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Dedicado a la memoria de Mirian Andrés Gómez, con much́ısimo cariño

Resumen. En este art́ıculo revisamos el uso de conos iterados, una herra-
mienta estándar para cálculos homológicos en álgebra conmutativa, en el

contexto de ideales monomiales. Enumeramos los resultados obtenidos por

diferentes autores en este tema y tratamos algunas de las cuestiones com-
putacionales.

Abstract. We review the use of iterated mapping cones, a standard tool for

homological computations in commutative algebra, in the context of mono-
mial ideals. We list some results obtained by different authors on this topic

and adress some of the computational issues.

1. Introduction

Iterated mapping cones are a standard tool in the computation of free resolu-
tions of modules and ideals in the polynomial ring. They have been used both for
the theoretical and computational aspects of the problem. In the monomial case,
several well known resolutions arise as iterated mapping cones, e.g. the ones pre-
sented by Taylor [21], Eliahou-Kervaire [8], etc. Also, the minimal free resolution
of some families of monomial ideals are of this form, e.g. stable, squarefree stable
among others.

The technique of Mayer-Vietoris trees allows the study of the support of map-
ping cone resolutions in the monomial case. This leads to simple arguments to
show that the resolution of certain families of ideals arise as iterated mapping
cones, e.g. Ferrers, generalized k-out-of-n, series-parallel, etc [16, 17]. Working
with these trees we can also perform some reductions on mapping cone resolutions
in order to obtain minimal free resolutions of further families of ideals [18, 19].

Computationally, iterated mapping cones have had several problems due to the
lack of simple methods to construct the neccesary elements of each step of the iter-
ative process [11, 20]. The techniques of effective homology allow us to overcome
this problem and produce effective algorithms to compute these cones [15].

Key words and phrases. Monomial ideal, iterated mapping cone, free resolution, Betti

numbers.

471



472 EDUARDO SÁENZ-DE-CABEZÓN

2. Preliminaries and basic concepts

2.1. Minimal free resolutions and Betti numbers of monomial ideals.
The general goal of a big part of the research in commutative algebra is to un-
derstand modules over the polynomial ring (recall that ideals are a special kind
of modules). The easiest modules to understand are free modules, which are just
direct sums of copies of the ring. A useful way to understand more complicated
modules consists in assigning to them a particular collection of free modules and
module morphisms, this is what is called a free resolution. In the case of graded
(resp. multigraded) modules over the polynomial ring, we have the concept of
graded (resp. multi graded) resolutions, and in this context, a concept of minimal
(multi) graded resolution is available. The minimal free resolution of an ideal is
a very good way to understand the ideal. Unfortunately, although very easy to
define, minimal free resolutions are not always easy to obtain and this difficulty
has led to a great amount of research on this very active topic.

The definition of minimal graded free resolution is the following:

Definition 1. Let R = k[x1, . . . , xn] be the polynomial ring in n variables, and
let M =

⊕
i∈N Mi a graded R-module. A minimal free resolution of M is an exact

sequence

· · · → Fi+1
φi+1→ Fi → · · · → F1

φ1→ F0 →M → 0
Where:

All the Fk are finitely generated free modules of the form Fk =
⊕

i∈N R(−i)bi,k ,
where R(−i) is a copy of R with a shift in the graduation, i.e. the jth graded
component of R(−i) is Rj−i.
All the morphisms φk are degree preserving maps.
For each k, the homogeneous homomorphism φk maps the canonical basis
of Fk to a minimal homogeneous system of generators of ker(φi−1).

Minimal free resolutions exist for every graded module over the polynomial ring
and are unique up to chain complex isomorphism, hence, the bi,k’s in Definition
1 depend only on the module, they are called the graded Betti numbers of M
(observe that only a finite number of them are non-zero). The kth Betti number
of M is given by βk(M) =

∑
i bi,k(M). In addition, for multigraded modules

(such as monomial ideals, for instance) we can define multigraded minimal free
resolutions and Betti numbers. See [7, 22] for details.

2.2. Mapping cone. The mapping cone is a construction that arises in topol-
ogy, which has a direct analogue in algebra. Here we define the algebraic mapping
cone of chain maps (chain complex morphisms).

Definition 2. Let (C, ∂) and (C ′, ∂′) be two chain complexes, and f : C → C ′

a chain map. The algebraic mapping cone of f , denoted (M(f), δ) is a chain
complex defined as follows:

M(f)i = Ci−1 ⊕ C ′i
δi(c, c′) = (∂i−1c, ∂

′
ic
′ + (−1)ifi−1c)
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for c ∈ Ci−1, c′ ∈ C ′i. The differential δ verifies δ2 = 0.

Applications of this construction to resolutions in the polynomial ring can be
seen in [11, 20].

2.3. Iterated mapping cone resolutions. Mapping cones provide a recursive
way to compute free resolutions of ideals in the polynomial ring. Briefly, the
procedure is the following: Let I = 〈f1, . . . , fr〉 ⊆ R be an ideal. Let Ii =
〈f1, . . . , fi〉 be the subideal of I generated by the first i generators of I. There is
a short exact sequence

(1) 0→ R/(Ii−1 : fi)
φ→ R/Ii−1

j→ R/Ii → 0

for all i ≤ r. Assume that free resolutions P̃ and P ′ are known for R/(Ii−1 : fi)
and R/Ii−1 respectively, then a resolution of R/Ii is obtained as the mapping cone
of the chain complex morphism that lifts φ. Equivalently, the following sequence
can also be used, which in some contexts is a more natural choice:

(2) 0→ Ĩi
φ→ Ii−1 ⊕ 〈fi〉

j→ Ii → 0

where Ĩi = Ii ∩ 〈fi〉.

3. Previous results

The construction of minimal free resolutions of monomial ideals is a problem
that has received much attention in the last years. Two main directions have been
followed: one direction focuses on the construction of non-minimal resolutions
like [21, 13]; the other direction consists on the construction of the minimal free
resolution for special types of ideals, starting with the seminal work of [8]. Also,
the homological invariants associated to the minimal resolutions have been object
of research [2, 3, 4].

3.1. Resolutions that arise as iterated mapping cones. Probably, the
most used non-minimal free resolution of monomial ideals is the one given by
D. Taylor in [21]. Despite this resolution is highly non-minimal in general, it is
very important from a theoretical point of view. It is defined as follows:

Let I be a monomial ideal and {m1, . . . ,mr} a generating set of I. For any
subset J = {j1, . . . , js} ⊆ {1, . . . , r}, let us denote mJ = lcm(mj1 , . . .mjs),and
J i = {j1, . . . , ĵi, . . . , js}. We can construct a resolution of R/I in the following
way: Let Ts, s ≥ 0 be a free R-module generated as a vector space by the set
{uJ s.th. |J | = s} and consider the R-linear differential

d(uJ) =
∑
i∈J

(−1)i−1 mJ

mJi

uJi

it is easy to verify that d2 = 0. Moreover, this complex is acyclic and it is a
resolution of R/I. The length of Taylor’s resolution is given by the number of
elements in the given generating set of the ideal (normally, we will assume that
we have a minimal generating set for the ideal), which we denote by r. The rank
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of the i-th free module Ti is
(
r
i

)
, thus the sum of all these ranks is 2r, this sum is

known as the size of the resolution.
A subresolution of Taylor’s was given in [13] and it is known as the Lyubeznik

resolution. It is defined as follows: For a given subset J ⊆ {1 . . . r} and an integer
1 ≤ s ≤ r, let J>s = {j ∈ J |j > s}; then the Lyubeznik resolution is generated
by those basis elements uJ such that for all 1 ≤ s ≤ r one has that ms does not
divide mJ>s

. It is clear that, unlike Taylor’s, Lyubeznik resolution depends on the
ordering in which the generators of the ideal are given.

Example 1. Let us consider the following monomial ideal in three variables:
I = 〈x2y, xy3, xz, yz〉, the Taylor resolution of I has length 4, size 16 and the
differentials are given by

d1 =
(
x2y xy3 xz yz

)
d2 =


y2 z z 0 0 0
−x 0 0 z z 0
0 −xy 0 −y3 0 y
0 0 −x2 0 −xy2 −x



d3 =


−z −z 0 0
y2 0 −1 0
0 y2 1 0
−x 0 0 −1
0 −x 0 1
0 0 −x y2

 d4 =


1
−1
y2

−x


Lyubeznik’s resolution is in this case equal to Taylor’s if we keep the ordering
m1 = x2y, m2 = xy3, m3 = xz, m4 = yz. On the contrary if we change the order
to m1 = xz, m2 = yz, m3 = x2y, m4 = xy3, then the Lyubeznik resolution is
generated by u1, u2, u3, u4, u12, u13, u14, u34 and u134 i.e. the size of this resolu-
tion is 10. In this case, the Lyubeznik resolution is minimal. The differentials are
given by

δ1 =
(
xz yz x2y xy3

)
δ2 =


y2 z 0 0
−x 0 z 0
0 −xy −y3 y
0 0 0 −x

 δ3 =


−z
y2

−x
0


To see that Taylor’s resolution arises as a mapping cone, consider sequence (2)

using as generating system for Ii∩〈mi〉 the monomials {lcm(m1,mi), . . . , lcm(mi−1,mi)},
which in general do not form a minimal generating set of the corresponding ideal,
hence the non-minimality of this resolution.

We also have the following

Proposition 1. Lyubeznik resolution arises as an iterated mapping cone.

Proof: Using again sequence (2), assume that there exists 1 ≤ k ≤ i such that
mk divides mji for some j then, it is clear that k < j and mki divides mji, hence,
removing mji from the generating set of I ∩ 〈mi〉 does not affect the ideal i.e. this
is a redundant generator. �

3.2. Monomial ideals whose minimal free resolution is obtained as an
iterated mapping cone. Many authors have studied the minimal free resolution
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of particular families of monomial ideals. We give here an account on several of
these families, the minimal resolution of which arises as an iterated mapping cone.

The best known is the minimal free resolution of stable ideals, due to S. Eliahou
and M. Kervaire [8]. The resolution of Eliahou and Kervaire arises as an iterated
mapping cone, as noted in [5], where the minimal resolution of more general types
of monomial ideals are given as iterated mapping cones, namely lex-seg with holes
and lex-seg plus s-powers ideals. Based on the methods of Eliahou and Kervaire,
the minimal free resolutions of several other families of ideals have been described
in [1, 5]. These types of ideals have received attention due to their relation to some
important problems in commutative algebra. Stable ideals play a fundamental role
at the interplay of Hilbert functions and Betti numbers of homogeneous ideals and
also in the context of generic initial ideals. Lex-segment and lex-segment with
powers are related to some conjectures in the field [14]. Connected to these ideals
are prime, primary and related ideals, the minimal free resolution of which can
also be obtained as iterated mapping cones [16, 18].

Some monomial ideals appearing in a context of algebraic geometry be resolved
by iterated mapping cones. In his paper [23], G. Valla studies a type of non-stable
monomial ideals to obtain the graded Betti numbers of two general points in P3.
The minimal free resolutions of such ideals can be easily obtained as an iterated
mapping cone, as was shown in [16, 18]. C. A. Francisco uses iterated mapping
cones in [9] to study the Betti numbers of ideals associated to two fat points in
Pn and at most n+ 1 general double points in Pn.

In the context of the algebraic analysis of system reliability every coherent sys-
tem, e.g. a network, has a monomial ideal associated to it, and the knowledge of
the Betti numbers and Hilbert series of the ideal is used to compute the reliability
of the system [10]. Some of the most relevant systems in reliability theory were
studied in [17]. The Betti numbers of ideals of k-out-of-n systems and some vari-
ants, including the consecutive k-out-of-n model, were computed using iterated
mapping cones. Also, the minimal free resolution of the ideals corresponding to
series-parallel systems are obtained as iterated mapping cones.

In all these contexts, the knowledge of the minimal free resolution of the studied
ideals provide closed form formulas for the Betti numbers of the ideal and other
numerical invariants. In some cases, even recursive formulas for the Betti num-
bers of ideals in the family can be obtained and one can study the asymptotical
behaviour of these ideals. A very promising area of work in this respect is that of
edge ideals, i.e. monomial ideals associated to graphs. This is work in progress by
several authors.

4. A short account on some computational aspects

The computation of minimal free resolutions of ideals in the polynomial ring is
a computationally hard task, even in the monomial case. The procedure based on
iterated mapping cones gives us a natural way to reach the minimal free resolution.
On a first step, we compute the mapping cone resolution and then we minimize
it using standard methods (see [6] for instance). However, this procedure presents
two different problems. The first one is at the core of the problem: when our ideal
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is big enough (and such ideals occur in actual applications) the resolution is a
huge object that cannot be handled by a computer. In this case, we might prefer
to obtain a description of the main features of the resolution without actually
computing it. We treat this approach in Section 4.1.

On the contrary, sometimes we want an explicit description of the full resolution
of the ideal. Using iterated mapping cones can be useful in this respect, but it
is not easy to use the method directly. However, the use of the techniques of
effective homology [15] provides an explicit way to use the iterated mapping cone
procedure. We report briefly on this method in Section 4.2.

4.1. Computing Betti numbers without computing minimal free res-
olutions. In some cases, only the Betti numbers or other numerical invariants,
such as the Hilbert series or Castelnuovo-Mumford regularity, are needed. There-
fore, one can attempt to compute the multigraded Betti numbers of monomial
ideals without computing their minimal free resolution. One way to attack this
problem is the use of Mayer-Vietoris trees, see [16], which provide the multigraded
support of a resolution based on iterated mapping cones and tools to perform re-
ductions on it. Other partial computations such as multigraded Hilbert series or
Castelnuovo-Mumford regularity can be performed in an efficient way using this
tool.

Using recursively the exact sequences (1) and (2) helps in the computation of the
multigraded Betti numbers of I = 〈m1, . . . ,mr〉. We use here sequence (2). The
involved ideals can be displayed as a tree, the root of which is I and every node J
has as children J̃ on the left and J ′ on the right (if J is generated by r monomials,
J̃ denotes J̃r and J ′ denotes Jr−1). This is what we call a Mayer-Vietoris Tree
of the monomial ideal I, denoted MVT(I). Each node in a Mayer-Vietoris tree
has a position: the root has position 1 and the left and right children of the node
in position p have respectively, positions 2p and 2p + 1. The node of MVT(I) in
position p is denoted MVTp(I). We call relevant nodes to those in an even position
or in position 1. We also assign a dimension to each node: the root has dimension
0 and the left and right children of any node of dimension d have dimension d+ 1
and d respectively.

The properties of Mayer-Vietoris trees allow us to perform homological compu-
tations on monomial ideals. The following propositions are proved in [16] together
with other features of Mayer-Vietoris trees.

Proposition 2. If βi,α(I) 6= 0 for some i, then xα is a generator of some node J
in any Mayer-Vietoris tree MVT(I).

Proposition 3. If xα appears only once as a generator of a relevant node J in
MVT(I) then there exists exactly one i ∈ N such that βi,α(I) = 1 and βj,α(I) = 0
for all i 6= j.

The homological degree i to which relevant multidegrees contribute is the di-
mension of the node of the Mayer-Vietoris tree in which it appears.

Example 2. Let us consider the ideal I = 〈xy2, xyz3, y5, z6〉 ⊆ k[x, y, z]. A
Mayer-Vietoris tree of this ideal is shown in Figure 1: Every node is given by
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(1, 0) xy2, xyz3, y5, z6

(2, 1) xyz6, y5z6

(4, 2) xy5z6 (5, 1) xyz6

(3, 0) xy2, xyz3, y5

(6, 1) xy5 (7, 0) xy2, xyz3

(14, 1) xy2z3 (15, 0) xy2

Figure 1. A Mayer-Vietoris tree of 〈xy2, xyz3, y5, z6〉.

a triple (position, dimension) ideal and the relevant nodes are the ones in
strong black color. Observe that this tree has no repeated multidegree in the relevant
nodes, therefore the multigraded Betti numbers of I are just read from the tree. In
this case we have β0(I) = 4, β1(I) = 4 and β2(I) = 1. The Betti multidegrees are
those of the generators of the relevant nodes in the tree.

This way to display the support of the iterated mapping cone allows to reduce
the iterated mapping cone resolution whose support is given by the corresponding
Mayer-Vietoris tree. The basic definition and result are the following:

Definition 3. Let b1 and b2 be two binary numbers. We can say that b1 and b2
have the following form: b1 = u1 . . . uk0ũ1 . . . ũl1 , b2 = u1 . . . uk1u′1 . . . u

′
l2

. We say
that b1 and b2 are compatible if the number of zeros in ũ1 . . . ũl1 and u′1 . . . u

′
l2

are
equal. Observe that the total number of zeros of two compatible binary numbers
differs by one.

We say that two positive integers n1, n2 ∈ N are compatible if their corre-
sponding binary expressions are compatible. We say that two sets A,B ⊂ N are
compatible if every pair (a, b), a ∈ A, b ∈ B is compatible.

Proposition 4. Let I be a monomial ideal, µ ∈ Nn a multidegree appearing in the
relevant nodes of positions p1 and p2 of a Mayer-Vietoris tree of I. Let e1 and e2

be their corresponding generators in the associated Mayer-Vietoris resolution of I.
If e1 and e2 are a reduction pair then p1 and p2 are compatible.

The resulting reduced tree supports a resolution of I that is not minimal in
general, but the minimal free resolution of further families of ideals can be found
in this way [19].

4.2. Effective computation of mapping cone resolutions. 1 The main
computational difficulty of the procedure that uses iterated mapping cones to con-
struct resolutions in the polynomial ring is, as pointed in [11], the construction of

1This section is joint work with F. Sergeraert.
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the necessary chain complex morphisms, even in the (easier) monomial case. Spe-
cific methods for monomial ideals with linear quotients were given in [11] but they
cannot be applied in general. On the other hand, an actual algorithm for the con-
struction of these morphisms and hence for the construction of iterated mapping
cone resolutions was given in [20]; it is an algorithm that uses syzygy computations
for the construction of the morphisms, which is computationally expensive, and is
not particularly efficient in the context of monomial ideals. To overcome this diffi-
culty one can use the techniques of effective homology (see [15] for an introduction
to effective homology which contains applications to commutative algebra). Using
effective versions of the short exact sequences above and of the resolutions used in
the iterated mapping cone procedure, we obtain conceptually simple yet efficient
algorithms for the computation of free resolutions of ideals in the polynomial ring.
To be able to perform explicit computations on mapping cones, in particular to
construct the necessary morphisms, we need a truly constructive version of the
resolutions involved. To achieve this goal we are concerned with the computation
of effective resolutions.

Definition 4. A resolution (P, d) of an R-module M is said to be effective if we
have explicit homotopy operators h : Pi−1 → Pi for all i, such that hd + dh = 1.
Observe that h is required to be only a morphism of k-vector spaces.

Theorem 1 ([15], Theorem 62). Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) :
C′∗⇒⇒D′∗ be two reductions and φ : C′∗ → C∗ a chain complex morphism. Then
these data define a canonical reduction 2:

ρ′′ = (f ′′, g′′, h′′) : Cone(φ)⇒⇒Cone(fφg′)

The algorithm makes use of sequences of type (1) for the iterative computation
of resolutions of R/I1 up to R/Ir = R/I, but equivalently, sequences of type (2)
can be used. On each iteration of the algorithm we have the following data:

- (R1, d1) is an effective resolution of R/(Is−1 : ms).
- (R2, d2) is an effective resolution of R/Is−1.
- The morphism φ of Sequence (1) will denote the multiplication map ×ms.

The result is the mapping cone of φ, which can be structured as an effective
resolution of R/Is, allowing the process to be iterated.

Working with effective resolutions is the key point allowing us to lift the given
multiplication map φ to a chain complex morphism. If the lifting of φ is known as
φi at degree i, then the next component φi+1 is obtained as φi+1 = h2,iφid1,i+1

where d1 is the differential of R1 and h2 the known contracting homotopy operator
of the effective resolution R2.

This process starts at level 0:

2For the concept of reduction and other basic concepts in effective homology, see [15].
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R/(Is−1 : ms) R/Is

R1,0 R2,0

φ

d1,0 d2,0 h2,−1

φ0

where h2,−1 is a lifting of the surjection d2,0 : R2,0 → R/Is. Such a lifting, as all
the h2,i components, cannot be an R-module morphism; it is only a k-vector space
morphism.

The looked-for resolution R for the quotient module R/Is+1 is the cone of
φ : R1 → R2 with φ = (φi). The differential D of this cone and its contracting
homotopy H are defined by the matrices:

Di =
[
−d1,i−1 0
φi−1 d2,i

]
Hi =

[
−h1,i−1 0
h2,iφih1,i1 h2,i

]
The algorithm has the following basic steps:

1. Update the ideal: We just add the new generator ms to Is−1 to obtain the
ideal Is for which the output of the algorithm is a resolution.

2. Construct the skeleton of the mapping cone: Each module in Cone(φ) is
given by R1i⊕R2i+1, therefore the modules in the resolutions are straight-
forward to compute. We denote by Ri,jthe nodes in this skeleton.

3. Copy the nodes of R2 in the skeleton: These will remain unchanged when
seen in Cone(φ).

4. Update the node R0,0: While this node is just a copy of R the differential
d0 must be changed so that im(d0) = R/Is.

5. Copy the nodes of R1: If we use Sequence 2 these nodes remain also un-
changed when embedded in R. Note that since we use Sequence 1 then the
multidegree in which these modules are generated must be multiplied by
ms.

6. Update the nodes of R1: In this moment we just change the signs of the
differentials and homotopies coming from R1, which form the first part of
the differential and homotopies in the cone.

7. Compute the lifting of the connection morphism. The formulas given by
the application of Theorem 1 for the new differential and homotopy are
used here. To compute φi we need d1,i, which is already given in the data,
φi−1 which has already been computed in the previous iteration, and h2,i−1

which is computed by a recursive algorithm that is described below.

Each step of the algorithm computes then the mapping cone of φ plus a col-
lection of k-vector morphisms, which are the decisive pieces to compute all the
necessary homotopies. These two components together with an algorithm that is
actually able to compute the homotopies are enough to allow the iterative proce-
dure to construct the mapping cone at the next step.
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This way to proceed avoids the main difficulty in [11] allowing an explicit con-
structive process based on iterated mapping cones. An actual implementation of
this procedure has been built by F. Sergeraert in the KENZO system [12].

5. Conclusions

We have reported on the use of algebraic mapping cones to perform homological
computations on monomial ideals. This tool has been used by different authors to
obtain explicit resolutions of several families of ideals or even to obtain actual Betti
numbers in a wide variety of examples. On the other hand, the recursive nature
of the procedure makes it suitable to construct actual algorithms and programs
to perform such computations in computer algebra systems. However, we believe
that the utility of this method has not yet been sufficiently exploited. There are
several big classes of important monomial ideals that can be defined recursively or
depending on some parameters. Is to these kinds of ideals to which the iterated
mapping cone techniques can be succesfully applied. The first attempts of this
approach, in the context of system reliability have already given very promising
results. The application of these techniques in other contexts, such as edge ideals
is certainly of interest.
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[18] E. Sáenz-de-Cabezón. Multigraded Betti numbers without computing minimal free resolu-
tions. Applicable Algebra in Engineering, Communication and Computing, to appear, DOI:

10.1007/s00200-009-0112-6, 2009
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