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1 Introduction

The concept of minimal structure was introduced in 1999 by Maki et
al. [11]. After this work, various mathematicians turned their attention
in introducing and studying diverse classes of sets defined on the m–
structure, because this notion is a natural generalization of many well
known results related to generalized sets in topological spaces and several
weaker forms of continuity. Each one of these classes of sets is, in turn,
used in order to obtain different separation properties and new forms of
continuity (see [1, 5, 6, 7, 8, 9, 12, 14, 15], for details). In this work,
we use the notion of m–structure in order to define and characterize the
(mX ,mY )–approximately semi open maps, (mX ,mY )–irresolute maps.
Also, we find conditions under which the direct image of any mX–sg
open set in X is mY –sg open in Y and the inverse image of any mY –sg
open set in Y is mX–sg open in X. Finally we show that our results
constitute a generalization of many of the results obtained by Caldas et
al. [1].

2 Minimal structures

In this section, we introduce the m–structure and the m–operator no-
tions. Also, we define some important subsets associated to these con-
cepts.

Definition 2.1. [11]. Let X be a nonempty set and let mX ⊆ P (X),
where P (X) denote the set of power of X. We say that mX is an m–
structure (or a minimal structure) on X, if ∅ and X belong to mX .

The members of the minimal structure mX are called mX–open sets,
and the pair (X,mX) is called an m–space. The complement of an mX–
open set is said to be an mX–closed set. Given A ⊆ X, we define mX–
interior of A abbreviate mX -Int(A) as

⋃
{W/W ⊆ mX ,W ⊆ A} and the

mX–closure of A abbreviate mX -Cl(A) as
⋂
{F/A ⊆ F,X \ F ∈ mX}.

As an immediate consequence of the above definition is the following
theorem.

Theorem 2.1. Let (X,mX) be an m–space and A a subset of X.
Then x ∈ mX-Cl(A) if and only if U∩A 6= ∅ for every U ∈ mX containing
x. And satisfying the following properties:

1. mX -Cl(mX -Cl(A))=mX -Cl(A).
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2. mX -Int(mX -Int(A))=mX -Int(A).

3. mX -Int(X \A)=X \ (mX -Cl(A).

4. mX -Cl(X \A)=X \ (mX -Int(A).

5. If A ⊆ B then mX -Cl(A) ⊆ mX -Cl(B)

6. mX -Cl(A) ∪mX -Cl(B) ⊆ mX -Cl(A ∪B).

7. A ⊆ mX -Cl(A) and mX -Int(A) ⊆ A.

Proof. It is easy from mX -Cl and mX -Int definitions.

Rosas et al. [2] define the notion of α semi open sets as A ⊆ X is an
α–semi open set if there exists an open set U such that U ⊆ A ⊆ α(U).
In the case that X is an m–space and using the notion of mX–closure,
we have the following definition.

Definition 2.2. Let (X,mX) be an m–space. We say that A ⊆ X
is an mX–semi open set if there exists U ∈ mX such that U ⊆ A ⊆ mX -
Cl(U). Also we say that A ⊆ X is an mX–semi closed set if X \A is an
mX–semi open set.

We denote by SO(X,mX) the collection of all mX–semi open sets
of X and SC(X,mX) the collection of all mX–semi closed sets of X.
Observe that when mX is a topology on X, the mX -Cl(A) is exactly the
Cl(A).

Definition 2.3. Let (X,mX) be an m–space and A ⊆ X. The mX–
semi closure of A denoted by mX -sCl(A) is defined as the intersection
of all mX–semi closed sets of X containing A and we define mX–semi
interior of A denoted by mX -sInt(A) as the union of all mX–semi open
sets of X contained in A.

Similarly as in the Theorem 2.1, we have the following characteriza-
tion.

Theorem 2.2. Let mX be an m–structure on X then x ∈ mX-sCl(A)
if and only if U ∩A 6= ∅ for every mX–semi open set U such that x ∈ U .
Also,



40 Rosas et al., On (mX ,mY )–approximately

1. mX -sCl(∅)=∅.

2. mX -sCl(X)=X.

3. If A ⊆ B then mX -sCl(A) ⊆ mX -sCl(B.)

4. mX -sCl(mX -sCl(A)) = mX -sCl(A);

5. mX -sCl(X \A) = X \ (mX -sInt(A)).

Proof. It is easy from mX -sCl and mX -sInt definitions.

From Theorem 2.1 and Theorem 2.2, for all A ⊆ X we have the
inclusion

mX − sCl(A) ⊆ mX − Cl(A) .

Observe that mX -sCl(A)(resp., mX -Cl(A)) is not necessarily an mX–
semi closed (resp., mX–closed) set. At this point there are a natural
question. There exist any condition on the set X or in the m–structure
of X in order to guarantee that the mX -sCl(A) (resp.,mX -Cl(A))is an
mX–semi closed (resp., mX–closed) set. At this point we introduce the
following property.

Definition 2.4. [11]. Let (X,mX) be an m–space. We say that mX

to have the property of Maki, if the union of any family of elements of
mX belongs to mX .

Observe that any collection ∅ 6= J ⊆ P (X), always is contained in
an m–structure that have the property of Maki, as we know, mX(J ) =
{∅, X} ∪ {

⋃
M∈J M : ∅ 6= J ⊆ J }. In particular, when J = mX , we

denote by m
′
X = mX(J ). Clearly mX = m

′
X , if mX have the property

of Maki. Note that if mX is an m–structure and Y ⊆ X, then {M ∩ Y :
M ∈ mX} is an m–structure on Y , and is denoted by mX|Y , and the
pair (Y,mX|Y ) is called an m–subspace of (X,mX).

In general the mX–open sets and the mX–semi–open sets are not
stable for the union. Nevertheless, for certain mX–structure, the class
of mX–semi open sets are stable under union of sets, like it is demons
treated in the following lemma.
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Lemma 2.1. Let mX be an m–structure which satisfy the property
of Maki. If {Ai : i ∈ I} is a collection of mX–semi–open sets (resp., mX–
semi–closed sets), then

⋃
i∈I Ai (resp.,

⋂
i∈I Ai) is an mX–semi–open set

(resp., mX–semi–closed set).

Proof. Suppose that mX has the property of Maki and {Ai : i ∈ I} is
a collection of mX–semi–open sets. For each i ∈ I, there exists a set
Ui ∈ mX such that Ui ⊆ Ai ⊆ mXCl(Ui), in consequence,

⋃
i∈I Ui ⊆⋃

i∈I Ai ⊆
⋃

i∈I mX -Cl(Ui). Since mX -Cl is a monotone operator, then⋃
i∈I mX -Cl(Ui) ⊆ mX -Cl(

⋃
i∈I Ui); and

⋃
i∈I Ui ∈ mX , because mX

has the property of Maki. It follows that
⋃

i∈I Ui ∈ mX and
⋃

i∈I Ui ⊆⋃
i∈I Ai ⊆ mX -Cl(

⋃
i∈I Ui), therefore

⋃
i∈I Ai is an mX–semi–open sets.

Theorem 2.3. Let (X,mX) be an m–space and mX satisfying the
property of Maki. For a subset A of X, the following properties hold:

1. mX -Int(A) ∈ mX and mX -Cl(A) is mX–closed.

2. A ∈ mX if and only if mX -Int(A) = A.

3. A is mX–closed if and only if mX -Cl(A) = A.

Proof.

1. Obvious.

2. If A ∈ mX . then

mX -Int(A) =
⋃

{W/W ⊆ mX ,W ⊆ A} = A

Conversely, since mX satisfying the property of Maki, then
mX -Int(A) ∈ mX . It follows that A ∈ mX .

3. If A is an mX–closed set, then X − A ∈ mX . By definition of
mX–interior, mX -Int(X − A) = X − A. Using Theorem 2.1(3),
mX -Int(X −A) = X − (mX -Cl(A)). In consequence. mX -Cl(A) =
A.

Conversely, since mX satisfying the property of Maki, then
mX -Int(A) ∈ mX . It follows that A is mX–closed.
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In a similar form, we can prove the following theorem.

Theorem 2.4. Let (X,mX) be an m–space and mX satisfying the
property of Maki. For a subset A of X, the following properties hold:

1. mX -sInt(A) is mX–semi open and mX -Cl(A) is mX–semi closed.

2. A is mX–semi open if and only if mX -sInt(A) = A.

3. A is mX–semi closed if and only if mX -sCl(A) = A.

From the last result, it follows that mX–closed set ⇒ mX–semi closed
set, or equivalently, mX − open set ⇒ mX -semi open set.

Corolary 2.3. Let (X,mX) be an m–space and mX satisfying the
property of Maki. For a subset A ⊆ X, we have:

1. A is mX–semi open if and only if A ⊆ mX -Cl(mX -Int(A)).

2. A is mX–semi closed if and only if mX -Int(mX -Cl(A)) ⊆ A.

Proof. Obvious.

It is important to observe that the m–structure notion, uses in ab-
stract form the properties of many important collections of generalized
sets without the necessity of a topological structure, some of them are
illustrated in the following situations:

1. Given a topological space (X, τ), the collection of: θ–open sets,
(respectively semi open sets, pre open sets, β–open sets) denoted
by τθ,(respectively SO(X), PO(X), β(X)) is an m–structures on
X, and all satisfy the property of Maki. Also, the collection of
closed sets in X is an m–structure and satisfy the property of Maki,
if (X, τ) is an Alexandroff space.

2. If α is an operator associated with the topology τ on X in the sense
of Carpintero et al. [2, 3], then the collections Γα and α−SO(X, τ)
are m–structures. Γα and SO(X, τ) also has the property of Maki
and α−SO(X, τ) has the property of Maki, if α is a monotone
operator.
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3. If α, β are operators associated with a topology τ on X, the collec-
tion (α, β) − SO(X, τ), introduced by Rosas et al. [14], also is an
m–structure and satisfy the property of Maki.

4. If α, β and γ are operators associated with τ on X, the collection
γ − (α, β)-SO(X, τ), defined by Rosas et al. [15], is also an m–
structure, and satisfy the property of Maki, when the operator γ
is expansive on the class (α, β)− SO(X, τ).

The following theorem improves the Lemma 1 in [7].

Theorem 2.5. Let (X,mX) be an m–space and A ⊆ X. If mX

satisfy the property of Maki. Then

mX -sCl(A) = A ∪mX -Int(mX -Cl(A)) .

Proof. Since mX satisfy the property of Maki, then mX -sCl(A) is an
mX–semi closed set, using Corollary 2.1, we obtain that

mX -Int(mX -Cl(mX -sClA)) ⊆ mX -sCl(A) .

Therefore

mX -Int(mX -Cl(A)) ⊆ mX -sCl(A) .

It follows that A ∪mX -Int(mX -Cl(A)) ⊆ mX -sCl(A).
The opposite inclusion, we observe that

mX -Int(mX -Cl(A ∪mX -Int(mX -Cl(A))))

= mX -Int(mX -Cl(A) ∪mX -Cl(mX -Int(mX -Cl(mX -ClA))))

⊆ (mX -Cl(A)) ∪mX -Int(mX -Cl(mX -Int(mX -Cl(A))))

= mX -Cl(A) ∪mX -Int(mX -Cl(A)) = mX -Cl(A) .

Thus

mX -Int(mX -Cl(A ∪mX -Int(mX -Cl(A))))

⊆ mX -Int(mX -Cl(A)) ⊆ A ∪mX -Int(mX -Cl(A)) .

It follows that
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mX -Int(mX -Cl(A ∪mX -Int(mX -Cl(A))))

⊆ A ∪mX -Int(mX -Cl(A)) .

In consequence, by Corollary 2.1, A∪mX -Int(mX -Cl(A)) is an mX–
semi closed set and so mX -sCl(A) ⊆ A ∪mX -Int(mX -Cl(A)).

The following example shows that the property of Maki in the The-
orem 2.5 can not be removed.

Example 2.1. Let X = {a, b, c, d}. Define the mX structure on X
as

mX = {∅, X, {a}, {b}, {a, b, d}, {a, b, c}} .

Then

SO(X, mX) = {∅, X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} ,

and

SC(X, mX) = {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c},
{b, c}, {b, d}, {a, c, d}, {b, c, d}} .

Observe that for A = {a, c}, we have that

mX -sCl(A) ⊂ A ∪mX -Int(mX -Cl(A)) .

But A ∪mX -Int(mX -Cl(A)) 6⊂ mX -sCl(A).

Corolaty 2.2. Let (X,mX) be an m–space and A ⊆ X. If mX sat-
isfy the property of Maki. Then mX -sInt(A) = A ∩mX -Cl(mX -Int(A)).

Proof. The proof follows from Theorem 2.1, Theorem 2.2 and Theorem
2.5.
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Definition 2.5. Let (X,mX) be an m–space and A be a subset of
X:

1. The set
⋂

{U ∈ mX : A ⊆ U} is called the mX–kernel of A, and is
denoted by mX -Ker(A).

2. The set
⋂

{U ∈ SO(X,mX) : A ⊆ U} is called the mX–semi kernel
of A and is denoted by mX -sKer(A).

The following theorem, characterizes the mX topological–kernel and
the mX–semi topological–kernel.

Theorem 2.6. Let (X,mX) be an m–space, A and B be a subsets
of X, then:

1. x ∈ mX -Ker(A) if and only if A ∩ F 6= ∅ for any mX–closed set F
that contain x.

2. A ⊆ mX -Ker(A) and A = mX -Ker(A) if A is mX–open.

3. If A ⊆ B, then mX -Ker(A)⊆ mX -Ker(B).

4. x ∈ mX -sKer(A) if and only if A ∩ F 6= ∅ for any mX–semi closed
set F that contain x.

5. A ⊆ mX -sKer(A) and A = mX -sKer(A) if A is mX–semi open.

6. If A ⊆ B, then mX -sKer(A)⊆ mX -sKer(B).

Proof. It is easy from Definition 2.5.

Definition 2.6. Let mX be an m–structure on X. A subset A ⊆ X,
is said to be an mX–semi generalized closed set (abbreviated by mX–
sg–closed) if mX -sCl(A) ⊆ U , whenever A ⊆ U and U is an mX–semi
open set. A subset A ⊆ X, is said to be an mX–semi generalized open
set (abbreviated by mX–sg–open) if, its complement is an mX–sg–closed
set.

The followings theorems, characterize the mX–generalized closed sets
and the mX–semi generalized open sets.



46 Rosas et al., On (mX ,mY )–approximately

Theorem 2.7. Let mX be an m–structure on X satisfying the prop-
erty of Maki. A ⊆ X is an mX–sg-closed set if and only if there are not
exist mX–semi closed set F such that F 6= ∅ and F ⊆ mX-sCl(A) \A.

Proof. Suppose that A is an mX–sg–closed set and let F ⊆ X be an mX–
semi closed set such that F ⊆ mX -sCl(A) \A. It follows that A ⊆ X \F
and X \F is an mX–semi open set, since A is an mX–sg–closed, we have
that mX -sCl(A) ⊆ X \ F and F ⊆ X \mX -sCl(A). It follows that

F ⊆ mX -sCl(A) ∩ (X \mX -sCl(A)) = ∅,

implying that F = ∅. Conversely, if A ⊆ U and U is an mX–semi open
set, then mX -sCl(A)∩ (X \U) ⊆ mX -sCl(A)∩ (X \A) = mX -sCl(A)\A.
Since mX -sCl(A) \A does not contain subsets mX–semi closed different
from the empty set, we obtain that mX -sCl(A) ∩ (X \ U) = ∅, and this
implies that mX -sCl(A) ⊆ U in consequence A is an mX–sg–closed.

As an immediate consequence of the above theorem, we have the next
theorem.

Theorem 2.8. Let mX be an m–structure on X satisfying the prop-
erty of Maki. A ⊆ X is an mX–sg–open if and only if there are not exist
mX–semi closed set F such that F 6= ∅ and F ⊆ A \mX − sInt(A).

3 Some continuous functions between minimal
structure

In this section, we study the notions of approximately semi open maps
and irresoluteness between m–structures and we looking for conditions
under what the direct image of any mX–sg open set in X is mY –sg open
in Y and the inverse image of any mY –sg open set in Y is mX–sg open
in X.

Definition 3.1. A map f : (X,mX) → (Y,mY ) is called (mX ,mY )–
irresolute (resp. (mX ,mY )–sg–irresolute) if, f−1(O) is mX–semi open
(resp. mX–sg–open)in X for every O ∈ SO(Y,mY ) (resp. mY –sg–open
in Y ).

Remark 3.1. Observe that if in the above definition:
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1. If mX is a topology on X and mY is a topology on Y, then we
obtain the definition of irresolute map [1].

2. If mX is the collections of all sg–closed set in X and mY is the
collections of all sg–closed set in Y, then we obtain the definition
of sg–irresolute map [1].

Definition 3.2. A map f : (X,mX) → (Y,mY ) is called (mX ,mY )–
contra irresolute if, f−1(O) is mX–semi closed in X for every O ∈
SO(Y,mY ).

R
¯
emark 3.2. Observe that if in the above definition:

1. If mX is the collections of all semi closed sets in X and mY is a
topology on Y, then we obtain the definition of contra irresolute
map [1].

2. If mX is the collections of all sg–closed set in X and mY is the
collections of all sg–closed set in Y, then we obtain the definition
of sg–irresolute map [1].

Lemma 3.1. Let (X,mX) and (Y,mY ) be two m–spaces, where mX

satisfies the property of Maki. The following conditions are equivalent:

1. f : (X,mX) → (Y,mY ) is (mX ,mY )–irresolute function;

2. For each subset A ⊆ X, f(mX − sCl(A)) ⊆ mY − sCl(f(A));

3. For each mY –semi closed subset V ⊆ Y , the inverse image f−1(V )
is an mX–semi closed in X;

4. For all B ⊆ Y , mX − sCl(f−1(B)) ⊆ f−1(mY − sCl(B)).

Proof.

(1 ⇔ 3). Follows from the definition of (mX ,mY )–irresolute function and
the complement of set.
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(1 ⇒ 2). Let A be a subset of X and suppose that y /∈ mY -sCl(f(A)), then
there exists a mY –semi open set G in Y , such that y ∈ G and
f(A) ∩ G = ∅, therefore, f−1(f(A) ∩ G) = ∅, it says that A ∩
f−1(G) = ∅. In consequence, mX -sCl(A) ⊂ X \ f−1(G), it follows
that f(mX -sCl(A))∩G = ∅; and therefore, y /∈ f(mX -sCl(A)). But
it is said that f(mX -sCl(A)) ⊂ mY -sCl(f(A)) for all subset A of
X.

(2 ⇒ 3). Let V any mY –semi closed subset in Y , then f−1(V ) ⊆ X. By hy-
pothesis f(mX -sCl(f−1(V ))) ⊂ mY -sCl(f(f

−1(V ))), it follows that
f(mX -sCl(f−1(V ))) ⊂ mY -sCl(V ) = V . In consequence, f(mX -
sCl(f−1(V ))) ⊂ V , it follows that mX -sCl(f−1(V ) ⊂ f−1(V ).
Therefore f−1(V ) is an mX–semi closed set.

(2 ⇒ 4). Let B be a subset of Y , then f−1(B) ⊆ X. Using the hypothesis,
that

f(mX − sCl(f−1(B))) ⊆ mY − sCl(f(f−1(B))) ⊆ mY − sCl(B),

therefore, mX − sCl(f−1(B)) ⊆ f−1(mY − sCl(B)).

(4 ⇒ 3). Suppose that V is anymY –semi closed set in Y . Then f−1(V ) ⊆ X,
by hypothesis, we obtain that

mX − sCl(f−1(V )) ⊆ f−1(mY − sCl(V )) .

But V is a mY –semi closed set, then mY − sCl(V ) = V . In conse-
quence,

mX − sCl(f−1(V )) ⊆ f−1(V ) .

But this says that f−1(V ) is an mX–semi closed set in X.

The following example shows that the property of Maki in the above
lemma can not be removed.

Example 3.1. Let X = {a, b, c, d}. Define the mX structure on
X as mX = {∅, X, {a}, {b}}. Then

SO(X, mX) = {∅, X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d},
{a, c, d}, {b, c, d}} ,
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and

SC(X, mX) = {∅, X, {a}, {b}, {a, c} , {a, d}, {c, d}, {b, d},
{a, c, d}, {b, c, d}} .

Let Y = {0, 1}, viewed as discrete space (i.e., mY = P (Y )). Define
f : (X,mX) → (Y,mY ) as

f(x) =


1 , if x ∈ A

0 , if x /∈ A

where A = {a, b}. Observe that mX -sCl(A) = X, then f(mX -
sCl(A)) 6= mY -sCl(f(A)). But f is (mX ,mY )–irresolute.

Lemma 3.2. Let (X,mX) and (Y,mY ) be m–spaces, where mX

satisfies the property of Maki. The following conditions are equivalent:

1. f : (X,mX) → (Y,mY ) is (mX ,mY )–contra irresolute function;

2. For each A ⊆ X, f(mX -sCl(A)) ⊆ mY -sKer(f(A));

3. For each mY –semi closed set V ⊆ Y , the inverse image f−1(V ) is
an mX–semi open set in X;

4. For each x ∈ X and F be a mY –semi closed set in Y such that
f(x) ∈ F , there exists an mX–semi open set U ⊆ X such that
x ∈ U and f(U) ⊆ F ;

5. For each B ⊆ Y , mX − sCl(f−1(B)) ⊆ f−1(mY − sKer(B)).

Proof.

(1 ⇒ 3). Follows using complement.
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(3 ⇒ 2). Let A be a subset of X and suppose that y /∈ mY -sKer(f(A)),
then there exists a mY –semi closed set F in Y , such that y ∈ F
and f(A) ∩ F = ∅, therefore f−1(f(A) ∩ F ) = ∅, it said that
A ∩ f−1(F ) = ∅. In consequence, mX -sCl(A) ⊂ X \ f−1(F ), it
follows that f(mX -sCl(A)) ∩ F = ∅, but, it said that y /∈ f(mX -
sCl(A)). Therefore, f(mX -sCl(A)) ⊂ mY -sKer(f(A)) for all subset
A of X.

(2 ⇒ 5). Let B be any subset in Y , then f−1(B) ⊆ X. By hypothesis
f(mX -sCl(f−1(B))) ⊂ mY -sKer(f(f−1(B))), it follows that f(mX -
sCl(f−1(B))) ⊂ mY -sKer(B). Therefore, mX − sCl(f−1(B) ⊂
f−1(mY − sKer(B)).

(5 ⇒ 1). Let V be any mY –semi open set in Y , then f−1(V ) ⊆ X. By hy-
pothesis, mX − sCl(f−1(V ))) ⊂ f−1(mY − sKer(V )), but mY −
sKer(V ) = V , it follows that mX − sCl(f−1(V ))) ⊂ f−1(V ).
Therefore, f−1(V ) is an mX–semi closed set.

(3 ⇒ 4) and (4 ⇒ 3) are immediate.

The Example 3.1 shows that the property of Maki, in the Lemma 3.2,
can not be removed too.

Definition 3.3. A map f : (X,mX) → (Y,mY ) is called (mX ,mY )–
pre–semi closed (resp. (mX ,mY )–pre–semi open) if for every mX–semi
closed (resp. mX–semi open) set B in X, f(B) is mY –semi closed (resp.
mY –semi open) in Y .

Remark 3.3. If in Definition 3.3, mX is the collections of all semi
closed (resp. semi open) sets in X and mY is a collection of semi closed
(resp. semi open) sets in Y , then we obtain the definition of pre–semi
closed (resp. pre–semi open) map given in [1].

Definition 3.4. Let (X,mX) and (Y,mY ) be m–spaces. A map
f : (X,mX) → (Y,mY ) is said to be (mX ,mY )-approximately semi open
(briefly, (mX ,mY )–ap–semi–open) if mY -sCl(B) ⊆ f(A) whenever B
is an mY –sg–closed set in Y , A is an mX–semi closed set of X and
B ⊆ f(A).

Remark 3.4. If in Definition 3.4, mX and mY are topologies on X
and Y respectively, then we obtain the definition of ap–semi open given
in [1].
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Definition 3.5. Let X,mX) and (Y,mY ) be m–spaces. A map f :
(X,mX) → (Y,mY ) is said to be (mX ,mY )–approximately semi closed
(briefly, (mX ,mY )–ap–semi–closed) if f(B) ⊆ mY -sInt(A) whenever A is
anmY –sg–open set in Y , B is anmX–semi closed set ofX and f(B) ⊆ A.

Remark 3.5. If in Definition 3.5, mX and mY are topologies on X
and Y respectively, then we obtain the definition of ap–semi closed given
in [1].

Definition 3.6. A map f : (X,mX) → (Y,mY ) is called (mX ,mY )–
contra–pre–semi open if f(O) is mY –semi closed set in Y for each set
O ∈ SO(X,mX).

Definition 3.7. A map f : (X,mX) → (Y,mY ) is called (mX ,mY )–
contra–pre–semi closed if f(B) ∈ SO(Y,mY ) for each mX–semi closed
set B of X.

Theorem 3.1. Let f : (X,mX) → (Y,mY ) be a map. Then f
is (mX ,mY )–ap–semi–open, if f(O) ∈ SC(Y,mY ) for every mX–semi
open subset O ⊆ X.

Proof. Let B ⊆ f(A), where A is an mX–semi open set of X and B is an
mY –sg–closed set in Y . Therefore the mY -sCl(B) ⊆ mY -sCl(f(A)). By
hypothesis f(A) is an mY –semi closed set, then mY -sCl(f(A)) = f(A).
ThusmY -sCl(B) ⊆ f(A). In consequence, f is (mX ,mY )–ap–semi–open.

Theorem 3.2. Let f : (X,mX) → (Y,mY ) be a map. Then f
is (mX ,mY )–ap–semi–closed, if f(O) ∈ SO(Y,mY ) for every mX–semi
closed subset O of (X,mX).

Proof. Let f(B) ⊆ A, where B is anmX–semi closed set of X and A is an
mY –sg–open set in Y . Therefore the mY -sInt(f(B)) ⊆ mY -sInt(A). By
hypothesis f(B) is an mY - semi open set, then mY -sInt(f(B)) = f(B).
Thus f(B)) ⊆ mY -sInt(A). In consequence, f is (mX ,mY )–ap–semi–
open.
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The following theorem improves the Theorem 2.7 given in [1], in the
case that the m–structure on the set Y satisfies the property of Maki.

Therorem 3.3. Let f : (X,mX) → (Y,mY ) be a map, where mY

satisfies the property of Maki. If the mY –semi open and mY –semi closed
sets of (Y,mY ) coincide, then f is (mX ,mY )–ap–semi–open if and only
if, f(O) ∈ SC(Y,mY ) for every mX–semi open subset O of (X,mX).

Proof. Assume that f is (mX ,mY )–ap–semi–open. Let O be an arbitrary
subset of (Y,mY ) such that O ⊆ B where B ∈ SO(Y,mY ), it follows that
mY -sCl(O) ⊆ mY -sCl(B). But B ∈ SO(Y,mY ) = SC(Y,mY ), then B
is an mY –semi closed set, it follows that mY -sCl(B) = B. Therefore all
subset of (Y,mY ) are mY –sg–closed in Y , in consequence all are mY –
sg–open. So for any A ∈ SO(X,mX), f(A) is mY –sg–closed in (Y,mY ).
Since f is (mX ,mY )–ap–semi–open mY -sCl(f(A)) ⊆ f(A). Therefore
mY -sCl(f(A)) = f(A). In consequence f(A) is an mY –semi closed set in
(Y,mY ). The converse follows immediately from definition.

An immediate consequence of Theorem 3.3, is the following.

Theorem 3.4. Let f : (X,mX) → (Y,mY ) be an (mX ,mY ) be a
map, where mY satisfies the property of Maki. If the mY –semi open and
mY –semi closed sets of (Y,mY ) coincide, then f is (mX ,mY )–ap–semi–
open if and only if f is (mX ,mY )–pre–semi open.

The following theorem, give to us conditions on the m–structure on
the set Y in order to characterize the (mX ,mY )–ap–semi–closed.

Theorem 3.5. Let f : (X,mX) → (Y,mY ) be a map, where mY

satisfies the property of Maki. If the mY –semi open and mY –semi closed
sets of (Y,mY ) coincide, then f is (mX ,mY )–ap–semi–closed if and only
if, f(O) ∈ SO(Y,mY ) for every mX–semi closed subset O of (X,mX).

Proof. Assume that f is (mX ,mY )–ap–semi–closed. Let B be an arbi-
trary subset of (Y,mY ) such that B ⊆ O where O ∈ SC(Y,mY ) it follows
that mY -sInt(B) ⊆ mY -sInt(O). But O ∈ SC(Y,mY ) = SO(Y,mY ),
then O is an mY –semi open set, it follows that mY -sInt(O) = O. There-
fore all subset of (Y,mY ) are mY –sg–open in Y , in consequence all are
mY –sg–closed. So for any A ∈ SC(X,mX), f(A) is mY –sg–open in
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(Y,mY ). Since f is (mX ,mY )–ap–semi–closed mY -sInt(f(A)) ⊆ f(A).
Therefore mY -sInt(f(A)) = f(A). In consequence f(A) is an mY –semi
closed set in (Y,mY ). The converse follows immediately from definition.

Example 3.3. Let X = Y = {a, b, c, d}. Define the mX structure
on X as

mX = {∅, X, {a}, {b}, {a, b, d}, {a, b, c}} .

Then

SO(X, mX) = {∅, X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} ,

and

SC(X, mX) = {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c},
{b, c}, {b, d}, {a, c, d}, {b, c, d}} .

The set of all mX–sg–closed is

{∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} ,

Define f : (X,mX) → (Y,mY ) as f(a) = b, f(b) = a and f(c) =
f(d) = c. Observe that f is (mX ,mY )–pre–semi–open, (mX ,mY )–
pre–semi–closed and (mX ,mY )–ap–semi–open. But f is not (mX ,mY )–
irresolute.

The following theorem improves the comments after Remark 2.3 given
in [1] .

Theorem 3.6. Let f : (X,mX) → (Y,mY ) be a map. If f is
(mX ,mY )–pre–semi open, then f is (mX ,mY )–ap–semi–open.



54 Rosas et al., On (mX ,mY )–approximately

Proof. Let A any mX–semi open set in X and let B any mY –sg closed
set in Y such that B ⊆ f(A) since f is (mX ,mY )–pre–semi open, then
f(A) is an mY –semi open set in consequence the mX − scl(B) ⊆ f(A)
and therefore f is (mX ,mY )–ap–semi–open.

The following example give to us a map f : (X,mX) → (Y,mY ),
where mY satisfies the property of Maki,f is (mX ,mY )–ap–semi–open
but not (mX ,mY )–pre–semi–open

Example 3.3. Let X = Y = {a, b}. Define the mX structure
on X as mX = {∅, X, {a}}. Observe that mX is a topology. Then
SO(X,mX) = {∅, X, {a}} and SC(X,mX) = {∅, X, {b}}. The set of
all mX–sg–closed is {∅, X, {a}, {b}}. Define f : (X,mX) → (Y,mY ) as
f(a) = b and f(b) = a. f is (mX ,mY )–ap–semi–open but not (mX ,mY )–
pre–semi–open.

Definition 3.8. Let mX be an m–structure on X. (X,mX) is said
to be an mX − sT1/2 if each mX–sg–closed is an mX–semi closed set.

The following theorem, characterizes the mX -sT1/2 when mX satisfy
the property of Maki.

Theorem 3.7. Let mX be an m–structure on X that satisfies the
property of Maki. Then (X,mX) is an mX − sT1/2 if and only if each
unitary set {x} in X is an mX–semi open set or an mX–semi closed set.

Proof. (Sufficiency). Suppose that (X,mX) is an mX − sT1/2. Then for
any x ∈ X, the unitary set {x} can be mX–semi closed set or not. In
the case that {x} is an mX–semi closed set, the result follows. In the
other case, X \ {x} is an mX–sg–closed in mX . Now using hypothesis,
we obtain that X \ {x} is an mX–semi closed set and therefore, {x} is
an mX–semi open.

(Necessity). Let A be an mX–sg–closed in mX and x ∈ mX−sCl(A).
If {x} is an mX–semi open set, then {x} ∩ A 6= ∅ and therefore, x ∈ A.
In the case that {x} is an mX–semi closed set, then we have that x ∈ A,
because if x /∈ A, then {x} ⊆ mX − sCl(A) \A. but this is impossible.

The following example shows that the property of Maki in Theorem
3.7, can not be removed.
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Example 3.4. Let X = Y = {a, b, c}. Define the mX structure on X
as mX = {∅, X, {a}, {b}, {c}}. Then SO(X,mX) = {∅, X, {a}.{b}, {c}}
and SC(X,mX) = {∅, X, {b, c}, {a, c}, {a, b}}. The set of all mX–sg–
closed is {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Observe that the set
{a} is an mX–sg–closed set that does not is mX–semi–closed neither
mX–semi–open.

Theorem 3.8. Let f : (X,mX) → (Y,mY ) be an (mX ,mY )–
irresolute map and (mX ,mY )–pre–semi closed, where mX satisfies the
property of Maki, then:

a. For all mX–sg–closed set A in X, f(A) is an mY –sg–closed set in
Y .

b. f−1(B) is an mX–sg–closed set in X for all mY –semi closed set B
in Y .

Proof.

a. Let V be a mY –semi open set in Y such that f(A) ⊆ V , then
f−1(V ) is an mX–semi open set and A ⊆ f−1(V ), it follows that
mX − sCl(A) ⊆ f−1(V ), since f is an (mX ,mY )–pre semi closed,
then f(mX − sCl(A)) is a mX–semi closed set. In consequence,

mX − sCl(f(A)) ⊆ mY − sCl(f(mX − sCl(A)))

= f(mX − sCl(A))

⊆ V .

Therefore, f(A) is a mX–semi generalized closed set.

b. Let B be a mY –semi closed set in Y , and suppose that U is an
mX–semi open set in X such that f−1(B) ⊆ U . Consider F =
mX − sCl(f−1(B)) ∩ U c. Then we may conclude that F is an
mX–semi closed set, therefore f(F ) is a mY –semi closed set and

f(F ) = f(mX − sCl(f−1(B)) ∩ U c)

⊆ f(mX − sCl(f−1(B))) ∩ f(U c)

⊆ mY − sClf−1(f(B)) ∩ f(U c)

⊆ mY − sCl(B) ∩ Y \ = ∅.
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In consequence, f(F ) = ∅, and F = ∅, therefore, f−1(B) is an mX

semi generalized closed set.

Corolary 3.1. Let f : (X,mX) → (Y,mY ) be an (mX ,mY )–
irresolute map and (mX ,mY )–pre semi closed, where mX , mY are min-
imal structures satisfying the property of Maki, then:

1. If f is an injective function and (Y,mY ) is a mY − sT1/2 space,
then (X,mX) is an mX − sT1/2 space.

2. If f is a bijective function and (X,mX) is an mX − sT1/2 space,
then (Y,mY ) is a mY − sT1/2 space.

Proof.

1. Suppose that A is an mX–sg–closed set in X. Using Theorem
3.8, and the hypothesis, f(A) is a mY –sg–closed set in Y , but Y
is a mY − sT1/2 space, then f(A) is a mY –semi closed set in Y .
Now, using the fact that f is an injective function and (mX ,mY )–
irresolute, it follows that A = f−1(f(A)) is an mX–semi closed set
in X. In consequence, (X,mX) is an −mX − sT1/2 space.

2. Given y ∈ Y , there exists a unique point x ∈ X such that y = f(x),
it follows that each unitary set in Y is a mY –semi open set or mY –
semi closed set and therefore Y is a mY −sT1/2 space from Theorem
3.6.

The following theorem improves the Theorem 2.10 in [1]

Theorem 3.9. Let f : (X,mX) → (Y,mY ) be an (mX ,mY )–
irresolute, bijective and (mX ,mY )–ap semi open, where mX , mY are
minimal structures satisfying the property of Maki, then the inverse im-
age of any mY –sg open is mX–sg open.

Proof. Let A be a mY –sg open set. Suppose that F ⊆ f−1(A) where F ∈
SC(Y,mY ). Taking complements we obtain f−1(Ac) ⊆ F c, it follows
that Ac ⊆ f(F c). Using Theorem 2.4 and corollary 2.2, mX -sCl(A) =
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A∪mX -Int(mX -Cl(A)) andmX -sInt(A) = A∩mX -Cl(mX -Int(A)). Since
(mY − sInt(A))c = mY − sCl(Ac) and mY satisfies the property of Maki,
we obtain mY − sCl(Ac) = Ac. In consequence, (mY − sInt(A))c ⊆
f(F c), because f is (mX ,mY )–ap semi open, it follows that f−1(mY −
sInt(A))c ⊆ f−1(f(F c)) = F c and therefore F ⊆ f−1(mY − sInt(A).
Since f is an (mX ,mY )–irresolute, it follows that f

−1(mY − sInt(A) is
an mX–semi open set and therefore F ⊆ f−1(mY − sInt(A) = mX −
sInt(f−1(mY − sInt(A)) ⊆ (mX − sInt(f−1(A)). This implies that
f−1(A) is an mX–sg open set.

The following example shows a surjective map f : (X,mX) → (Y,mY )
that is (mX ,mY )–irresolute and (mX ,mY )–pre semi open, where mX ,
mY are minimal structures satisfying the property of Maki and does not
satisfying that the inverse image of any mY –sg open in Y is an mX–sg
open set in X. In consequence in Theorem 2.10 in [1] the condition of
bijectively on f is necessary.

Example 3.5. Let X = {a, b, c, d}. Define the mX structure on X
as mX = {∅, X, {a, b, c}, {b, c, d}}.Then

SO(X, mX) = {∅, X, {a, b, c}, {b, c, d}}
and SC(X,mX) = {∅, X, {a}, {d}}. The set of all mX–sg–closed is
{∅, X, {a}, {d}, {a, b, d}, {a, c, d}}. The set of all mX–sg–open is

{∅, X, {b}, {c}, {a, b, c}, {b, c, d}} .
Let Y = {a, b, c}. Define the mY structure on Y as

mY = {∅, Y, {a, b}, {b, c}} .
Then SO(Y,mY ) = {∅, Y, {a, b}, {b, c}} and SC(Y,mY ) = {∅, Y, {a}, {c}}.
The set of all mY –sg–closed is {∅, Y, {a}, {c}, {a, c}}. The set of all
mY –sg–open is {∅, Y, {b}, {a, b}, {b, c}}. Define f : (X,mX) → (Y,mY )
as f(a) = a, f(b) = f(c) = b and f(d) = c. Observe that f is a
surjective (mX ,mY )–irresolute and (mX ,mY )–pre semi open map but
f−1({b}) = {b, c} does not is an mX–sg–open set.
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