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1. Introduction.

The inverse problem of the calculus of variations asks for necessary and
sufficient conditions that a given system of second order ordinary differential
equations should be the Euler-Lagrange equations of a regular Lagrangian
function. In 1941 Douglas [3] gave an exhaustive and apparently complete
treatment of the two degrees of freedom case. The subject was taken up again
about twenty years ago by a number of authors: we cite [1,2,3,4,5,6] and the
references therein as a representative sample of articles.

The purpose of the present note is to answer a restricted version of the
inverse problem. We shall formulate a sufficient set of conditions which imply
the existence of an essentially unique Lagrangian of classical mechanical type,
that is, of the form flat-metric kinetic energy minus potential. In effect our
result may be said to characterize ODE systems that are of generic classical
mechanical type.

A general system of n second order ODE will be written in the form

ẍi = f i(xj , uj),(1.1)

where the velocity variable is denoted by ui rather than ẋi. A fundamental
tensorial invariant associated to (1.1) known as the Jacobi endomorphism is
given by
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4Φi
j = 2

d

dt

(
∂f i

∂uj

)
− 4

∂f i

∂xj
− ∂f i

∂uk

∂fk

∂uj
.(1.2)

In (1.2) the summation convention on repeated indices applies as it does for the
rest of the paper. Furthermore, d

dt denotes the total time derivative operator,
a notation which will be used interchangeably with a dot as is convenient.

In this paper, we shall be concerned with systems of the form (1.1) in which
f i is independent of uj . Although this condition is not invariant under general
changes of the independent variables it is preserved by linear transformations.
For such systems Φ reduces essentially to a “Jacobian” matrix.

For a system of type (1.1) Douglas [3] proved that the following conditions
are necessary and sufficient for the existence of a Lagrangian: there should
exist a non-singular symmetric n× n matrix gij(xk, uk) that satisfies

gijΦ
j
k = gkjΦ

j
i(1.3)

2ġij +
∂fk

∂ui
gkj +

∂fk

∂uj
gki = 0(1.4)

∂gij

∂uk
− ∂gik

∂uj
= 0.(1.5)

If such a matrix g can be found, it is the Hessian with respect to the ui of
the Lagrangian L which can be found by quadrature. In the sequel we shall
abbreviate eq. (1.3) as

gΦ = (gΦ)t(1.6)

to use a self-explanatory notation.
Equations (1.3)–(1.5) constitute a complicated algebro-differential system

for the unknown g. Douglas [3] for n = 2 and Sarlet [6] for general n proved
that (1.3)–(1.5) entail a hierarchy of purely algebraic conditions:

gkΦ = (gkΦ)t (k = 0, 1, 2, . . .)(1.7)

where the (k)Φ are defined recursively by
(0)Φ = Φ(1.8)

(k+1)Φ =(k) Φ̇− 1
2

[
(k)Φ,

∂f

∂u

]
(1.9)
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and the second term in (1.9) is the commutator of (k)Φ and the matrix 1
2

∂f i

∂uj .
For the type of systems we are considering, (k)Φ is simply the total time
derivative of Φ to order k. One further piece of notation is needed before we
can proceed to our main result. We shall denote the Liouville or dilation field
or differential operator ui ∂

∂ui by ∆.
Now we can state our main theorem.

Theorem 1.1. Suppose that a second order ODE system (n > 1) of type
(1.1) in which the f i’s are independent of uj and are smooth on some open
domain U in Rn is such that the first two algebraic conditions

gΦ = (gΦ)t

gΦ̇ = (gΦ̇)t

have a one-dimensional, non-degenerate solution space that is consistent with
the third condition

gΦ̈ = (gΦ̈)t

and that the entries of one such solution are smooth.
Suppose further that any one of the following conditions holds:

1. n = 2 and f1, f2 in (1.1) are not simultaneously null on an open subset
of R2 (in particular if f1, f2 are real analytic).

2. Any first integral of the ODE which is homogeneous of degree zero in
velocities is necessarily a constant number.

3. The distribution (in the sense of Frobenius’ theorem) generated by the
differential operators or vector fields d

dt and ∆ by taking successive Lie

brackets, contains the entire vertical distribution spanned by the ∂
∂ui on

an open dense subset of the neighborhood U × Rn.

Then the ODE is of Euler-Lagrange type with essentially unique Lagrangian
given by

L =
1
2

g(u, u)− V

where g is a flat metric determined as described below. Furthermore once g
has been found, the potential V can be obtained from the equation

∂V

∂xi
= −gijf

j .
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The reader will note that the Theorem is formulated in the time inde-
pendent context though obvious modifications would make it applicable to
non-autonomous systems as well.

2. Proof of the main result.

In this Section we shall prove the main Theorem. We begin with a Lemma.

Lemma 2.1.

1. Let L(xi, ui) be a regular Lagrangian that engenders an Euler-Lagrange
vector field corresponding to forces that are independent of velocities.
Then in the same system of coordinates the function L satisfies the PDE

∂2L

∂xi∂uj
− ∂2L

∂xj∂ui
= 0.

2. Given the hypotheses of (i) the forces are in fact determined by

f j = gij(1−∆)
∂L

∂xi
,

where gij is the inverse of the Hessian of L.

Proof. The forces f j are determined by the conditions

gijf
j =

∂L

∂xi
− uj ∂2L

∂xj∂ui
(2.1)

regardless of whether f j depend on uj . Differentiating with respect to uk and
splitting into symmetric and skew-symmetric parts gives

2f j ∂gij

∂uk
+ 2uj ∂gik

∂xj
+ gij

∂f j

∂uk
+ gkj

∂f j

∂ui
+ gij

∂f j

∂uk
− gkj

∂f j

∂ui

= 2
∂2L

∂uk∂xi
− 2

∂2L

∂ui∂xk
.

(2.2)

Hence if the f j are independent of uj the above conditions collapse to ġ = 0
and the condition stated in (i) of the Lemma.
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(ii) If we contract the previous condition with uk we get

∆
(

∂L

∂xi

)
= uk ∂2L

∂uk∂xi
= uk ∂2L

∂xk∂ui
(2.3)

which enables the forces f j to be written in the stated form.

Proof. From the first two algebraic conditions we obtain

ġΦ + gΦ̇ = (ġΦ)t + (gΦ̇)t(2.4)

and

ġΦ̇ + gΦ̈ = (ġΦ̇)t + (gΦ̈)t.(2.5)

Thus ġ also satisfies the first two algebraic conditions and hence

ġ = µg(2.6)

for some function µ.
Now let a and b be any two entries of g. Then the previous condition

implies that

ȧ = µa(2.7)

ḃ = µb(2.8)

and hence

ȧb− aḃ = 0.(2.9)

It follows that if b is non-zero then a
b is a first integral.

Now we shall apply ∆ to the first two algebraic conditions so as to obtain

∆gΦ = (∆gΦ)t(2.10)

∆gΦ̇ = (∆gΦ̇)t.(2.11)

Again it follows that

∆g = vg(2.12)
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for some function v. If a and b are as above then we must have that

∆
(a

b

)
= 0,(2.13)

that is, a
b is homogeneous of degree zero.

Now we invoke conditions (i)–(iii) stated in the Theorem. If condition
(ii) holds then we may conclude that a

b is identically constant. If, however,
condition (iii) holds then a

b must be independent of ui on a dense open subset
of U ×Rn and hence by continuity and denseness on U ×Rn. Since a

b is a first
integral, it must be identically constant. Finally if condition (i) holds then a

b is
independent of (u1, u2) except on the closed subset given by f1u2− f2u1 = 0.
By continuity a

b must be independent of (u1, u2) on U × Rn.
At this point we can assert that the putative Hessian gij is of the form

g = γg0(2.14)

where g0 is a constant solution of the algebraic conditions. To finish the
proof we shall see what results from imposing the second and third Helmholtz
conditions eq. (1.4) and (1.5). In fact (1.4) implies that γ is also a first
integral.

Finally eq. (1.5) implies that γ must satisfy

∂γ

∂uj
δm
k =

∂γ

∂uk
δm
j(2.15)

where δm
k is the Kronecker symbol. On contracting k with m we find that

(n− 1)
∂γ

∂uj
= 0(2.16)

Since we are assuming that n > 1 it follows that γ is independent of uj and
hence is constant. Thus gij is constant, all three Helmholtz conditions are
satisfied and L is a quadratic Lagrangian. Also part (i) of the Lemma implies
that any term linear in ui that occurs in L must actually be a total time
derivative and thus is negligible according to the “essentially unique” clause
of the Theorem. Finally part (ii) of the Lemma implies that the potential V
is determined from the condition

∂V

∂xi
= −gijf

j .(2.17)
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We conclude the paper with a few remarks about the hypotheses of the
Theorem 1.1. First of all the first algebraic condition imposes generically ( n

2 )
conditions on the

(
n+1

2

)
components of g. The assumption that the first three

algebraic conditions entail that g is unique up to scaling corresponds to the
generic situation in which there is a Lagrangian unique up to scaling by a
constant.

Secondly, there certainly do exist systems with first integrals homogeneous
of degree zero. For example in dimension n any system with Euclidean kinetic
energy and a central potential has ( n

2 ) linear integrals of motion correspond-
ing to the components of angular momentum. By taking quotients we obtain
integrals of degree zero. This class of systems does not contradict the Theo-
rem, however, because the algebraic conditions are not satisfied. This point
is discussed in detail by Henneaux and Shepley [4].

Thirdly, condition (iii) can be implemented in practice. For systems with
forces independent of velocities the vector fields ∆,

[∆, Γ]− Γ = −2f i ∂

∂ui
(2.18)

[[∆, Γ]− Γ, [[∆, Γ],Γ]] = −8f i ∂f j

∂xi

∂

∂uj
(2.19)

are all vertical so if n = 3 their linear dependence can be checked. For example
the Calogero and Toda systems in three dimensions may be shown to have
unique Lagrangians whereas the Kepler system, of course, does not.
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