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1. INTRODUCTION

Let X be a Banach space and let .S be a bounded subset of X. We define
a real valued function r : X — R by

r(z) =sup{||lz —z|: z € S}

and call r (x) the farthest distance from z to S. The function r is convex
(as supremum of convex functions) and Lipschitz-continuous, in fact, |r (z) —
r(y)| < ||z —yl, for all z,y € X. A point z € S is called a farthest point of
S if there exists € X such that |z — z|| = r (z) . The existence of a farthest
point of S is equivalent to the fact that the set

D={zecX: 3z€8) (|z—z|=r(x)}

is nonempty.

Edelstein [4] showed that if X is uniformly convex Banach space, then
the set D defined above is dense in X. Asplund [1] showed that if X is both
reflexive and locally uniformly rotund, then the set D is dense in X. In several
years ago, Lau [8] proved that if S is a weakly compact subset of a Banach
space X, then the set D defined above contains a dense Gg of X. In a few
years ago Deville and Zizler [2] showed how to characterise weak compactness
in terms of farthest points.

In the same way we define the nearest distance from x to a closed subset
F of X by

N (z) =inf{||lz —z|: z € F}
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and a point z € F'is called a nearest point of F) if there exists x € X such that
N (z) = ||z — z||. Lau [9] showed that if X is reflexive and the norm has the
Kadec-Klee property (on the unit sphere, every weakly convergent sequence
converges in norm) then the set of X \ F' with nearest point in F' contains a
dense G subset of X \ F.

Let C be a convex subset in X with 0 in its interior. The Minkowski
functional of C'is p : X — R such that p(z) = inf {A > 0: A"t € C} (it is
also called the gauge of C'). Recently in [10], it was introduced the notion of
C'—nearest points. Let us fix a closed convex C' such that 0 in its interior in
a Banach space X. For a closed set F' of X we define the C'—nearest distance
from z to F' by

p(Fyz):=inf{p(x—s):s€F}

where p is the Minkowski functional of C. A point z € F is called a C'—nearest
point of F' if there exists x € X \ {z € X: p(F,z) = 0} such that p(F,z) =
plr—2).

In [10] it is shown that if C' has the Drop property (a closed convex set C'
has the Drop property if for every closed set F' disjoint from C there exists an
a € F such that F Nconv (C U{a}) = {a}, see [7], [10] for more details) then
for all closed subset F' of X, the set of points of X \{z € X: p(F,z) = 0} with
C'—nearest point in F' contains a dense G5 subset of X \{z € C: p (F,z) = 0},
thus extending a result of Lau [9].

In this work, we define the C'—farthest distance. Let us fix a closed convex
set C' in Banach space X and assume intC # (), without loss of generality
suppose the unit ball is contained in C. For a bounded subset S of X and =z
in X we define the C'—farthest distance from x to S by

7(S,z) =sup{p(z —y): y € S}

where p is the Minkowski gauge of C. A point s € S is called C'—farthest point
of S if there exists € X such that

T(S,z)=p(z—s).

We prove that if S is weakly compact then the set of all points in X which
have C'—farthest points in X contains a dense G of X, thus extending a result
of Lau [8].

It is easy to see the C'—farthest distance Lipschitz-continuous.
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PROPOSITION 1.1. The function x — 7 (S, x) is 1—Lipschitz-continuous.
Proof. Let x,y € X. Then it is easy to see that
T(Sz)—7(Sy) =TSz —y+y) —7(Sy) <plz—y)

By hypothesis, the unit ball is contained in C, then p (y) < ||y|| for all y € X.
Therefore

7(S,z) —7(S,y) <plx—y) < llz—yl, Va,y e X

then we deduce that 7 is 1—Lipschitz-continuous, and the proof is complete.

For a convex function f and x in X with f (z) finite, we define the subd-
ifferential of f at x by

O flx)={a" e X": <a™y—ax><f(y)—f(z), VyeX}.
For f € X*, write p. (f) :=sup{f(z): 2z € C}.

LEMMA 1.2. Let X be a Banach space and let S be a bounded subset in
X. Then for z € X, each element z* of 0~ 7 (S, x) we have:

1) <az*,y><p(y), forallye X

2) pu(2%) < 1.

Proof. We have

T(S,v+ty) —7(S,z) = igg{p(wﬂy—@}—ilég{ﬂ(x—w}
< sup{p(z—2)}+p(ty) —sup{p(z —u)}
zeS uesS
= p(ty)

then for ¢t > 0,
T(S,I‘-f-ty) _T(Sul‘)
t

<p(y)-

Let 2* € 077 (S,x). Since the function 7 (S, z) is convex (as supremum of
such functions), then

<z¥y—ax>+7(S,2) <7(S,y), VyeX
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which is equivalent to say that:
0<7(S,z+ty) —7(S,z)— <z z+ty—xz> VYyeX, VteR

which implies that

T(S,x+ty) — 7 (S, x)

0 < , —<az*y>, Vt>0, VyeX
< p(y)_<x*7y>u V?JGX
hence
<z y><p(y, VyeX,
consequently

ps (z%) :==sup{<z®,y>:y € C} <sup{p(y):y € C} <1
and the proof is complete. |

ProprosITION 1.3. Let X be a Banach space and let S be a bounded
subset in X. Let x in X and z* in 0”7 (S, x). Then

—7(S,z) <inf <z*,y—xz>.
yeSs

Proof. Let x in X and let z* in 077 (S, z) . Then by Lemma 1.2
<zhy><ply), WeX
then
<zt x—-y><plr-y), VyeX

which is equivalent to :
—plx—y)<<z*yy—x> YyeX

therefore
—supp(z—y) < inf <z*,y—z >
yes yes
concluding
—7(S,z) <inf <z*,y—a >
yeS

and the proof is complete. |
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2. C'—FARTHEST POINTS

Recall that C' be a norm closed, convex and 0 € intC in Banach space
X. Without loss of generality assume that the unit ball of X contained in C.
Denote by p the Minkowski functional of C': p(z) :=inf {\ > 0: 2A™t € C}.
For a bounded subset S in X and x € X we define the C'—farthest distance
from z to S by 7(S,x) =sup{p(x —y) : y € S}.

In this section we shall prove the following :

THEOREM 2.1. Let X be a Banach space. Let S be a weakly compact sub-
set in X. Then the set {z € X: p(x — z) = 7(S,z) for some z € S} contains
a dense G of X. Furthermore, the set of C—farthest points of S is nonempty.

Thus, in the particular case when C' is the unit ball the set
{re X: |z —z[| =sup{llz —y[: y € S} for some z € S}

contains a dense G5 of X, this is exactly Lau’s theorem [8].
It is well known that every bounded, weakly closed subset S in reflexive
Banach space X is weakly compact. Then the set

D:={zeX:p(x—2)=7(S,z) for some z € S}

contains a dense G subset of X and hence the set of C'—farthest points of S
is nonempty. For the same reasons, the set

A={r e X: ||z — 2| =sup{||lz — y[|: y € S} for some 2z € S}

contains a dense (G5 subset of X and hence the set of farthest points of S is
nonempty.

We like to extend Asplund [1] result. In this direction we give the following
definition :

DEFINITION 2.2. 1) The Minkowski function p is said to be locally uni-
formly rotund at z, if lim p (x — x,) = 0 whenever (x,) is a sequence in X is
such that limp (z,) = p(z) and limp (x + z,) = 2p(z). If p is locally uni-
formly rotund at each point of X, we call p locally uniformly rotund or locally
uniformly convex (L.U.R. for short).

2) A point z in a closed convex set F' is said to be strongly C'—exposed
provided there exists * # 0 in X*, such that z* (x) = supp 2* and for each
(7)) C F,

< x*,xy, >— supz” implies p(z, —z) — 0.
F
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Noting that the definition of local uniform rotundity for the gauge has
been introduced independently in [5].

Remark 2.3. Assume now that the gauge p is L.U.R. and let S be a
bounded set in X and x € X has a C—farthest point in .S, i.e. there is s € S
such that p(x —s) =sup{p(x —y): y € S}. Then s is strongly C—exposed
point of the set x — p (z — s) C' and s is thus a strongly C'—exposed point of
S Cx—p(x—s)C. In an other hand, by using the separation theorem, one
can show that any point of 0C is a strongly C'—exposed point of C.

COROLLARY 2.4. Let X be a reflexive Banach space. We assume that p
is locally uniformly convex. Then for every bounded, closed subset S in X,
the set
A={zx e X:p(x—=2)=71(S,x) for some z € S}

contains a dense G subset of X and hence the set of C'—farthest points of S
is nonempty.

Proof. By Remark 2.3 we deduce that, each C'—farthest point of convS is
a strongly C'—exposed point of ¢onvS and hence is contained in S. So that, the
sets of C'—farthest points of S and convS coincide. We apply now Theorem
2.1 on conwS and the proof is complete. |

In the particular case where C' is the unit ball we have Asplund [1] result:

COROLLARY 2.5. Let X be a reflexive Banach space with locally uniformly
convex norm. Then for every bounded, closed subset S in X, the set

A={z e X: ||z —z|| =sup{|lz —y||: y € S} for some z € S}

contains a dense G5 subset of X and hence the set of farthest points of S is
nonempty.

Proof. The unit ball of X is convex with nonempty interior and ||| is just
its Minkowski gauge. The corollary is now a particular case of the Corollary
24. 1

Now its time to give the proof of Theorem 2.1. For n € N, put

1
F, = {x e X, ing <z y—ax>>—-7(S,x)+ —, for some z* € 8_T(S,JE)}
ye n
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PROPOSITION 2.6. F), is a closed subset of X.

Proof. Let (x,,) be a sequence in F,, which converges to an x in X. For each
m, choose x}, € 077 (S, xy,) such that inf,cg < 2}, z—xp, >> —7 (S5, xm)—k%
and by Lemma 1.2: p, (z},) < 1.

Since the unit ball is contained in C, then

p@)<llal, VreX and [ahlx. <pu(ah) < 1. 1)

Therefore, without loss of generality, we assume that (z,) converges weak*
to x*.
Let y € X. Then :

| <zl y—am>—<z'y—z>|<
<y, y—Tm>—<z,y—x>+|<a,,y—z>—<zy—x> =
[<p, = am >+ <z, -2ty -2 > <
px (@5) p (T — @) +|< 27, — 2y —x >| <
[ m — al| + [< ap — 2"y — 2 >
(the last inequality is by (1)).

This shows that the sequence (< z7,,y — x,, >) converges to < z*,y—zx > .
In the other hand, we have z}, € 077 (S, z,,) , then

< Ty — x> 47 (S,7m) < 7(S,y), VyeEX,
hence it follows that (by passing to the limit) :
<z*y—zx>+7(5S,2) <7(S,y), VyeX,

which implies that
¥ ed 1(S,x). (2)

In the other hand, by definition of z,,, we have
. 1
<X 2 — Ty >> =T (S, 2m) + e Vze S

hence

1
<z z—x>> —T(S,%)—FE, Vz e S. (3)

By (2) and (3) we deduce that x € F,, and F,, is a closed subset of X. |
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For x € X, write r (z) = sup{||z — z||: z € S}.
ProrosiTION 2.7. For each n, F,, has empty interior.

Proof. Suppose that for some n, F;, has nonempty interior, then there is a
ball U centered at yo € F, of radius 2Ar (yo) (where r (yo) = sup{||z — yol| :
x € S}) for some A > 0 such that U C Fj,. Let ¢ = Mmin{r (yo),1}.
Choose zg in S such that

7(S,y0) > p (Yo — 20) > 7 (S, 90) — > 7 (S, 50) /2 (1)

and put
To = Yo + A (Yo — 20) - (2)

Choose 1 in the segment [zg, yo| such that
[0 — 21| = €. (3)
We have [|zo — yol| = A|yo — 20l < Ar(y0) < 2A7 (yo). So xp and thus z1 €

U C F,. We have z; € F,, therefore by definition of F},, there exists z] €
0~ 7 (S, x1) such that

1
inf oy — > —7(S — 4
;IEIS{< Z1,Y z >} e 7—( ,.%'1)+ TL, ( )

since 2§ € 977 (S, x1), by Lemma 1.2
px (27) <1, (5)
by (1) we have 7 (S, y0) < p (yo — 20) + €. So
7(S,90) —7(S,21) <p(yo —20) +e—7(5,21), (6)
by (2) we have

(zo — 20)

xo—zoz(l—l—)\)(yo—zo),thenp1+)\ = p(y0 — 20) - (7)
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Combining (3), (4), (5), (6) and (7) we show :

1
T(S,y0) — 7 (S, z1) < 71+)\p(:1:0—zo)+5—7'(5,3:1)
1
< (a0 te—T(Sm)
1
= 1+7)\sup{p(:1co—z);z65}—%8—7’(,5’,:1:1)
1
< —_ —
< 1+)\[T(579€1)+P($0 z1)] +e—71(S,71)
1 |20 — 1]
< - - - —_
< 1+)\T(S,$1)+ T +e—7(5,21)
1
9 _
< 1+)\T(S,JZ’1)+ e—1(S,x1)
-
p— 2
1+)\T(S,J)1)+ 5
1
< = 20 — -
< 1+)\[<$1,zo T > n]—l—Qs
< —— < ai,z0 — >—1 +3
= 1 T1,20 — o n €
= <zi,y—=x >—#+3
< <z — >—#+4€

< <ai,yo—zx1>.

Hence 7(S,y0) < 7(S,z1)+ < 7,y0 — x1 > and this contradicts z] €
0~ 7 (S, 1) . Thus concluding the proof of the proposition. 1

Now we have all tools to give the proof of Theorem 2.1.
3. PROOF OF THEOREM 2.1

Proof. For each n € N, put

n

1
Fn:{xeX,ing<x*,y—x>2 —7(S,z) + —, forsomex*ea_T(S,x)}
ye

and

F:U&.
n
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Let D = X\F = X\U,, F\r =, (X\Fn)

By Propositions 2.6 and 2.7, for all n, F;, is closed and has empty interior,
then for all n, X\ F}, is open and a dense subset in X. Hence D is a dense G
in X.

For finishing the proof, we need to show that the set D is contained in the
set

{reX:p(x—2)=7(S,x) forsome zeS}.

Let x € D and let * € 07 7(S,z). Then z is not in F, for all n.
Which means that inf {< 2%,z —z >: 2 € S} = —7 (S5, z) . Since S is a weakly
compact subset in X, there exists a point zg in S such that —7 (S,z) =<
x*,z9 — x > . Therefore

T(S,x) =supp(z —y) = p(r —20) 2< 2% 20— 20 >=7(5,2)
yes

Then, there is zp in S such that 7 (S,z) = p (z — 20) , and the theorem is
proved. |1

The following definition it was introduced in [6]:

DEFINITION 3.1. We say that the gauge p has the C'—intersection prop-
erty, if for every bounded, closed and convex subset S in X and zp in X\S,
there exists 7 > 0 and 1 in X such that p (z1,7) D C and z¢ ¢ p (z1,r) where
pzi,r) ={reX:p(r1—x) <r}

Remark 3.2. Repeating the same technics as in ([3] p. 55) one can prove
the following: If the gauge p of C is Fréchet differentiable in X \ {0}, then p
has the C'—intersection property.

In the particular case where C' is the unit ball this property was introduced
by Mazur [11] and shown to hold for all Banach spaces having a Fréchet
differentiable norm ([3] p. 55).

PROPOSITION 3.3. Let X be a Banach space. We assume that the Minkowski
gauge p of C' has the C'—intersection property. Let S be a weakly compact con-
vex subset in X. Then S is a closed convex hull of points which are C'—farthest
points in S to some points in X.

Therefore we deduce that, when C' is the unit ball of X, then S is a closed
convex hull of points which are farthest points in S to some points in X, this
is exactly the Edelstein’s theorem [4].

We give now the proof of Proposition 2.10.
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Proof. Let Far (S) be the set of all points in S which are C'—farthest to
some points in X. We shall show that S = convFar (S).

By absurd, assume that there is s € S\conv (Far (S)). By hypothesis
the Minkowski gauge p has the C'—intersection property, then there is xy €
X and r > 0 such that S C p(zo,r) and s ¢ p(xo,r) where p(zg,r) =
{reX:p(xo—x)<r}. Then p(xg—s) > r. Let ¢ = p(zozﬂ > 0. Now
Theorem 2.1 confirm that there exists 21 € X such that

xog—8)—T
e — o] < = = 22T (1)
and x1 has a C—farthest point s; € Far (S). Since s € S, then
p(x1—s) < p(x1—s1) (2)

combining (1), (2) and the fact that p (z) < ||z|| Vz € X, we show that

plxg—s1) = plxg—2x1+2x1 —51)
> p(x1—s1) —p(xo — 21)
= pxr—s)—p(zo— 1)
= plxr—x0+x0—35)—p(Tog—21)
> p(xo—s)—p(x1 —z0) — p (20 — 71)
= p(@o—s)—2|wo — 1|
> plxg—s)—2
= de+r—2¢
= 2e4+r>7"

a contradiction with S C p(zg,7) = {zx € X: p(xo —z) <r}. Thus S =
conv (Far (S)) and the proof is complete. 1
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