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INTRODUCTION

The representation of linear operators, on the Banach space of Bochner
integrable functions, has been the object of much study for the past fifty years.
Dunford and Pettis began this investigation in 1940 with the representation of
weakly compact and norm compact operators on Lq(R) by a Bochner integral,
see [6,8]. Andrews has extended their study to the case of the space Li(E), of
E-valued, Bochner integrable functions, see [1,2]. The theory of liftings has
also been used by Dinculeanu [7] and others to obtain a representation for the
general linear operator on Li(E). It is worth noting that the representation
is often related to the Radon-Nikodym property of a Banach space, see [2,11].

In this paper, we investigate the representation of operators on a space
of Banach-valued Bochner integrable functions which are defined on a perfect
measure space.

A summary of the paper follows. In the first section, we recall some defini-
tions and notations that we need in the sequel. The second section points out
three known results. The most important is the fact that a function defined
on a compact Hausdorff space, with values in a Banach space E, is Bochner
integrable for every regular Borel measure if it is continuous with respect to
the weak topology o(E, E’). In the third section, we give two representation
theorems for an operator T : L1(E) — D, defined on the space of E-valued
Bochner integrable functions on a perfect measure space, and with values in a
Banach space D. In fact, we prove that, for such an operator T': L1(F) — D,
there is a bounded and strongly integrable function g, which is continuous with
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respect to a weaker topology than the weak topology o(L(E, D), L(E, D)),
and such that

T(f) = / (fra)du ¥ e Lu(E).

In the last section, we establish an isometry between the space of E-valued
functions defined on a compact Hausdorff space €2, which are continuous with
respect to the weak topology o(E, E'), and the space of equivalence classes of
Bochner integrable E-valued functions defined on €2, and that are essentially
bounded.

1. DEFINITIONS AND NOTATIONS

Let (X, A, v) be a finite positive measure space and E be a Banach space.
The space of equivalence classes of E-valued Bochner integrable functions
defined on X is denoted by Li(X,A,v, E), or by Li(FE) if the context is
clear enough. The symbol L (X, A, v, E) (or Lo(F)) stands for the space
of Bochner integrable E-valued functions which are essentially bounded and
the symbol Lo (X, A, v, E) (or Loo(F)) is the space of equivalence classes of
functions in Loo(E). When there is no risk of confusion, we shall speak of
functions in Lo (F), or in L (E).

If D is a second Banach space, we denote by L(E, D) the space of linear
continuous functions from E into D, and by K(E, D) its subset of compact
operators.

A function g : X — L(E,D) is strongly integrable if for each t € E
the function ¢(.)(t) : X — D is Bochner integrable. For f € L;(E) and
g € Loo(L(E, D)), let us define the function (f,g) : X — D, z — g(x)(f(z)).
It is a v-Bochner integrable function ([6], [7, p. 102]), that is (f, g) € L1(D).

Let E be a Banach space, and E’ its topological dual. The weak topology
on E will be denote by o(E, E’) and the weak star topology on E’ will be
denote by o(E’, E). The weak-operator topology on L(E, D) (see [10]) is the
topology defined by the linear functionals

L(E,D) — R
T +— d(Te)

for d € D', e € E. The dual weak-operator topology (see [10]) is defined by
the linear functionals
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for d € D', ¢" € E". The topology o(L(E,D),L(E,D)’) is called the weak-
Banach topology on L(FE, D).

Let € be a compact space, E be a Banach space, and 7 be the norm
topology on E, the weak topology o(FE, E’), or the weak-star topology on
E, if FE is a dual. The space of continuous functions from Q into (F, ) is
denoted by C(€,(E,7)). It will be normed by || f|| = sup,cq || f(z)||, for
fecQ, (B, ).

A Banach space E is a Grothendieck space if every o(E’, E)-convergent
sequence in E’ converges weakly in E'.

We shall call a finite positive measure space (2, BO, ) perfect if

1. Qis an extremally disconnected compact Hausdorff space (of finite mea-
sure);

2. BO is the Borel algebra of €2;
3. u is a regular Borel measure on BO with the following properties:

e every nonempty clopen (closed and open) set has positive measure,
e every nowhere dense Borel set has measure zero,

e for every Borel set B there exists a clopen set C' such that the
symmetric difference BAC' has measure zero.

2. SOME IMPORTANT RESULTS

The following theorem shows that we may always work with perfect mea-
sure spaces when we analyse properties of the corresponding Bochner space.

THEOREM 1. ([4]) For all finite measure spaces (X, .A,v), there exists a
perfect measure space (2, BO, 1), such that for all Banach spaces E and for
p € [1,00] there is a linear surjective isometry

O, 5 Ly(Q,BO, 1, E) — L,(X, A v, E).

Theorem 2 is the starting point in the proofs of the representation theo-
rems.

THEOREM 2. ([3]) Let (Q,B0, u) be a perfect measure space, and E be
a Banach space. The function
C(Q,(F,o(E,E))) — Li(QBO,uE)
g = g e e(f) = [{f 9)dp
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is a surjective linear isometry.

Theorem 3 gives a key fact and will be used repeatedly.

THEOREM 3. ([13]) Let Q be a compact Hausdorff space, E be a Banach
space, and [ : Q — E. If f is continuous with respect to the weak topology,
o(E,E'), on E, then it is u-integrable with respect to each finite regular Borel
measure p on ).

3. REPRESENTATION THEOREMS

The proof of the following theorem extends ideas of the short proof of
Dunford-Pettis’ theorem in [12].

THEOREM 4. Let (2, BO, 1) be a perfect measure space and let E and D
be two Banach spaces. For each weakly compact operator T : L1(E) — D
there is a bounded function g : 2 — L(E, D), which is continuous with respect
to the weak-operator topology on L(E, D), strongly integrable and such that

T(f) = / (fra)du Ve Ly(E).

Moreover, if E is a Grothendieck space and if Ing C K(E, D), then g is
sequentially continuous with respect to the weak-Banach topology on L(E, D).

Proof. By theorem 2, it is possible to define a linear surjective isometry
H:Li(E) — C(Q,(F,o(EE)))
Y = H(Y)
such that
[ B = s VS e LB,

By virtue of the Davis-Figiel-Johnson-Pelczynski factorization theorem,
we may assume that D is reflexive. Thus, the adjoint operator

T:D — ILi(E)
s = T'(s)=80oT
is weakly compact. Moreover, by [5, p.21], the function 77 : Li(E)" — D"

is continuous with respect to the weak-star topology o(L1(E)", L1(E)"), and
the weak topology o(D”, D""), and its range, ImT", is contained in D.
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For t € E, let us define

50 - CQ (B, o(E, E))
ko 8U(k) s f = 8'(R)(f) = f(R)(®).
One can see easily that this function is well-defined and continuous with re-
spect to the weak-star topology on C(, (E',0(FE', E)))’.
Since D is reflexive, the canonical mapping Jp is bijective. We can thus

define for t € F,
g =Jp 0T o H od".

The functions g; are continuous with respect to the weak topology o(D, D’),
and therefore u-integrable.
Let us define

This function is bounded by ||J5' o T o H'||. Moreover, it is continuous with
respect to the weak-operator topology on L(E, D). Indeed, one has, for s’ €
D',te Eand k € Q,

§'(g:(k)) = §'(Jp' o T" 0 H' 0 8'(k)) = (I"(H'(5" (K))))(s)
= (0'(k) o H o T")(s") = (H(T'(5))) (k)(t) -

It remains to prove that

T(f) = / (fra)du Ve Lu(E).

By the density of simple functions in L (F), it suffices to prove this formula
for f =txp with t € E and B € BO. But, if s € D’, then we have

8’/ gt(k)du(k)2/(H(T’(S’))(k)(t)du(k) = (T'(s")(txs) = s'(T(txn)) -
B B

The second part of the theorem follows from [10, p.269]. 1

A key fact for the proof of the preceding theorem was the theorem of
Cambern-Greim. By means of this theorem, we have been enable to take a
linear surjective isometry

H:Li(E) — O(Q,(E,o(E E))
Y — H(Y)
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such that
/ HW)dp = 6(f) Y f € Ly(EB).

By using the same idea, we shall now give a second theorem of representa-
tion by a kernel that will be continuous with respect to the dual weak-operator
topology, which is finer than the weak-operator topology. For this purpose,
we need the following definition, which recall the Cambern-Greim’s theorem.

DEFINITION. Let (2, B0, 1) be a perfect measure space. We shall say
that a Banach space E satisfies the Bochner-isomorphism property if there is
a surjective linear isometry

H:ILi(E) — C(Q,(E o(E, E"))
Y = H(y)

such that
[ mhdn=uts) VS eLiE).

ExAMPLE. Let (Q,BO,u) be a perfect measure space. By Cambern-
Greim’s theorem, any Banach space E for which are equal the spaces
C(Q,(F,o(E',E))) and C(Q, (E',o(E',E"))) satisfies the Bochner isomor-
phism property. In particular, a reflexive Banach space satisfies this property.

We now prove a result similar to theorem 4, using the dual weak-operator
topology. We then investigate the Bochner-isomorphism property in the next
section.

THEOREM 5. Let (2,80, u) be a perfect measure space, E be a Banach
space satisfying the Bochner-isomorphism property, and D be a Banach space.
For each weakly compact operator T : L1(E) — D there is a bounded function
g:Q — L(E,D), which is continuous with respect to the dual weak-operator
topology on L(E, D), strongly integrable and such that

T() = [{fgdn V1€ La(E).
Proof. 1t suffices to follow the scheme of proof of the preceding theorem

and to use the following function :

g:Q — L(E,D)
ko= glk) it g(k)(t) = (Jp' o T" 0 H' 0 5720)(k),
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where, for t”” € E”, we define

o — oW, (E,o(E,E"))
ko= 0U(k) f = 0P (R)(f) =t"(f(k).

4. BOCHNER ISOMORPHISM PROPERTY

THEOREM 6. Let (2,80, 1) be a perfect measure space, E be a Banach
space, and T be the norm topology on E, or the weak topology o(E, E'). The
function

[]r: C(Q (B, 7)) — Loo(E)
f = [flr={9€L(E) | g=f p—ace}

is a linear isometry. It is surjective if the set of (equivalence classes of) func-
tions of the form Y .2, rixp,, with {ri}ien relatively T-compact in E and
{Bi} C BO pairwise disjoint, is dense in Lo (FE).

Proof. For the first part, it suffices to show that [],(g gy is an isometry,
ie., for f € C(Q,(E,o(E, E")), we have

sup [|f(K)|| = [/l = mf{o | [f(R)] <v p-ae}.
ke

It is obvious that supy, [|f(k)[| > inf{v | [[f(k)| <v p-a.e.}.
In the other hand, we shall prove that

W< e YoeR = suplf(b)] <v.

We shall work by contraposition. Suppose thus that thereis k € Q and 2’ € E’
such that [|2|| = 1 and |2’ f(k)| > v. By the continuity of f and the fact that
Q) is totally disconnected, there is a clopen set B,/ in {2, containing k£ and such
that [2/f(I)| > v VI € B, . Since p is a perfect measure, pu(B,) > 0.

Therefore, if C € BO is of null measure, then there ist € B,y and t ¢ C.
Consequently, we get

VC € BO with p(C) =0 3t e Q\C and 32’ € E/
such that ||2/|| =1 and |2/ f(¢)] > v.

It remains to prove the surjectivity. For this, it suffices to prove that
each function f = > 22 rixp,, with {r;},en relatively 7-compact in E and



390 L. VANDERPUTTEN

{Bi} C BO pairwise disjoint, is equal u-almost everywhere to a T-continuous
function. By [9, p.821], the function f is norm-continuous on a dense open
subset O of €. Let us denote by fo the restriction of f to O. Since the range
of fo is relatively 7-compact in F and () is the Stone-Cech compactification
of O, we can extend this function continuously to a function f’, belonging to
C(, (E,7)). But, the complement Q\O is a nowhere dense Borel set and thus,
it is of measure zero. Consequently, f is equal to f’ p-almost everywhere. |

In particular, if E is reflexive, then the function [.|,(g /), defined in the
preceding theorem, is an isomorphism of Banach spaces. More generally,

PROPOSITION 7. Let (X, A,v) be a finite positive measure space and
E be a Banach space. The set of (equivalence classes of) functions of the
form Y 2, rixp;, with {r;}ien relatively weakly compact in E and {B;}
C A pairwise disjoint, is dense in L.(E) if the set of relatively weakly
compact sequences in E is dense in the Banach space l(E), of bounded
sequences in F.

COROLLARY 8. Let (Q2,BO,u) be a perfect measure space and E be a
Banach space. If the set of relatively weakly compact sequences in E is dense
in the Banach space l(F), of bounded sequences in F, then the function

[lo: C(Q,(E,0c(E,E")) — Lx(E)
f e [f]az{ge‘coo(E)‘g:f :u_a'e'}

is a linear surjective isometry.

COROLLARY 9. Let (2, BO, i) be a perfect measure space and E be a Ba-
nach space such that its dual E’ satisfies the Radon-Nikodym property. If the
set of relatively weakly compact sequences in E' is dense in the Banach space
lo(E"), of bounded sequences in E’, then E satisfies the Bochner-isomorphism

property.

Proof. By [6, p.98], E’ has the Radon-Nikodym property with respect to
w if and only if the function

V:Lo(E') — Li(E)
g = V(g): fr=V(g)(f) = [(f 9)du

is a linear surjective isometry. |
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