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On spectral properties and extensions of
bounded linear operators

Sobre propiedades espectrales y extensiones de operadores lineales
acotados
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Abstract. If T is a bounded linear operator on some Banach space and T has
a bounded extension T on another space. In general, almost nothing can be
said concerning the relationship between the spectral properties of 7' and T.
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1. Introduction and preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X. For T' € L(X), we
denote by N(T) the null space of T' and by R(T) = T(X) the range of 7. We
denote by «(T) = dim N(T') the nullity of T and by 8(T) = codim R(T) =
dim X/R(T) the defect of T. Other two classical quantities in operator theory
are the ascent p = p(T) of an operator T', defined as the smallest non-negative
integer p such that N(T?) = N(TP*!) (if such an integer does not exist, we
put p(T) = 00), and the descent ¢ = q(T'), defined as the smallest non-negative
integer ¢ such that R(TY) = R(T?*!) (if such an integer does not exist, we
put ¢(T) = o0). It is well known that if p(T') and ¢(T) are both finite then
p(T) = q(T). Furthermore, 0 < p(AI —T) = ¢(A] —T) < oo if and only if A
is a pole of the resolvent, see [15, Prop. 50.2]. An operator T € L(X) is said
to be Fredholm (resp. upper semi -Fredholm, lower semi-Fredholm), if o(T),
B(T) are both finite (resp. R(T) closed and o(T) < oo, S(T) < 00). T € L(X)
is said to be semi-Fredholm if T is either an upper semi-Fredholm or a lower
semi-Fredholm operator. If T' is semi-Fredholm then the index of T' defined by
ind T'= a(T) — B(T). Other two important classes of operators in Fredholm
theory are the classes of upper/lower semi-Browder operators. These classes are
defined as follows: T' € L(X) is said to be Browder (resp. upper semi-Browder,
lower semi-Browder) if T is a Fredholm (resp. wupper semi-Fredholm, lower
semi-Fredholm) operator and both p(T) and ¢(T') are finite (resp. p(T) < oo,
q(T) < 00). A operator T' € L(X) is said to be upper semi- Weyl (resp. lower
semi-Weyl) if T is upper Fredholm (resp. lower semi-Fredholm) operator and
index indT < 0 (resp. indT > 0). T € L(X) is said to be Weyl if T is both
upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0.

The classes of operators defined above generate the following spectra. The
Fredholm spectrum is defined by

o¢(T) ={A € C: M\ — T is not Fredholm},
and the upper semi-Fredholm spectrum is defined by
out(T) = {X € C: A\ — T is not upper semi-Fredholm}.
The Browder spectrum and the Weyl spectrum are defined, respectively, by
op(T) = {X € C: A\ — T is not Browder},

and
ow(T) ={A € C: A — T is not Weyl}.

Since every Browder operator is Weyl, o (T") C oy, (T). Analogously, the upper
semi-Browder spectrum and the upper semi- Weyl spectrum are defined by

ouwn(T) ={)\ € C: X[ — T is not upper semi-Browder},
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and
ouw(T) = {\ € C: AI — T is not upper semi-Weyl}.

Given n € N, we denote by T,, the restriction of T € L(X) on the subspace
R(T"™) = T™(X). According [5] and [6], T € L(X) is said to be semi B-
Fredholm (resp. B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm),
if for some integer n > 0 the range R(T") is closed and T, viewed as a operator
from the space R(T™) into itself, is a semi-Fredholm (resp. Fredholm, upper
semi-Fredholm, lower semi-Fredholm) operator. Analogously, T' € L(X) is said
to be B-Browder (resp. upper semi B-Browder, lower semi B-Browder), if for
some integer n > 0 the range R(T™) is closed and T, is a Browder (resp.
upper semi-Browder, lower semi -Browder) operator. If T, is a semi-Fredholm
operator, it follows from [6, Proposition 2.1] that also Ty, is semi-Fredholm for
every m > n, and indT,, = indT,,. This enables us to define the index of a
semi B-Fredholm operator T as the index of the semi-Fredholm operator T,,.
Thus, T € L(X) is said to be a B-Weyl operator if T is a B-Fredholm operator
having index 0. T' € L(X) is said to be upper semi B-Weyl (resp. lower semi
B-Weyl) if T is upper semi B-Fredholm (resp. lower semi B-Fredholm) with
index ind7T < 0 (resp. indT > 0). Note that if T is B-Fredholm then also T*
is B-Fredholm with ind 7* = —ind T'. An operator T' € L(X) is said to be left
Drazin invertible (resp. right Drazin invertible) if p(T) < oo (resp. ¢(T') < 00)
and R(TPM+1) (resp. R(T%™)))is closed. T € L(X) is called Drazin invertible
if the ascent and the descent of T are both finite. It is proved in [5, Theorem
3.6] that T is a B-Browder operator (resp. upper semi B-Browder, lower semi
B-Browder) if and only if T' is a Drazin invertible (resp. left Drazin invertible,
right Drazin invertible) operator.

Another spectra related with semi B-Fredholm operators are defined as
follows. The Drazin invertible spectrum is defined by

04a(T) ={X € C: M\ — T is not Drazin invertible}.
The B-Weyl spectrum is defined by
obw(T) ={N € C: A\I — T is not B-Weyl},
while the B-Browder spectrum is defined by
opb(T) = {A € C: \I — T is not B-Browder}.

Clearly, by [5, Theorem 3.6], 04(T") = opb(T).

Now, we introduce an important property in local spectral theory. The
localized version of this property has been introduced by Finch [13], and in the
framework of Fredholm theory this property has been characterized in several
ways, see Chapter 3 of [3]. T' € L(X) is said to have the single valued extension
property at Ao € C (abbreviated, SVEP at Ag), if for every open disc Dy, C C
centered at Ao the only analytic function f : D), — X which satisfies the
equation

M =T)f(A\) =0 forall A € D,,,
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is the function f = 0 on Dy,. The operator T is said to have SVEP if T has
the SVEP at every point A € C. Evidently, T € L(X) has SVEP at every
point of the resolvent p(T) := C\ o(T'). Moreover, from the identity theorem
for analytic functions it is easily seen that 7" has SVEP at every point of the
boundary do(T') of the spectrum. In particular, 7' has SVEP at every isolated
point of the spectrum. Note that (see [3, Theorem 3.8])

p(Al —T) < co = T has SVEP at A, (1)

and dually
g(M —T) < 0o = T* has SVEP at \. (2)

Recall that T' € L(X) is said to be bounded below if T' is injective and has closed
range. Denote by 0., (") the classical approzimate point spectrum defined by

Oap(T) ={A € C: X[ =T is not bounded below}.
Note that if o5(T) denotes the surjectivity spectrum
os(T)={Ae€C: X[ -T is not onto},

then oap(T) = 05(T*), 05(T') = 0ap(T™) and o(T') = 0ap(T) U 05(T).
It is easily seen from definition of localized SVEP that

A ¢ accoap(T) = T has SVEP at A, (3)

where acc 0, (T") means the set of all accumulation points of o,,(T), and if T*
denotes the dual of T' then

A ¢ accos(T) = T has SVEP at A, (4)

Remark 1.1. The implications (1), (2), (3) and (4) are actually equivalences
whenever T' € L(X) is semi-Fredholm. Moreover, 0,(T) = oy (T) Uacco(T),
oub(T') = ouw(T) Uaccoqp(T) and o(T) = 0.5(T) UE(T), where Z(T) denote
the set {A € C: T does not have SVEP at A} (see [3, Chapter 3]).

Denote by iso K the set of all isolated points of K C C. Let T € L(X),
define

poo(T) = o(T)\ on(T),

Poo(T) = 0ap(T) \ oun(T),

moo(T) = {A€isoo(T):0< (A -T) < oo},
Too(T) = {A€iso0ap(T): 0 < (M —T) < oo},

Observe that, for every T € L(X), we have poo(T) C moo(T) C 7o (T).
Now, we describe several spectral properties introduced recently in [8], [9],
(7], [12], [14], [18], [17], [19], [20] and [21].

Definition 1.2. An operator T € L(X) is said to satisfy property:
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(i
(ii

W), if 0ap(T) \ Ouw (T') = moo(T') ([18]);
aw), if o(T) \ ow(T) = wo(T) ([8]);

b), if 0ap(T) \ ouw(T) = poo(T) ([7],19]);
ab), if o(T') \ ow(T') = pgo(T) ([8]);

2) if o(T) \ ouw(T) = 7o (T) ([20]);

az), if o(T) \ ouw(T) = pgo(T) ([20]);
(vii) (h), if o(T) \ ouw(T) = moo(T) ([19],[21]);

Also, T is said to satisfy:

(iii

(v

Vl

) (
) (
) (
(iv) (
) (
i) (
)

(viii) Browder’s theorem, if o (T) = o,(T) ([14]);

(ix) a-Browder’s theorem, if oy (T") = ou(T') ([17]);

)
)
(x) generalized Browder’s theorem, if oy (T) = opp(T) ([14]);
(xi) Weyl’s theorem, if o/(T') \ 0w (T) = moo(T) ([12]);

)

(xii) a-Weyl’s theorem, if 0,,(T) \ ouw(T) = 7o (T) ([18]).

In the sequel of this paper, according B. Barnes [4], we always assume that
Y is a Banach space and X is a subspace of Y which is also a Banach space.
Also, we assume X # Y and X continuously embedded in Y. Suppose that
T € L(X) admits an extension T € L(Y) such that T(Y) € X. We denote

M(X,Y)={T € L(X) : T has an extension T € L(Y) and T(Y) C X}.

It is easily seen that 0 € o(T) for all extension T of T € M(X,Y), since
R(T)=T(Y) C X #Y. However, o(T) and o(T) may differ only in 0. Also,
X is a T-invariant subspace, because T(X) C T(Y) C X.

Specific spectral properties have been studied by several authors, through
restrictions ([10], [11]) and extensions ([1], [4]). In this paper, under some
conditions, we show that all spectral properties given in Definition 1.2 are
transmitted from an operator T € M(X,Y) to an extension T and vice versa.

2. Relations between the spectra of 7' and T

In this section, we establish several lemmas that will be used throughout the

paper. We begin examining some algebraic relations between an operator T' €
M(X,Y) and its extensions T' € L(Y).

Lemma 2.1. Let T € L(Y) be an extension of T € M(X,Y). Then, for all
A #0:
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(i) N((M\ =T)™) = N((M —T)™), for any m;
(ii) R(M —T)™) = R((M —=T)™)N X, for any m;

(iii) a(M —T) = (M —T);
(iv) p(\I =T) = p(M = T);
(0) BOT ~T) = B — T).

Proof. (i) For m = 0, the equality N((\I —T)™) = N((AI —T)™) holds
trivially. Let y € N((AI —T)™), m > 1, then

0 = (M-T)"y
- m! —k
= Y (AT
2 Flm — )l
i m! —k
= \™ S —e— k}\mfkT
er;k!(m—k)!( ) v

Sy m! —k—1
A"y + <;k!(m_k) (—1)FA y)

Therefore y = —A~"T (Ek 1 Fl(m— k)l( 1)k Am kT

since X is a T-invariant subspace, we conclude that

i m! —k
— -1 k)\mfkT
0 kZ:O Hm =Y Y

y) € T(Y) C X, and

- m!

_ 1)k \m—kk
D Him =Y Y
k=0

= (M-1T"y

Soy € N((AI —T)™), from which we obtain
N(AXI=T)™) C N((\ —=T)™).

On the other hand, since T is the restriction of T on X, we have
N(AI —=T)™) C N((\ —T)™).

From which, we obtain that N((AI —T)™) = N((A —T)™).
(ii) Since T is the restriction of 7" on X, then

R((M —T)™) € R(M —T)™) N X.

Now, we show the inclusion R((AI —T)™)N X C R((AM —T)™). For this it
will suffice to show that for every m € N the implication

AN -T)"ye X =ye€X,
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holds. For m = 1. Let (Al — T)y € X. Then there exists z € X such that
(M —T)y =z,s0y = A"(x+ Ty). But since Ty € X, because T(Y) C X,
we have that y = A"}z +Ty) € X and y € X.

By the above reasoning, we conclude that, for m = 1, the implication

MN-TyeX=yeX
holds. Now, suppose that for m > 1,
M-T)"ye X =yecX.

If (\[—T)™*'y € X, then (\I —=T)((M —T)™y) € X. From the proof of case
m = 1, we conclude that (Al —T)™y € X. Therefore by inductive hypothesis,
y € X. Then, by mathematical induction, we conclude that for all m € N

M -T)"ye X =yecX,

holds. Finally, if z € R((AI —T)™) N X there exists y € Y such that (A —
T)"y =x € X. Then (Al —T)™y € X. As above, we conclude that y € X.
Thus
r = (M-T)"y
= m! =k
= AT
me—w Y
k=0
— N mfka
D Him =R 4
k=0
and hence x € R((AM — T)™). This shows that,
R(AM -T)")NX C R((M —-T)™).

Consequently, R((M —T)™) = R((M —T)™)N X.
(iii) and (iv), it follows immediately from the equality,

N((AI —=T)™) = N((\I - T)™), Vm € N.

(v) Observe that R(A — T) is a subspace of X, then there exists at least
one algebraic complement for R(AI — T) (see [15, Prop. 4.1]). Let M be
a complement for R(A — T'), then M is a subspace of X such that X =
R(M —T)® M. Since RIAI —T) = R(M —T) N X, we have

{0} =R\ —T)NM =R\ —T)NXNM =R\ —T)n M.

Thus R(M —T) N M = {0}. Now, we show that Y = R(A\I = T) + M.

Since the spectrum o(T) is s a compact and nonempty subset of the complex
plane, the resolvent set C\ o(T) # (). Let u € C such that uI — T is invertible
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in L(Y). Then, if z € Y there exists y € Y such that z = (uI — T)y. Thus
z = py—Ty, then we can write z = u+v, whereu = py € Y and v = -T'y € X.
From this decomposition, for any A # 0, since R(AI—-T') C R(A—T), we obtain
that

|
-
>
~
|

u+ AN Tu+v) € RA -T)+ RN ~T)+ M

)
Ju+ (AN Tu+v) € RN -T)+ X
)
Ju+ (AN 'Tu+v) € RN -T)+ M

Therefore, we have that Y C R(A[ —T)+ M, consequently Y = R(A\ —T)+ M.
But since R(A —T) N M = {0}, then we have Y = R(A —T) ®@ M, which
implies that 3(A\] — T) = dim M = S(A — T). This shows that 3(A] —T) =
B =T). O

The following result provides an important relationship between R(A —T)
and R(AI —T). In the proof of this lemma we use the notion of paraclosed (or

paracomplete) subspace and the Neubauer Lemma (see [16]). Also, we used
the notion of reduced minimum modulus of a non-zero operator T' € L(X),

| T ||

T)= inf ————
V(T) x¢1£(T) dist (z, N(T))’

and the equivalence, T'(X) is closed if and only if v(T") > 0 ([15, Prop 36.1]).

Lemma 2.2. Let T € L(Y) be an extension of T € M(X,Y). Suppose that X
is a proper dense subspace of Y or X is closed in Y. If X\ # 0, then R(AI —1T)
is closed in'Y if and only if R(AI —T) is closed in X.

Proof. (Sufficiency) By Lemma 2.1(i), for all x € X

A =T)z| = [[(M=T)z|
> (M —T)dist (2, NOAI —T))
= v\ —=T)dist (z, N(AXI = T))
Thus,
(=T
egNOI-T) dist (z, N(AI = T))

Therefore, we obtain that y(AI —T) > v(A —T). Then v(AI —T) > 0 implies
~(AI —T) > 0. This shows, since both X and Y are Banach spaces, that

YN =T) = > y(A\[-T).

R(M —T) closed in Y = R(A —T) closed in X.

(Necessity) Suppose that R(A — T) is closed in X. Consider two different
cases.
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Case I: X is a proper dense subspace of Y.
In this case,

| (AT = T)a ||> y(M = T) dist (z, N\ - T)), V€ X.

Suppose now that y € Y. Since X is assumed to be dense in Y, there exists a
sequence ()52 ; € X such that y = lim,,,oc ©,,. From this, and by Lemma
2.1(i), we obtain

| =Tyl = | (A -T)(lim ) |
Tim | (= T)() |
> 'n,h—>Holo ~y(AI = T)dist (z,, NOA - T))
= (A —T)dist (7}1)120 Tpy, N(AL =T))
= ~y(\ —T)dist (y, N(AI —T))
From which,
YA ~T)= inf AT =TIl \r—1).

ygN(I-T) dist (y, N(AM —T))

Therefore y(AI —T) > v(A—T). Since R(AI —T) is closed, then y(AI =T > 0.
Thus, v(AM — T) > 0. This shows that R(\ — T) is closed in Y.
Case II: X is closed in Y.

By Lemma 2.1(ii), RIM —T) N X = R(A — T) is closed in X. But since,
X is closed in Y, we have that R(A\] —T) N X is closed in Y. Also, if X # 0
the polynomials A — z and z have not common divisors, so there exist two
polynomials v and v such that 1 = (A — 2)u(z2) + zv(z), for all z € C. Hence
T’ = A\ -T)u(T)+Tv(T) andso Y € RAI-T)+R(T) C RA-T)+X C Y.
Thus R(M —T)+ X =Y is closed in Y. Since both R(AI — T) and X are
paraclosed subspaces and both R(AI —T)N X and R(A —T)+ X are closed in
Y, using Neubauer Lemma [16, Prop. 2.1.2], we have that R(A\ —T) is closed
inY. O

B. Barnes [4] studied some relationships between an operator 7' € M(X,Y’)
and its extensions T' € L(Y) and proved the following result.

Theorem 2.3. ([4, Theorem 4]) Let T € L(Y) be an extension of T €
M(X,Y). Then:

(i) o(T)\ {0} = o(T) \ {0}.
(ii) o (T)\{0} = o(T) \ {0}
(iii) 0w (T) \ {0} = o (T) \ {0}.
(iv) If X ¢ o(T), then ind (A —T) = ind (\ —T) for all A # 0.
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(v) If X is a proper dense subspace of Y, then o(T') = o(T), 04(T) = a4(T),
and 0, (T) = 04,(T).

(vi) If X is closed in' Y, but X has no closed complement in'Y, then o(T) =

o(T), o4(T) = 04(T), and 0,,(T) = 04 (T).
Proof. For the proof see [4, Theorem 4] O

Atkinson’s well known theorem says that T € L(X) is a Fredholm operator
if and only if its projection in the algebra L(X)/F(X) is invertible, where F(X)
is the ideal of finite rank operators in the algebra L(X). More generally, T is
upper (resp., lower) semi-Fredholm operator if and only if its projection in the
algebra L(X)/F(X) is left (resp., right) invertible. From this, and by Lemmas
2.1 and 2.2, Theorem 2.3 may be extended to other spectra as follows.

Theorem 2.4. Let T € L(Y) be an extension of T € M(X,Y). Then:
(1) oap(T) \ {0} = 0ap(T) \ {0}
(i1) out(T)\ {0} = out(T) \ {0}.
(iii) ouw(T) \ {0} = ouw(T) \ {0}.
(iv) own(T) \ {0} = ouwp(T) \ {0}
(v) on(T)\ {0} = ow(T) \ {0}.

(vi) If X is a proper dense subspace of Y, then oap(T) = 04p(T) and o, (T) =
Jp (T)

(vii) If X is closed, but X has no closed complement in Y, then o.,(T) =

oap(T) and on(T) = o, (T).

(viii) If X is a proper dense subspace of Y and T(X) is closed in X, then

out(T) = 0wt (T), ouw(T) = ouw(T) and ouwn(T) = ouw(T).
(iz) If X is closed, but X has no closed complement in' Y and T'(X) is closed

in X, then ou(T) = 0ut(T), ouw(T) = ouw(T) and ouw(T) = 0w (T).

Proof. (i) Suppose that A € 0,,(T") \ {0}, then AI — T is not bounded below
and A # 0. Thus p(AI—T) > 0 or R(AI—T) is not closed in X. If p(AI—T) > 0,
by Lemma 2.1, p(AI —=T) = p(AI —T) > 0. Now, since X is a Banach subspace
of Y and Y is a Banach space, X is closed in Y. Thus, by Lemma 2.2, if
R(M — T) is not closed in X then R(M — T) is not closed in Y. Therefore,
p(AI —=T) > 0 or R(M[ —T) is not closed in Y. From which A\I — T is not
bounded below and A # 0, then A € 0,,(T) \ {0}. Similarly, we can prove the
inclusion ,p,(T) \ {0} C 0ap(T) \ {0}.

The proofs of (ii), (iii), (iv) and (v) are analogous to (i).

(vi) By part (i), oap(T) \ {0} = 0.p(T) \ {0}. Now, if 0 ¢ 0,,(T) then
T is injective. Consequently T" has SVEP at 0, and 0 ¢ Z(T). But since
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oap(T)UE(T) = o(T) = o(T), we have 0 ¢ o(T), a contradiction. Similarly,

0 ¢ 0ap(T) implies T injective. Thus T has SVEP at 0, and 0 ¢ Z(T). Again,
since 0., (T) U Z(T) = o(T), we have 0 ¢ o(T), a contradiction. Thus 0 €
oap(T) and 0 € 04,(T), so the equality 0ap(T) = 0ap (1) holds.

For the equality o, (T") = 0,(T), observe that

op(T) = ow(T)Uacco(T) = ow(T) Uacco(T) = on(T).

(vii) The proof is analogous to that of part (vi).

(viii) To show the equality ous(T') = ou(T), note first that oue(T) \ {0} =
ouwt(T) \ {0}. Suppose that 0 ¢ ou¢(T). Then T is upper semi-Fredholm, so
its projection in the algebra L(X)/F(X) is left invertible. Therefore there
exist S € L(X) and F € F(X) such that ST — F is the identity on X. Then,
P = ST —F is a bounded projection of Y on X. Thus, Y = X® N (P) and X is
closed in Y. Hence X =Y, a contradiction. Consequently, 0 € o,¢(T"). We now
show that also 0 € ou¢(T). Suppose that 0 ¢ ou(T). Then T is upper semi-
Fredholm, this implies that a(T) < co. But, since N(T') = N(T)NX C N(T),
it follows that a(T') < co. Now, by hypothesis, T'(X) is closed in X. Therefore,
T is upper semi-Fredholm and as it has been proved before this is impossible.

Thus 0 € 0y (T) and 0 € oy (T), so the equality o (T) = oue(T) holds.

To show the equality oy (T') = ouw(T), by part (iii), we know that o, (T)\
{0} = ouw(T) \ {0}. Proceeding as in the first part, we see that 0 € oy (T) N
ouww(T). Suppose that 0 ¢ o (T). Then T is upper semi-Fredholm, since
it is upper Weyl. As above, it then follows that X has a closed complement
in Y, contradicting our assumption. Similarly, if 0 ¢ oy (T) then T is upper
semi-Fredholm. As above, it then follows that 7" is upper semi-Fredholm, again
contradicting the assumption that X has no closed complement in Y. Thus
0 € Tuw(T) Nowy(T) and 04y (T) = ouw (T).

Finally, by part (vi), we concluded that

oub(T) = ouw(T) Uacc o,p(T) = ouw(T) U acc oap(T') = oun(T).

Then oy, (T) = oup(T).

(ix) Similarly as in the part (viii), for the equality oue(T) = oue(T), it
suffices to examine the case A = 0. Suppose that 0 ¢ oy (7). Proceeding
as in the part (viii), there exist a bounded projection P of Y on X. Thus,

Y = X @ N(P) and hence X has a closed complement in Y, a contradiction.
Consequently, 0 € ou¢(T'). The proof of 0 € oy¢(T), is analogous to that of part
(viii). Then 0 € oyt (T') and 0 € oy¢(T'), so the equality ous(T) = ous(T') holds.

Again proceeding as in the part (viii), we obtain ouw(7) = ouw(7) and
Uub(T) = Uub(T). D

Remark 2.5. By the parts (viii) and (ix) of the proof of Theorem 2.4, we
concluded that 0 ¢ 0., (T) \ ouw(T), 0 & o(T) \ ouw(T') and 0 ¢ o(T') \ 0w (T).
Similarly, 0 ¢ cap(T) \ ouw(T), 0 ¢ o(T) \ ouw(T) and 0 ¢ o(T) \ 0w (T).

As immediate consequence of Lemma 2.1, and Theorems 2.3 and 2.4.
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Lemma 2.6. Let T € L(Y) be an extension of T € M(X,Y). Suppose that X
s a proper dense subspace of Y or X is closed, but X has no closed complement
inY. Then, if T(X) is closed in X or 0 is not an isolated point of o(T), the
following statements are true:

(i) poo(T) = poo(T).

(i) P&)(T) = pgo(T).

(ZZ’L) W()O(T) = W()()(T).
(iv) mo(T) = o (T).

Proof. (i) and (ii) follows from Theorem 2.4.

(iii) To show the equality moo(T') = moo(T), by Lemma 2.1(iii), it suffices to
examine the case A = 0. We claim that 0 ¢ moo(T"). To see this, suppose that
0 € moo(T). Then a(T) < oo, assuming that T(X) is closed in X, T is upper
semi-Fredholm. As in the proof of Theorem 2.4, we have a contradiction.
Therefore, 0 ¢ moo(7T). Similarly, 0 € mo(T) implies that o(T) < oo, since
N(T) = N(T)Nn X C N(T). Again T is upper semi-Fredholm, so by the

same argument above we have a contradiction. Thus 0 ¢ myo(T). Now, by

Theorem 2.3, o(T) = o(T). Then isoo(T) = isoo(T). Also, by Lemma
2.1(iii), (M —T) = (M —T) for all X # 0. Consequently, we have the

equality moo(T) = mpo(T). On the other hand, assuming that 0 is not an

isolated point of o(T), then 0 ¢ isoo(T) = isoo(T). Again, by Lemma 2.1(iii),

we get 7T00(T) = 7T00(T).
(iv) The proof is analogous to that of part (iii). O

3. Spectral properties and extensions
In this section we state the main result of the paper.

Theorem 3.1. Let T € L(Y) be an extension of T € M(X,Y). Suppose
that X is a proper dense subspace of Y or X is closed, but X has mo closed
complement inY. If T(X) is closed in X or 0 is not an isolated point of o(T),
then property (i) (resp.,(ii)-(xzii)) in Definition 1.2 holds for T if and only if
property (i)(resp.,(i)-(xii)) in Definition 1.2 holds for T.

Proof. By Theorems 2.3, 2.4 and Lemma 2.6 (and by using Remark 2.5), we
obtain readily the result. For the property (x), observe the equivalence between
Browder’s theorem and generalized Browder’s theorem proved in [2]. O

We give one illustrative example for the behavior of an operator T" and its
extensions 7', when the subspace X does not satisfy the hypothesis of Theorem
3.1.
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Example 3.2. Let Y be a Banach space, and assume that X and Z are proper
closed subspaces of Y with Y = X@Z. Let P be the projection of Y on X which
is zero on Z. Since P is a projection operator, i.e P = P, then o(P) = {0,1}.
Also, the operator P = P|x is the identity operator on X, so o(P) = {1}.
Now, if X is infinite dimensional and Z is finite dimensional, then P satisfy
the properties (i)-(vii) and (xi)-(xii) in Definition 1.2. But, P does not satisfy
the properties (i)-(vii) and (xi)-(xii) in Definition 1.2.

Remark 3.3. Theorem 2.3 has been proved in [4] by using different arguments.
This result is also an easy consequence of Lemmas 2.1 and 2.2. Aiena et al.,
showed in [1] a particular case of Theorem 3.1. They showed the equivalence
T satisfies Weyl’s theorem if and only if T satisfies Weyl’s theorem, when X
is a proper dense subspace of a Hilbert space H and T'(X) is closed in X. In
Theorem 3.1, we extend this equivalence to other spectral properties. On the
other hand, every isolated point of o(T) is a boundary point of ¢(T). Thus,
in Theorem 3.1, there are more weak ways to express the hypothesis. We
may replace the assumption 0 is not an isolated point of o(T") by 0 ¢ 9o (T),
p(T) = oo or ¢q(T) = oo. Also, since in a Banach space we have that every
subspace of finite codimension is closed, we may replace the assumption T'(X)
closed in X by B(T) < oc.
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