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Abstract. In this note a course given at the “UN Encuentro de Matemáticas
2016” held in Bogotá (Colombia) is described. The course was divided into
four parts, devoted, respectively, to basic definitions in Algebraic Topology,
to the algorithmic aspects of Topology, to the Kenzo computer system and,
finally, to the applications of Computational Algebraic Topology. In the first
talk the basic concepts of Algebraic Topology were presented, stressing the
importance of replacing the topological space notion by other combinatorial
analogues, easing the introduction of homological techniques. In the second
talk, we reviewed several algorithms devised to compute homological objects.
In the third talk, we described the Kenzo program, using its new version
accessible via Internet. In the last talk, persistent homology was introduced
and an actual application of topology to image processing was presented, in
the frame of a project related to the fight against neurodegenerative diseases,
as Alzheimer.
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Resumen. En este texto describimos un curso impartido en el congreso “UN
Encuentro de Matemáticas 2016” que tuvo lugar en Bogotá (Colombia). El
curso fue dividido en cuatro partes. En la primera se presentaron definiciones
básicas de la Topoloǵıa Algebraica. La segunda parte estuvo dedicada a los
aspectos algoŕıtmicos de la Topoloǵıa, y en la tercera se habló del sistema de
cálculo por computador Kenzo. La última parte trató sobre las aplicaciones
de la Topoloǵıa Algebraica Computacional. El curso comenzó recordando la
importancia de reemplazar la noción de espacio topológico por otras combina-
toriales, que facilitan la introducción de técnicas homológicas. Más adelante se
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1Departamento de Matemáticas y Computación, Universidad de La Rioja (Spain), La Rioja,
España
ajulio.rubio@unirioja.es



138 Julio Rubio

presentaron algoritmos para calcular la homoloǵıa, y se explicó cómo esos al-
goritmos están implementados en el sistema Kenzo. Por último, introdujimos
la homoloǵıa persistente, y explicamos una aplicación real de la topoloǵıa para
el procesamiento de imágenes digitales, en el marco de un proyecto dedicado
a la lucha contra enfermedades neurodegenerativas, como el Alzheimer.
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What is the relation between synapses in the brain and algebraic topology?
Well, one could always adduce that in order to think of algebraic topology
some synaptic activity is needed. But, seriously speaking, to find an answer to
that question, we have to tell an exciting story of scientific collaboration. In
2011, Miguel Morales, leader of a team of biologists, met our Computer Science
team, and explained to us that they were studying the effect of some specially-
designed drugs in the evolution of synaptic density in the brain, and that this
analysis could be instrumental in the fight against neurodegenerative diseases,
as Alzheimer. Their particular problem was that they had a lot of pictures
of neurones, taken by means of a confocal microscopy, and they had to count
the number of synapses by hand. This task was very time-consuming, and not
really related to the essential biological research. In addition, it was tainted by
subjective factors. So, his specific question was: could you help us to automate
this task? The material answer to that question was the plugin SynapcountJ

which we developed some months later. Interestingly enough, the central algo-
rithm was based on the computation of the number of connected components in
digital images, a typical tool of Computational Algebraic Topology. Details of
this program, and other subsequent projects undertaken together with Miguel
Morales’ team, can be read in [1] (in Spanish), where further references can
also be found.

The way from abstract pure mathematics to a computer program useful in
biomedicine belongs to a long and remarkable tradition. The story starts at
the end of the XIX century, when Poincaré introduced in his Analysis Situs
the modern Topology and, at the same time, the modern Algebraic Topology
through the notion of fundamental group. In the course, we quickly mentioned
the historical birth of the main concepts. Topological spaces, as defined in
General Topology textbooks, can produce extremely wild and badly-behaved
spaces. So, a first step towards rendering topology more algebraic is to find
combinatorial analogues of topological spaces. The path presented was:

1. Topological spaces;

2. CW-complexes;

3. Triangularizations;
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4. Simplicial complexes;

5. Simplicial sets.

Once simplicial sets have been chosen as combinatorial models for topologi-
cal spaces, the next step is to get algebraic structures from the geometric ones.
The technique is to use the free Abelian group generated by a set. Taking profit
of the graded structure inherent to simplicial sets (degree is identified with the
geometrical dimension), we obtain a graded group associated to a simplicial set.
Faces in each simplex can be composed formally to endow the graded group of
a simplicial set with a structure of chain complex.

A chain complex C∗ =(Cp, dp) is a collection of Abelian groups (Cp), one
for each p ∈ Z, together with a homomorphism dp : Cp → Cp−1, such that, for
all p, dp−1 ◦ dp = 0.

· · · ← Cp−1
dp←− Cp

dp+1←− Cp+1 ← · · · .

The fundamental property of a chain complex is dp◦dp+1 = 0 implies im dp+1 ⊆
ker dp. Then the p-homology group of C∗, denoted by Hp(C∗), is defined as the
quotient ker dp/im dp+1. This is one of the essential notions in Algebraic Topol-
ogy and has many applications. In particular, H0(C∗) measures the number of
connected components of the initial space.

Once the homology groups were introduced, the main algorithm to compute
them was described in the second talk: it is based on a diagonalization process
of integer matrices known as Smith Normal Form. If the space to be studied
has finitely many simplices in each dimension, then its homology groups are
finitely generated Abelian groups. The arrows in the chain complex can be
represented as integer matrices, and then the rang and torsion coefficients of
the homology groups can be read directly on the diagonal matrices produced
by the Smith Normal Form algorithm.

In advanced Algebraic Topology, when trying to compute homotopy groups
of spaces of finite type (a problem much more difficult than computing ho-
mology groups), infinite dimensional spaces appear. The typical case is that
of loop spaces. Iterated loop spaces are highly infinite, but, under good cir-
cumstances, their homology groups are finitely generated, so computable, in
principle. There are specific algorithms to compute such homology groups,
requiring Sergeraert’s effective homology.

Let us comment with some detail on the notion of effective homology.
Roughly speaking, the idea is to keep an explicit link among a big (frequently
of infinite type) chain complex and a small (of finite type) one, in such a way
that the homology of the big chain complex can be obtained through that of
the small one. The mentioned explicit link is organised by means of the (chain)
morphism notion.

A morphism f = (fp), of degree k, from a chain complex (Cp, dp) to another
(C ′p, d

′
p) is a collection of homomorphisms

fp : Cp → C ′p+k.
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This is expressed by the following diagram, generally not assumed commu-
tative

· · · ← Cp−1 dp←− Cp
dp+1←− Cp+1 ← · · ·

fp−1

· · · ← C ′p+k−1
d′
p+k←− C ′p+k

d′
p+k+1←− C ′p+k+1 ← · · ·

fp fp+1

Then, the structure composed of two chain complexes and the corresponding
link is called by Sergeraert a reduction.

A reduction is a 5–tuple (Ĉ, C, f, g, h):

Ĉ
h−→ sĈ

f ↓↑ g

C

where Ĉ and C are chain complexes, f and g chain complex morphisms and h
a homotopy operator. Hereafter, Ĉ is called the top chain complex and C the
bottom chain complex. sĈ is Ĉ shifted, i.e. h has degree 1. The mappings f ,
g, h, together with the differential operator d on Ĉ, must verify the following
relations:

f ◦ g = 1C

h ◦ d+ d ◦ h = 1Ĉ − g ◦ f
f ◦ h = 0

h ◦ g = 0

h ◦ h = 0

The morphisms f and g and the homotopy operator h describe the (big) chain
complex Ĉ as the direct sum

Ĉ = Ĉ1 ⊕ Ĉ2

where Ĉ1 = Im(g) ' C and Ĉ2 = Ker(f) (Ĉ2 is acyclic).

Ĉ
h−→ sĈ

f ↓↑ g

C

The morphisms f and g and the homotopy operator h describe the (big) chain
complex Ĉ as the direct sum

Ĉ = Ĉ1 ⊕ Ĉ2
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where Ĉ1 = Im(g) ' C and Ĉ2 = Ker(f) (Ĉ2 is acyclic).
A homotopy equivalence between two chain complexes C and EC is a pair

of reductions:
Ĉ

ρ1 ↙↗ ↖↘ ρ2
C EC

If C and EC are free chain complexes, a usual chain equivalence between them
can thus be organized. Frequently the chain complexes C and Ĉ are of infinite
type and on the contrary, the chain complex EC is of finite type, so that EC
can be understood as a description of the homology of C. More precisely, EC
is a tool allowing the computation of the homology of C. The chain complex
Ĉ is only an intermediate object. When EC is an effective chain complex, we
call the whole structure an object with effective homology.

The effective homology method has been implemented in the software sys-
tem called Kenzo, available at https://www-fourier.ujf-grenoble.fr/~sergerar/.
Kenzo is one of the computer programs devoted to calculate in Algebraic Topol-
ogy. It is unique in dealing with infinitely generated spaces, and it has been
used to perform specific computations in applications. It also includes packages
to compute persistent homology, and to use discrete vector fields to reduce the
size of the matrices involved in the determination of the homology of digital
images. This last technique has been instrumental to some of the applications
in the field of neuronal analysis as it is described in [1] and with more detail in
the literature references of that paper.
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