classes of operators defined above generate the following spectra. The
Fredholm spectrum is defined by

σf(T ) = {λ ∈ C : λI − T is not Fredholm},

and the upper semi-Fredholm spectrum is defined by

σuf(T ) = {λ ∈ C : λI − T is not upper semi-Fredholm}.

The Browder spectrum and the Weyl spectrum are defined, respectively, by

σb(T ) = {λ ∈ C : λI − T is not Browder},

and
σw(T ) = {λ ∈ C : λI − T is not Weyl}.

Since every Browder operator is Weyl, σw(T ) ⊆ σb(T ). Analogously, the upper
semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

σub(T ) = {λ ∈ C : λI − T is not upper semi-Browder},
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and
σuw(T ) = {λ ∈ C : λI − T is not upper semi-Weyl}.

Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) on the subspace
R(Tn) = Tn(X). According [5] and [6], T ∈ L(X) is said to be semi B-
Fredholm (resp. B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm),
if for some integer n ≥ 0 the range R(Tn) is closed and Tn, viewed as a operator
from the space R(Tn) into itself, is a semi-Fredholm (resp. Fredholm, upper
semi-Fredholm, lower semi-Fredholm) operator. Analogously, T ∈ L(X) is said
to be B-Browder (resp. upper semi B-Browder, lower semi B-Browder), if for
some integer n ≥ 0 the range R(Tn) is closed and Tn is a Browder (resp.
upper semi-Browder, lower semi -Browder) operator. If Tn is a semi-Fredholm
operator, it follows from [6, Proposition 2.1] that also Tm is semi-Fredholm for
every m ≥ n, and indTm = indTn. This enables us to define the index of a
semi B-Fredholm operator T as the index of the semi-Fredholm operator Tn.
Thus, T ∈ L(X) is said to be a B-Weyl operator if T is a B-Fredholm operator
having index 0. T ∈ L(X) is said to be upper semi B-Weyl (resp. lower semi
B-Weyl) if T is upper semi B-Fredholm (resp. lower semi B-Fredholm) with
index indT ≤ 0 (resp. indT ≥ 0). Note that if T is B-Fredholm then also T ∗

is B-Fredholm with indT ∗ = −indT . An operator T ∈ L(X) is said to be left
Drazin invertible (resp. right Drazin invertible) if p(T ) <∞ (resp. q(T ) <∞)
and R(T p(T )+1) (resp. R(T q(T ))) is closed. T ∈ L(X) is called Drazin invertible
if the ascent and the descent of T are both finite. It is proved in [5, Theorem
3.6] that T is a B-Browder operator (resp. upper semi B-Browder, lower semi
B-Browder) if and only if T is a Drazin invertible (resp. left Drazin invertible,
right Drazin invertible) operator.

Another spectra related with semi B-Fredholm operators are defined as
follows. The Drazin invertible spectrum is defined by

σd(T ) = {λ ∈ C : λI − T is not Drazin invertible}.

The B-Weyl spectrum is defined by

σbw(T ) = {λ ∈ C : λI − T is not B-Weyl},

while the B-Browder spectrum is defined by

σbb(T ) = {λ ∈ C : λI − T is not B-Browder}.

Clearly, by [5, Theorem 3.6], σd(T ) = σbb(T ).
Now, we introduce an important property in local spectral theory. The

localized version of this property has been introduced by Finch [13], and in the
framework of Fredholm theory this property has been characterized in several
ways, see Chapter 3 of [3]. T ∈ L(X) is said to have the single valued extension
property at λ0 ∈ C (abbreviated, SVEP at λ0), if for every open disc Dλ0 ⊆ C
centered at λ0 the only analytic function f : Dλ0 → X which satisfies the
equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0
,
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is the function f ≡ 0 on Dλ0
. The operator T is said to have SVEP if T has

the SVEP at every point λ ∈ C. Evidently, T ∈ L(X) has SVEP at every
point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity theorem
for analytic functions it is easily seen that T has SVEP at every point of the
boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated
point of the spectrum. Note that (see [3, Theorem 3.8])

p(λI − T ) <∞⇒ T has SVEP at λ, (1)

and dually
q(λI − T ) <∞⇒ T ∗ has SVEP at λ. (2)

Recall that T ∈ L(X) is said to be bounded below if T is injective and has closed
range. Denote by σap(T ) the classical approximate point spectrum defined by

σap(T ) = {λ ∈ C : λI − T is not bounded below}.

Note that if σs(T ) denotes the surjectivity spectrum

σs(T ) = {λ ∈ C : λI − T is not onto},

then σap(T ) = σs(T
∗), σs(T ) = σap(T ∗) and σ(T ) = σap(T ) ∪ σs(T ).

It is easily seen from definition of localized SVEP that

λ /∈ accσap(T )⇒ T has SVEP at λ, (3)

where accσap(T ) means the set of all accumulation points of σap(T ), and if T ∗

denotes the dual of T then

λ /∈ accσs(T )⇒ T ∗ has SVEP at λ, (4)

Remark 1.1. The implications (1), (2), (3) and (4) are actually equivalences
whenever T ∈ L(X) is semi-Fredholm. Moreover, σb(T ) = σw(T ) ∪ accσ(T ),
σub(T ) = σuw(T ) ∪ accσap(T ) and σ(T ) = σap(T ) ∪ Ξ(T ), where Ξ(T ) denote
the set {λ ∈ C : T does not have SVEP at λ} (see [3, Chapter 3]).

Denote by isoK the set of all isolated points of K ⊆ C. Let T ∈ L(X),
define

p00(T ) = σ(T ) \ σb(T ),

pa00(T ) = σap(T ) \ σub(T ),

π00(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞},
πa00(T ) = {λ ∈ isoσap(T ) : 0 < α(λI − T ) <∞},

Observe that, for every T ∈ L(X), we have p00(T ) ⊆ π00(T ) ⊆ πa00(T ).
Now, we describe several spectral properties introduced recently in [8], [9],

[7], [12], [14], [18], [17], [19], [20] and [21].

Definition 1.2. An operator T ∈ L(X) is said to satisfy property:
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(i) (w), if σap(T ) \ σuw(T ) = π00(T ) ([18]);

(ii) (aw), if σ(T ) \ σw(T ) = πa00(T ) ([8]);

(iii) (b), if σap(T ) \ σuw(T ) = p00(T ) ([7],[9]);

(iv) (ab), if σ(T ) \ σw(T ) = pa00(T ) ([8]);

(v) (z) if σ(T ) \ σuw(T ) = πa00(T ) ([20]);

(vi) (az), if σ(T ) \ σuw(T ) = pa00(T ) ([20]);

(vii) (h), if σ(T ) \ σuw(T ) = π00(T ) ([19],[21]);

Also, T is said to satisfy:

(viii) Browder’s theorem, if σw(T ) = σb(T ) ([14]);

(ix) a-Browder’s theorem, if σuw(T ) = σub(T ) ([17]);

(x) generalized Browder’s theorem, if σbw(T ) = σbb(T ) ([14]);

(xi) Weyl’s theorem, if σ(T ) \ σw(T ) = π00(T ) ([12]);

(xii) a-Weyl’s theorem, if σap(T ) \ σuw(T ) = πa00(T ) ([18]).

In the sequel of this paper, according B. Barnes [4], we always assume that
Y is a Banach space and X is a subspace of Y which is also a Banach space.
Also, we assume X 6= Y and X continuously embedded in Y . Suppose that
T ∈ L(X) admits an extension T ∈ L(Y ) such that T (Y ) ⊆ X. We denote

M(X,Y ) = {T ∈ L(X) : T has an extension T ∈ L(Y ) and T (Y ) ⊆ X}.

It is easily seen that 0 ∈ σ(T ) for all extension T of T ∈ M(X,Y ), since
R(T ) = T (Y ) ⊆ X 6= Y . However, σ(T ) and σ(T ) may differ only in 0. Also,
X is a T -invariant subspace, because T (X) ⊆ T (Y ) ⊆ X.

Specific spectral properties have been studied by several authors, through
restrictions ([10], [11]) and extensions ([1], [4]). In this paper, under some
conditions, we show that all spectral properties given in Definition 1.2 are
transmitted from an operator T ∈M(X,Y ) to an extension T and vice versa.

2. Relations between the spectra of T and T

In this section, we establish several lemmas that will be used throughout the
paper. We begin examining some algebraic relations between an operator T ∈
M(X,Y ) and its extensions T ∈ L(Y ).

Lemma 2.1. Let T ∈ L(Y ) be an extension of T ∈ M(X,Y ). Then, for all
λ 6= 0:
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(i) N((λI − T )m) = N((λI − T )m), for any m;

(ii) R((λI − T )m) = R((λI − T )m) ∩X, for any m;

(iii) α(λI − T ) = α(λI − T );

(iv) p(λI − T ) = p(λI − T );

(v) β(λI − T ) = β(λI − T ).

Proof. (i) For m = 0, the equality N((λI − T )m) = N((λI − T )m) holds
trivially. Let y ∈ N((λI − T )m), m ≥ 1, then

0 = (λI − T )my

=

m∑
k=0

m!

k!(m− k)!
(−1)kλm−kT

k
y

= λmy +

m∑
k=1

m!

k!(m− k)!
(−1)kλm−kT

k
y.

= λmy + T

(
m∑
k=1

m!

k!(m− k)!
(−1)kλm−kT

k−1
y

)

Therefore y = −λ−mT
(∑m

k=1
m!

k!(m−k)! (−1)kλm−kT
k−1

y
)
∈ T (Y ) ⊆ X, and

since X is a T -invariant subspace, we conclude that

0 =

m∑
k=0

m!

k!(m− k)!
(−1)kλm−kT

k
y

=

m∑
k=0

m!

k!(m− k)!
(−1)kλm−kT ky

= (λI − T )my

So y ∈ N((λI − T )m), from which we obtain

N((λI − T )m) ⊆ N((λI − T )m).

On the other hand, since T is the restriction of T on X, we have

N((λI − T )m) ⊆ N((λI − T )m).

From which, we obtain that N((λI − T )m) = N((λI − T )m).
(ii) Since T is the restriction of T on X, then

R((λI − T )m) ⊆ R((λI − T )m) ∩X.

Now, we show the inclusion R((λI − T )m) ∩ X ⊆ R((λI − T )m). For this it
will suffice to show that for every m ∈ N the implication

(λI − T )my ∈ X ⇒ y ∈ X,

Bolet́ın de Matemáticas 22(2) 177-190 (2015)



On spectral properties and extensions of bounded linear operators 183

holds. For m = 1. Let (λI − T )y ∈ X. Then there exists x ∈ X such that
(λI − T )y = x, so y = λ−1(x + Ty). But since Ty ∈ X, because T (Y ) ⊆ X,
we have that y = λ−1(x+ Ty) ∈ X and y ∈ X.

By the above reasoning, we conclude that, for m = 1, the implication

(λI − T )y ∈ X ⇒ y ∈ X

holds. Now, suppose that for m ≥ 1,

(λI − T )my ∈ X ⇒ y ∈ X.

If (λI − T )m+1y ∈ X, then (λI − T )((λI − T )my) ∈ X. From the proof of case
m = 1, we conclude that (λI − T )my ∈ X. Therefore by inductive hypothesis,
y ∈ X. Then, by mathematical induction, we conclude that for all m ∈ N

(λI − T )my ∈ X ⇒ y ∈ X,

holds. Finally, if x ∈ R((λI − T )m) ∩ X there exists y ∈ Y such that (λI −
T )my = x ∈ X. Then (λI − T )my ∈ X. As above, we conclude that y ∈ X.
Thus

x = (λI − T )my

=

m∑
k=0

m!

k!(m− k)!
λm−kT

k
y

=

m∑
k=0

m!

k!(m− k)!
λm−kT ky

= (λI − T )my,

and hence x ∈ R((λI − T )m). This shows that,

R((λI − T )m) ∩X ⊆ R((λI − T )m).

Consequently, R((λI − T )m) = R((λI − T )m) ∩X.
(iii) and (iv), it follows immediately from the equality,

N((λI − T )m) = N((λI − T )m), ∀m ∈ N.

(v) Observe that R(λI − T ) is a subspace of X, then there exists at least
one algebraic complement for R(λI − T ) (see [15, Prop. 4.1]). Let M be
a complement for R(λI − T ), then M is a subspace of X such that X =
R(λI − T )⊕M . Since R(λI − T ) = R(λI − T ) ∩X, we have

{0} = R(λI − T ) ∩M = R(λI − T ) ∩X ∩M = R(λI − T ) ∩M.

Thus R(λI − T ) ∩M = {0}. Now, we show that Y = R(λI − T ) +M .
Since the spectrum σ(T ) is a compact and nonempty subset of the complex

plane, the resolvent set C \ σ(T ) 6= ∅. Let µ ∈ C such that µI − T is invertible
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in L(Y ). Then, if z ∈ Y there exists y ∈ Y such that z = (µI − T )y. Thus
z = µy−Ty, then we can write z = u+v, where u = µy ∈ Y and v = −Ty ∈ X.
From this decomposition, for any λ 6= 0, since R(λI−T ) ⊆ R(λI−T ), we obtain
that

z = u+ v

= λ−1(λI − T )u+ λ−1Tu+ v

= λ−1(λI − T )u+ (λ−1Tu+ v) ∈ R(λI − T ) +X

= λ−1(λI − T )u+ (λ−1Tu+ v) ∈ R(λI − T ) +R(λI − T ) +M

= λ−1(λI − T )u+ (λ−1Tu+ v) ∈ R(λI − T ) +M

Therefore, we have that Y ⊆ R(λI−T )+M , consequently Y = R(λI−T )+M .
But since R(λI − T ) ∩M = {0}, then we have Y = R(λI − T ) ⊕M , which
implies that β(λI − T ) = dimM = β(λI − T ). This shows that β(λI − T ) =
β(λI − T ).

The following result provides an important relationship between R(λI −T )
and R(λI − T ). In the proof of this lemma we use the notion of paraclosed (or
paracomplete) subspace and the Neubauer Lemma (see [16]). Also, we used
the notion of reduced minimum modulus of a non-zero operator T ∈ L(X),

γ(T ) = inf
x/∈N(T )

‖ Tx ‖
dist (x,N(T ))

,

and the equivalence, T (X) is closed if and only if γ(T ) > 0 ([15, Prop 36.1]).

Lemma 2.2. Let T ∈ L(Y ) be an extension of T ∈M(X,Y ). Suppose that X
is a proper dense subspace of Y or X is closed in Y . If λ 6= 0, then R(λI − T )
is closed in Y if and only if R(λI − T ) is closed in X.

Proof. (Sufficiency) By Lemma 2.1(i), for all x ∈ X

‖ (λI − T )x ‖ = ‖ (λI − T )x ‖
≥ γ(λI − T ) dist (x,N(λI − T ))

= γ(λI − T ) dist (x,N(λI − T ))

Thus,

γ(λI − T ) = inf
x/∈N(λI−T )

‖ (λI − T )x ‖
dist (x,N(λI − T ))

≥ γ(λI − T ).

Therefore, we obtain that γ(λI −T ) ≥ γ(λI −T ). Then γ(λI −T ) > 0 implies
γ(λI − T ) > 0. This shows, since both X and Y are Banach spaces, that

R(λI − T ) closed in Y ⇒ R(λI − T ) closed in X.

(Necessity) Suppose that R(λI − T ) is closed in X. Consider two different
cases.
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Case I: X is a proper dense subspace of Y .
In this case,

‖ (λI − T )x ‖≥ γ(λI − T ) dist (x,N(λI − T )), ∀x ∈ X.

Suppose now that y ∈ Y . Since X is assumed to be dense in Y , there exists a
sequence (xn)∞n=1 ⊆ X such that y = limn→∞ xn. From this, and by Lemma
2.1(i), we obtain

‖ (λI − T )y ‖ = ‖ (λI − T )( lim
n→∞

xn) ‖

= lim
n→∞

‖ (λI − T )(xn) ‖

≥ lim
n→∞

γ(λI − T ) dist (xn, N(λI − T ))

= γ(λI − T ) dist ( lim
n→∞

xn, N(λI − T ))

= γ(λI − T ) dist (y,N(λI − T ))

From which,

γ(λI − T ) = inf
y/∈N(λI−T )

‖ (λI − T )y ‖
dist (y,N(λI − T ))

≥ γ(λI − T ).

Therefore γ(λI−T ) ≥ γ(λI−T ). Since R(λI−T ) is closed, then γ(λI−T ) > 0.
Thus, γ(λI − T ) > 0. This shows that R(λI − T ) is closed in Y .

Case II: X is closed in Y .
By Lemma 2.1(ii), R(λI − T ) ∩ X = R(λI − T ) is closed in X. But since,
X is closed in Y , we have that R(λI − T ) ∩ X is closed in Y . Also, if λ 6= 0
the polynomials λ − z and z have not common divisors, so there exist two
polynomials u and v such that 1 = (λ − z)u(z) + zv(z), for all z ∈ C. Hence

T
0

= (λI−T )u(T )+Tv(T ) and so Y ⊆ R(λI−T )+R(T ) ⊆ R(λI−T )+X ⊆ Y .
Thus R(λI − T ) + X = Y is closed in Y . Since both R(λI − T ) and X are
paraclosed subspaces and both R(λI−T )∩X and R(λI−T ) +X are closed in
Y , using Neubauer Lemma [16, Prop. 2.1.2], we have that R(λI − T ) is closed
in Y .

B. Barnes [4] studied some relationships between an operator T ∈M(X,Y )
and its extensions T ∈ L(Y ) and proved the following result.

Theorem 2.3. ([4, Theorem 4]) Let T ∈ L(Y ) be an extension of T ∈
M(X,Y ). Then:

(i) σ(T ) \ {0} = σ(T ) \ {0}.

(ii) σf (T ) \ {0} = σf (T ) \ {0}.

(iii) σw(T ) \ {0} = σw(T ) \ {0}.

(iv) If λ /∈ σf (T ), then ind (λI − T ) = ind (λI − T ) for all λ 6= 0.
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(v) If X is a proper dense subspace of Y , then σ(T ) = σ(T ), σf (T ) = σf (T ),
and σw(T ) = σw(T ).

(vi) If X is closed in Y , but X has no closed complement in Y , then σ(T ) =
σ(T ), σf (T ) = σf (T ), and σw(T ) = σw(T ).

Proof. For the proof see [4, Theorem 4]

Atkinson’s well known theorem says that T ∈ L(X) is a Fredholm operator
if and only if its projection in the algebra L(X)/F(X) is invertible, where F(X)
is the ideal of finite rank operators in the algebra L(X). More generally, T is
upper (resp., lower) semi-Fredholm operator if and only if its projection in the
algebra L(X)/F(X) is left (resp., right) invertible. From this, and by Lemmas
2.1 and 2.2, Theorem 2.3 may be extended to other spectra as follows.

Theorem 2.4. Let T ∈ L(Y ) be an extension of T ∈M(X,Y ). Then:

(i) σap(T ) \ {0} = σap(T ) \ {0}.

(ii) σuf(T ) \ {0} = σuf(T ) \ {0}.

(iii) σuw(T ) \ {0} = σuw(T ) \ {0}.

(iv) σub(T ) \ {0} = σub(T ) \ {0}.

(v) σb(T ) \ {0} = σb(T ) \ {0}.

(vi) If X is a proper dense subspace of Y , then σap(T ) = σap(T ) and σb(T ) =
σb(T ).

(vii) If X is closed, but X has no closed complement in Y , then σap(T ) =
σap(T ) and σb(T ) = σb(T ).

(viii) If X is a proper dense subspace of Y and T (X) is closed in X, then
σuf(T ) = σuf(T ), σuw(T ) = σuw(T ) and σub(T ) = σub(T ).

(ix) If X is closed, but X has no closed complement in Y and T (X) is closed
in X, then σuf(T ) = σuf(T ), σuw(T ) = σuw(T ) and σub(T ) = σub(T ).

Proof. (i) Suppose that λ ∈ σap(T ) \ {0}, then λI − T is not bounded below
and λ 6= 0. Thus p(λI−T ) > 0 or R(λI−T ) is not closed in X. If p(λI−T ) > 0,
by Lemma 2.1, p(λI−T ) = p(λI−T ) > 0. Now, since X is a Banach subspace
of Y and Y is a Banach space, X is closed in Y . Thus, by Lemma 2.2, if
R(λI − T ) is not closed in X then R(λI − T ) is not closed in Y . Therefore,
p(λI − T ) > 0 or R(λI − T ) is not closed in Y . From which λI − T is not
bounded below and λ 6= 0, then λ ∈ σap(T ) \ {0}. Similarly, we can prove the
inclusion σap(T ) \ {0} ⊆ σap(T ) \ {0}.

The proofs of (ii), (iii), (iv) and (v) are analogous to (i).
(vi) By part (i), σap(T ) \ {0} = σap(T ) \ {0}. Now, if 0 /∈ σap(T ) then

T is injective. Consequently T has SVEP at 0, and 0 /∈ Ξ(T ). But since
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σap(T ) ∪ Ξ(T ) = σ(T ) = σ(T ), we have 0 /∈ σ(T ), a contradiction. Similarly,
0 /∈ σap(T ) implies T injective. Thus T has SVEP at 0, and 0 /∈ Ξ(T ). Again,
since σap(T ) ∪ Ξ(T ) = σ(T ), we have 0 /∈ σ(T ), a contradiction. Thus 0 ∈
σap(T ) and 0 ∈ σap(T ), so the equality σap(T ) = σap(T ) holds.

For the equality σb(T ) = σb(T ), observe that

σb(T ) = σw(T ) ∪ accσ(T ) = σw(T ) ∪ accσ(T ) = σb(T ).

(vii) The proof is analogous to that of part (vi).
(viii) To show the equality σuf(T ) = σuf(T ), note first that σuf(T ) \ {0} =

σuf(T ) \ {0}. Suppose that 0 /∈ σuf(T ). Then T is upper semi-Fredholm, so
its projection in the algebra L(X)/F(X) is left invertible. Therefore there
exist S ∈ L(X) and F ∈ F(X) such that ST − F is the identity on X. Then,
P = ST−F is a bounded projection of Y on X. Thus, Y = X⊕N(P ) and X is
closed in Y . Hence X = Y , a contradiction. Consequently, 0 ∈ σuf(T ). We now
show that also 0 ∈ σuf(T ). Suppose that 0 /∈ σuf(T ). Then T is upper semi-
Fredholm, this implies that α(T ) <∞. But, since N(T ) = N(T )∩X ⊆ N(T ),
it follows that α(T ) <∞. Now, by hypothesis, T (X) is closed in X. Therefore,
T is upper semi-Fredholm and as it has been proved before this is impossible.
Thus 0 ∈ σuf(T ) and 0 ∈ σuf(T ), so the equality σuf(T ) = σuf(T ) holds.

To show the equality σuw(T ) = σuw(T ), by part (iii), we know that σuw(T )\
{0} = σuw(T ) \ {0}. Proceeding as in the first part, we see that 0 ∈ σuw(T ) ∩
σuw(T ). Suppose that 0 /∈ σuw(T ). Then T is upper semi-Fredholm, since
it is upper Weyl. As above, it then follows that X has a closed complement
in Y , contradicting our assumption. Similarly, if 0 /∈ σuw(T ) then T is upper
semi-Fredholm. As above, it then follows that T is upper semi-Fredholm, again
contradicting the assumption that X has no closed complement in Y . Thus
0 ∈ σuw(T ) ∩ σuw(T ) and σuw(T ) = σuw(T ).

Finally, by part (vi), we concluded that

σub(T ) = σuw(T ) ∪ accσap(T ) = σuw(T ) ∪ accσap(T ) = σub(T ).

Then σub(T ) = σub(T ).
(ix) Similarly as in the part (viii), for the equality σuf(T ) = σuf(T ), it

suffices to examine the case λ = 0. Suppose that 0 /∈ σuf(T ). Proceeding
as in the part (viii), there exist a bounded projection P of Y on X. Thus,
Y = X ⊕ N(P ) and hence X has a closed complement in Y , a contradiction.
Consequently, 0 ∈ σuf(T ). The proof of 0 ∈ σuf(T ), is analogous to that of part
(viii). Then 0 ∈ σuf(T ) and 0 ∈ σuf(T ), so the equality σuf(T ) = σuf(T ) holds.

Again proceeding as in the part (viii), we obtain σuw(T ) = σuw(T ) and
σub(T ) = σub(T ).

Remark 2.5. By the parts (viii) and (ix) of the proof of Theorem 2.4, we
concluded that 0 /∈ σap(T ) \ σuw(T ), 0 /∈ σ(T ) \ σuw(T ) and 0 /∈ σ(T ) \ σw(T ).
Similarly, 0 /∈ σap(T ) \ σuw(T ), 0 /∈ σ(T ) \ σuw(T ) and 0 /∈ σ(T ) \ σw(T ).

As immediate consequence of Lemma 2.1, and Theorems 2.3 and 2.4.
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Lemma 2.6. Let T ∈ L(Y ) be an extension of T ∈M(X,Y ). Suppose that X
is a proper dense subspace of Y or X is closed, but X has no closed complement
in Y . Then, if T (X) is closed in X or 0 is not an isolated point of σ(T ), the
following statements are true:

(i) p00(T ) = p00(T ).

(ii) pa00(T ) = pa00(T ).

(iii) π00(T ) = π00(T ).

(iv) πa00(T ) = πa00(T ).

Proof. (i) and (ii) follows from Theorem 2.4.

(iii) To show the equality π00(T ) = π00(T ), by Lemma 2.1(iii), it suffices to
examine the case λ = 0. We claim that 0 /∈ π00(T ). To see this, suppose that
0 ∈ π00(T ). Then α(T ) < ∞, assuming that T (X) is closed in X, T is upper
semi-Fredholm. As in the proof of Theorem 2.4, we have a contradiction.
Therefore, 0 /∈ π00(T ). Similarly, 0 ∈ π00(T ) implies that α(T ) < ∞, since
N(T ) = N(T ) ∩ X ⊆ N(T ). Again T is upper semi-Fredholm, so by the
same argument above we have a contradiction. Thus 0 /∈ π00(T ). Now, by
Theorem 2.3, σ(T ) = σ(T ). Then isoσ(T ) = isoσ(T ). Also, by Lemma
2.1(iii), α(λI − T ) = α(λI − T ) for all λ 6= 0. Consequently, we have the
equality π00(T ) = π00(T ). On the other hand, assuming that 0 is not an
isolated point of σ(T ), then 0 /∈ isoσ(T ) = isoσ(T ). Again, by Lemma 2.1(iii),
we get π00(T ) = π00(T ).

(iv) The proof is analogous to that of part (iii).

3. Spectral properties and extensions

In this section we state the main result of the paper.

Theorem 3.1. Let T ∈ L(Y ) be an extension of T ∈ M(X,Y ). Suppose
that X is a proper dense subspace of Y or X is closed, but X has no closed
complement in Y . If T (X) is closed in X or 0 is not an isolated point of σ(T ),
then property (i) (resp.,(ii)-(xii)) in Definition 1.2 holds for T if and only if
property (i)(resp.,(ii)-(xii)) in Definition 1.2 holds for T .

Proof. By Theorems 2.3, 2.4 and Lemma 2.6 (and by using Remark 2.5), we
obtain readily the result. For the property (x), observe the equivalence between
Browder’s theorem and generalized Browder’s theorem proved in [2].

We give one illustrative example for the behavior of an operator T and its
extensions T , when the subspace X does not satisfy the hypothesis of Theorem
3.1.
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Example 3.2. Let Y be a Banach space, and assume that X and Z are proper
closed subspaces of Y with Y = X⊕Z. Let P be the projection of Y on X which

is zero on Z. Since P is a projection operator, i.e P
2

= P , then σ(P ) = {0, 1}.
Also, the operator P = P |X is the identity operator on X, so σ(P ) = {1}.
Now, if X is infinite dimensional and Z is finite dimensional, then P satisfy
the properties (i)-(vii) and (xi)-(xii) in Definition 1.2. But, P does not satisfy
the properties (i)-(vii) and (xi)-(xii) in Definition 1.2.

Remark 3.3. Theorem 2.3 has been proved in [4] by using different arguments.
This result is also an easy consequence of Lemmas 2.1 and 2.2. Aiena et al.,
showed in [1] a particular case of Theorem 3.1. They showed the equivalence
T satisfies Weyl’s theorem if and only if T satisfies Weyl’s theorem, when X
is a proper dense subspace of a Hilbert space H and T (X) is closed in X. In
Theorem 3.1, we extend this equivalence to other spectral properties. On the
other hand, every isolated point of σ(T ) is a boundary point of σ(T ). Thus,
in Theorem 3.1, there are more weak ways to express the hypothesis. We
may replace the assumption 0 is not an isolated point of σ(T ) by 0 /∈ ∂σ(T ),
p(T ) = ∞ or q(T ) = ∞. Also, since in a Banach space we have that every
subspace of finite codimension is closed, we may replace the assumption T (X)
closed in X by β(T ) <∞.
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theorems and restrictions for bounded linear operators, Extractha Mathe-
maticae 28(1) (2013), 127–139.

[11] , Weyl type theorems and restrictions, Mediterr. J. Math 11 (2014),
1215–1228.

[12] L. A Coburn, Weyl’s theorem for nonnormal operators, Research Notes in
Mathematics 51 (1981), 702–710.

[13] J. K Finch, The single valued extension property on a banach space, Pacific
J. Math 58 (1975), 61–69.

[14] R. E Harte and W. Y Lee, Another note on weyl’s theorem, Trans. Amer.
Math. Soc 349 (1997), 2115–2124.

[15] H Heuser, Functional analysis, first ed., Marcel Dekker, New York, 1982.
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