On the C-Farthest Points

A. MAADEN

Université Cadi Ayyad, Faculté des Sciences et Techniques, Département de Mathématiques, B.P. 523-Beni-Mellal, Maroc

(Research paper presented by J.P. Moreno)

AMS Subject Class. (2000): 46B10, 46B20

Received June 21, 1999

1. INTRODUCTION

Let X be a Banach space and let S be a bounded subset of X. We define a real valued function $r: X \longrightarrow \mathbb{R}$ by

$$r(x) = \sup \{ ||x - z|| : z \in S \}$$

and call r(x) the farthest distance from x to S. The function r is convex (as supremum of convex functions) and Lipschitz-continuous, in fact, $|r(x) - r(y)| \le ||x - y||$, for all $x, y \in X$. A point $z \in S$ is called a farthest point of S if there exists $x \in X$ such that ||x - z|| = r(x). The existence of a farthest point of S is equivalent to the fact that the set

$$D = \{x \in X : (\exists z \in S) (\|x - z\| = r(x))\}\$$

is nonempty.

Edelstein [4] showed that if X is uniformly convex Banach space, then the set D defined above is dense in X. Asplund [1] showed that if X is both reflexive and locally uniformly rotund, then the set D is dense in X. In several years ago, Lau [8] proved that if S is a weakly compact subset of a Banach space X, then the set D defined above contains a dense G_{δ} of X. In a few years ago Deville and Zizler [2] showed how to characterise weak compactness in terms of farthest points.

In the same way we define the nearest distance from x to a closed subset F of X by

$$N(x) = \inf \{ \|x - z\| \colon z \in F \}$$

and a point $z \in F$ is called a nearest point of F, if there exists $x \in X$ such that N(x) = ||x - z||. Lau [9] showed that if X is reflexive and the norm has the Kadec-Klee property (on the unit sphere, every weakly convergent sequence converges in norm) then the set of $X \setminus F$ with nearest point in F contains a dense G_{δ} subset of $X \setminus F$.

Let C be a convex subset in X with 0 in its interior. The Minkowski functional of C is $\rho: X \longrightarrow \mathbb{R}$ such that $\rho(x) = \inf \{\lambda > 0 \colon x\lambda^{-1} \in C\}$ (it is also called the gauge of C). Recently in [10], it was introduced the notion of C-nearest points. Let us fix a closed convex C such that 0 in its interior in a Banach space X. For a closed set F of X we define the C-nearest distance from x to F by

$$\rho(F, x) := \inf \left\{ \rho(x - s) : s \in F \right\}$$

where ρ is the Minkowski functional of C. A point $z \in F$ is called a C-nearest point of F if there exists $x \in X \setminus \{x \in X : \rho(F, x) = 0\}$ such that $\rho(F, x) = \rho(x - z)$.

In [10] it is shown that if C has the Drop property (a closed convex set C has the Drop property if for every closed set F disjoint from C there exists an $a \in F$ such that $F \cap conv(C \cup \{a\}) = \{a\}$, see [7], [10] for more details) then for all closed subset F of X, the set of points of $X \setminus \{x \in X : \rho(F, x) = 0\}$ with C-nearest point in F contains a dense G_{δ} subset of $X \setminus \{x \in C : \rho(F, x) = 0\}$, thus extending a result of Lau [9].

In this work, we define the C-farthest distance. Let us fix a closed convex set C in Banach space X and assume $\operatorname{int} C \neq \emptyset$, without loss of generality suppose the unit ball is contained in C. For a bounded subset S of X and xin X we define the C-farthest distance from x to S by

$$\tau(S, x) = \sup \left\{ \rho(x - y) : y \in S \right\}$$

where ρ is the Minkowski gauge of C. A point $s \in S$ is called C-farthest point of S if there exists $x \in X$ such that

$$\tau\left(S,x\right) = \rho\left(x-s\right).$$

We prove that if S is weakly compact then the set of all points in X which have C-farthest points in X contains a dense G_{δ} of X, thus extending a result of Lau [8].

It is easy to see the C-farthest distance Lipschitz-continuous.

PROPOSITION 1.1. The function $x \longrightarrow \tau(S, x)$ is 1-Lipschitz-continuous.

Proof. Let $x, y \in X$. Then it is easy to see that

 $\tau(S, x) - \tau(S, y) = \tau(S, x - y + y) - \tau(S, y) \le \rho(x - y)$

By hypothesis, the unit ball is contained in C, then $\rho(y) \leq ||y||$ for all $y \in X$. Therefore

 $\tau\left(S,x\right) - \tau\left(S,y\right) \le \rho\left(x-y\right) \le \|x-y\|, \qquad \forall x,y \in X$

then we deduce that τ is 1–Lipschitz-continuous, and the proof is complete. \blacksquare

For a convex function f and x in X with f(x) finite, we define the subdifferential of f at x by

$$\partial^{-} f(x) = \{ x^{*} \in X^{*} \colon < x^{*}, y - x \ge f(y) - f(x), \quad \forall y \in X \}.$$

For
$$f \in X^*$$
, write $\rho_*(f) := \sup \{f(x) : x \in C\}$.

LEMMA 1.2. Let X be a Banach space and let S be a bounded subset in X. Then for $x \in X$, each element x^* of $\partial^- \tau(S, x)$ we have:

1) < $x^*, y \ge \rho(y)$, for all $y \in X$ 2) $\rho_*(x^*) \le 1$.

Proof. We have

$$\tau \left(S, x + ty \right) - \tau \left(S, x \right) = \sup_{z \in S} \left\{ \rho \left(x + ty - z \right) \right\} - \sup_{u \in S} \left\{ \rho \left(x - u \right) \right\}$$
$$\leq \sup_{z \in S} \left\{ \rho \left(x - z \right) \right\} + \rho \left(ty \right) - \sup_{u \in S} \left\{ \rho \left(x - u \right) \right\}$$
$$= \rho \left(ty \right)$$

then for t > 0,

$$\frac{\tau\left(S, x+ty\right)-\tau\left(S, x\right)}{t} \leq \rho\left(y\right).$$

Let $x^* \in \partial^- \tau(S, x)$. Since the function $\tau(S, x)$ is convex (as supremum of such functions), then

$$\langle x^*, y - x \rangle + \tau(S, x) \leq \tau(S, y), \quad \forall y \in X$$

which is equivalent to say that:

$$0 \leq \tau \left(S, x + ty \right) - \tau \left(S, x \right) - < x^*, x + ty - x >, \quad \forall y \in X, \quad \forall t \in \mathbb{R}$$

which implies that

$$\begin{array}{rcl} 0 & \leq & \displaystyle \frac{\tau\left(S,x+ty\right)-\tau\left(S,x\right)}{t} - < x^{*}, y >, & \forall t > 0, & \forall y \in X \\ & \leq & \displaystyle \rho\left(y\right) - < x^{*}, y >, & \forall y \in X \end{array}$$

hence

$$\langle x^*, y \rangle \leq \rho(y), \quad \forall y \in X,$$

consequently

$$\rho_* (x^*) := \sup \{ \langle x^*, y \rangle \colon y \in C \} \le \sup \{ \rho (y) \colon y \in C \} \le 1$$

and the proof is complete. \blacksquare

PROPOSITION 1.3. Let X be a Banach space and let S be a bounded subset in X. Let x in X and x^* in $\partial^- \tau(S, x)$. Then

$$-\tau(S, x) \le \inf_{y \in S} < x^*, y - x > .$$

Proof. Let x in X and let x^* in $\partial^- \tau(S, x)$. Then by Lemma 1.2

$$\langle x^*, y \rangle \leq \rho(y), \quad \forall y \in X$$

then

$$\langle x^*, x - y \rangle \leq \rho(x - y), \quad \forall y \in X$$

which is equivalent to :

$$-\rho\left(x-y\right) \leq < x^*, y-x > \quad \forall y \in X$$

therefore

$$-\sup_{y\in S}\rho\left(x-y\right) \le \inf_{y\in S} < x^*, y-x >$$

concluding

$$-\tau\left(S,x\right) \leq \inf_{y \in S} < x^*, y - x >$$

and the proof is complete. \blacksquare

2. C-FARTHEST POINTS

Recall that C be a norm closed, convex and $0 \in intC$ in Banach space X. Without loss of generality assume that the unit ball of X contained in C. Denote by ρ the Minkowski functional of $C: \rho(x) := \inf \{\lambda > 0: x\lambda^{-1} \in C\}$. For a bounded subset S in X and $x \in X$ we define the C-farthest distance from x to S by $\tau(S, x) = \sup \{\rho(x - y) : y \in S\}$.

In this section we shall prove the following :

THEOREM 2.1. Let X be a Banach space. Let S be a weakly compact subset in X. Then the set $\{x \in X : \rho(x-z) = \tau(S,x) \text{ for some } z \in S\}$ contains a dense G_{δ} of X. Furthermore, the set of C-farthest points of S is nonempty.

Thus, in the particular case when C is the unit ball the set

 $\{x \in X : ||x - z|| = \sup\{||x - y|| : y \in S\} \text{ for some } z \in S\}$

contains a dense G_{δ} of X, this is exactly Lau's theorem [8].

It is well known that every bounded, weakly closed subset S in reflexive Banach space X is weakly compact. Then the set

$$D := \{ x \in X \colon \rho \left(x - z \right) = \tau \left(S, x \right) \text{ for some } z \in S \}$$

contains a dense G_{δ} subset of X and hence the set of C-farthest points of S is nonempty. For the same reasons, the set

$$A = \{x \in X : \|x - z\| = \sup\{\|x - y\| : y \in S\} \text{ for some } z \in S\}$$

contains a dense G_{δ} subset of X and hence the set of farthest points of S is nonempty.

We like to extend Asplund [1] result. In this direction we give the following definition :

DEFINITION 2.2. 1) The Minkowski function ρ is said to be locally uniformly rotund at x, if $\lim \rho (x - x_n) = 0$ whenever (x_n) is a sequence in X is such that $\lim \rho (x_n) = \rho (x)$ and $\lim \rho (x + x_n) = 2\rho (x)$. If ρ is locally uniformly rotund at each point of X, we call ρ locally uniformly rotund or locally uniformly convex (L.U.R. for short).

2) A point x in a closed convex set F is said to be strongly C-exposed provided there exists $x^* \neq 0$ in X^* , such that $x^*(x) = \sup_F x^*$ and for each $(x_n) \subset F$,

 $\langle x^*, x_n \rangle \longrightarrow \sup_F x^*$ implies $\rho(x_n - x) \longrightarrow 0.$

Noting that the definition of local uniform rotundity for the gauge has been introduced independently in [5].

Remark 2.3. Assume now that the gauge ρ is L.U.R. and let S be a bounded set in X and $x \in X$ has a C-farthest point in S, i.e. there is $s \in S$ such that $\rho(x-s) = \sup \{\rho(x-y) : y \in S\}$. Then s is strongly C-exposed point of the set $x - \rho(x-s)C$ and s is thus a strongly C-exposed point of $S \subset x - \rho(x-s)C$. In an other hand, by using the separation theorem, one can show that any point of ∂C is a strongly C-exposed point of C.

COROLLARY 2.4. Let X be a reflexive Banach space. We assume that ρ is locally uniformly convex. Then for every bounded, closed subset S in X, the set

$$A = \{x \in X \colon \rho(x - z) = \tau(S, x) \text{ for some } z \in S\}$$

contains a dense G_{δ} subset of X and hence the set of C-farthest points of S is nonempty.

Proof. By Remark 2.3 we deduce that, each C-farthest point of $\overline{conv}S$ is a strongly C-exposed point of $\overline{conv}S$ and hence is contained in S. So that, the sets of C-farthest points of S and $\overline{conv}S$ coincide. We apply now Theorem 2.1 on $\overline{conv}S$ and the proof is complete.

In the particular case where C is the unit ball we have Asplund [1] result:

COROLLARY 2.5. Let X be a reflexive Banach space with locally uniformly convex norm. Then for every bounded, closed subset S in X, the set

$$A = \{x \in X : ||x - z|| = \sup\{||x - y|| : y \in S\} \text{ for some } z \in S\}$$

contains a dense G_{δ} subset of X and hence the set of farthest points of S is nonempty.

Proof. The unit ball of X is convex with nonempty interior and $\|.\|$ is just its Minkowski gauge. The corollary is now a particular case of the Corollary 2.4.

Now its time to give the proof of Theorem 2.1. For $n \in \mathbb{N}$, put

$$F_n = \left\{ x \in X, \inf_{y \in S} \langle x^*, y - x \rangle \ge -\tau \left(S, x \right) + \frac{1}{n}, \text{ for some } x^* \in \partial^- \tau \left(S, x \right) \right\}$$

PROPOSITION 2.6. F_n is a closed subset of X.

Proof. Let (x_m) be a sequence in F_n which converges to an x in X. For each m, choose $x_m^* \in \partial^- \tau (S, x_m)$ such that $\inf_{z \in S} \langle x_m^*, z - x_m \rangle \geq -\tau (S, x_m) + \frac{1}{n}$ and by Lemma 1.2: $\rho_*(x_m^*) \leq 1$.

Since the unit ball is contained in C, then

$$\rho(x) \le ||x||, \quad \forall x \in X \quad \text{and} \quad ||x_m^*||_{X^*} \le \rho_*(x_m^*) \le 1.$$
(1)

Therefore, without loss of generality, we assume that (x_m^*) converges weak^{*} to x^* .

Let $y \in X$. Then :

$$| < x_m^*, y - x_m > - < x^*, y - x > | \le | \le | < x_m^*, y - x_m > - < x^*, y - x > | \le | < x_m^*, y - x_m > | + | < x_m^*, y - x > - < x^*, y - x > | = | < x_m^*, x - x_m > | + | < x_m^* - x^*, y - x > | \le | < \rho_*(x_m^*) \rho(x_m - x) + | < x_m^* - x^*, y - x > | \le | x_m - x \| + | < x_m^* - x^*, y - x > | \le | x_m - x \| + | < x_m^* - x^*, y - x > |$$

(the last inequality is by (1)).

This shows that the sequence $(\langle x_m^*, y - x_m \rangle)$ converges to $\langle x^*, y - x \rangle$. In the other hand, we have $x_m^* \in \partial^- \tau (S, x_m)$, then

$$\langle x_m^*, y - x \rangle + \tau(S, x_m) \leq \tau(S, y), \quad \forall y \in X,$$

hence it follows that (by passing to the limit) :

$$\langle x^*, y - x \rangle + \tau(S, x) \leq \tau(S, y), \quad \forall y \in X,$$

which implies that

$$x^* \in \partial^- \tau \left(S, x \right). \tag{2}$$

In the other hand, by definition of x_m , we have

$$\langle x_m^*, z - x_m \rangle \geq -\tau \left(S, x_m \right) + \frac{1}{n}, \quad \forall z \in S$$

hence

$$\langle x^*, z - x \rangle \geq -\tau (S, x) + \frac{1}{n}, \quad \forall z \in S.$$
 (3)

By (2) and (3) we deduce that $x \in F_n$, and F_n is a closed subset of X.

For $x \in X$, write $r(x) = \sup \{ ||x - z|| \colon z \in S \}$.

PROPOSITION 2.7. For each n, F_n has empty interior.

Proof. Suppose that for some n, F_n has nonempty interior, then there is a ball U centered at $y_0 \in F_n$ of radius $2\lambda r(y_0)$ (where $r(y_0) = \sup\{||x - y_0|| : x \in S\}$) for some $\lambda > 0$ such that $U \subset F_n$. Let $\varepsilon = \frac{\lambda}{4(1+\lambda)n} \min\{r(y_0), 1\}$. Choose z_0 in S such that

$$\tau(S, y_0) \ge \rho(y_0 - z_0) > \tau(S, y_0) - \varepsilon > \tau(S, y_0)/2$$
 (1)

and put

$$x_0 = y_0 + \lambda \left(y_0 - z_0 \right).$$
 (2)

Choose x_1 in the segment $[x_0, y_0]$ such that

$$\|x_0 - x_1\| = \varepsilon. \tag{3}$$

We have $||x_0 - y_0|| = \lambda ||y_0 - z_0|| \le \lambda r(y_0) < 2\lambda r(y_0)$. So x_0 and thus $x_1 \in U \subset F_n$. We have $x_1 \in F_n$, therefore by definition of F_n , there exists $x_1^* \in \partial^- \tau(S, x_1)$ such that

$$\inf_{y \in S} \{ \langle x_1^*, y - x_1 \rangle \} \ge -\tau \left(S, x_1 \right) + \frac{1}{n}, \tag{4}$$

since $x_{1}^{*} \in \partial^{-}\tau\left(S, x_{1}\right)$, by Lemma 1.2

$$\rho_*\left(x_1^*\right) \le 1,\tag{5}$$

by (1) we have $\tau(S, y_0) < \rho(y_0 - z_0) + \varepsilon$. So

$$\tau(S, y_0) - \tau(S, x_1) < \rho(y_0 - z_0) + \varepsilon - \tau(S, x_1), \qquad (6)$$

by (2) we have

$$x_0 - z_0 = (1 + \lambda) (y_0 - z_0)$$
, then $\frac{\rho (x_0 - z_0)}{1 + \lambda} = \rho (y_0 - z_0)$. (7)

Combining (3), (4), (5), (6) and (7) we show :

$$\begin{aligned} \tau\left(S,y_{0}\right)-\tau\left(S,x_{1}\right) &< \frac{1}{1+\lambda}\rho\left(x_{0}-z_{0}\right)+\varepsilon-\tau\left(S,x_{1}\right) \\ &\leq \frac{1}{1+\lambda}\tau\left(S,x_{0}\right)+\varepsilon-\tau\left(S,x_{1}\right) \\ &= \frac{1}{1+\lambda}\sup\left\{\rho\left(x_{0}-z\right);z\in S\right\}+\varepsilon-\tau\left(S,x_{1}\right) \\ &\leq \frac{1}{1+\lambda}\left[\tau\left(S,x_{1}\right)+\rho\left(x_{0}-x_{1}\right)\right]+\varepsilon-\tau\left(S,x_{1}\right) \\ &\leq \frac{1}{1+\lambda}\tau\left(S,x_{1}\right)+\frac{\|x_{0}-x_{1}\|}{1+\lambda}+\varepsilon-\tau\left(S,x_{1}\right) \\ &< \frac{1}{1+\lambda}\tau\left(S,x_{1}\right)+2\varepsilon-\tau\left(S,x_{1}\right) \\ &= \frac{-\lambda}{1+\lambda}\tau\left(S,x_{1}\right)+2\varepsilon \\ &\leq \frac{\lambda}{1+\lambda}\left[-\frac{1}{n}\right]+2\varepsilon \\ &\leq \frac{\lambda}{1+\lambda}\left[-\frac{1}{n}\right]+3\varepsilon \\ &= -\frac{\lambda}{(1+\lambda)n}+3\varepsilon \\ &\leq . \end{aligned}$$

Hence $\tau(S, y_0) < \tau(S, x_1) + \langle x_1^*, y_0 - x_1 \rangle$ and this contradicts $x_1^* \in \partial^- \tau(S, x_1)$. Thus concluding the proof of the proposition.

Now we have all tools to give the proof of Theorem 2.1.

3. Proof of Theorem 2.1

Proof. For each $n \in \mathbb{N}$, put

$$F_n = \left\{ x \in X, \inf_{y \in S} < x^*, y - x \ge -\tau \left(S, x\right) + \frac{1}{n}, \text{ for some } x^* \in \partial^- \tau \left(S, x\right) \right\}$$

and

$$F = \bigcup_n F_n.$$

Let $D = X \setminus F = X \setminus \bigcup_n F_n = \bigcap_n (X \setminus F_n)$

By Propositions 2.6 and 2.7, for all n, F_n is closed and has empty interior, then for all $n, X \setminus F_n$ is open and a dense subset in X. Hence D is a dense G_{δ} in X.

For finishing the proof, we need to show that the set D is contained in the set

 $\{x \in X : \rho(x-z) = \tau(S, x) \text{ for some } z \in S\}.$

Let $x \in D$ and let $x^* \in \partial^- \tau(S, x)$. Then x is not in F_n for all n. Which means that $\inf \{\langle x^*, z - x \rangle : z \in S\} = -\tau(S, x)$. Since S is a weakly compact subset in X, there exists a point z_0 in S such that $-\tau(S, x) = \langle x^*, z_0 - x \rangle$. Therefore

$$\tau(S, x) = \sup_{y \in S} \rho(x - y) \ge \rho(x - z_0) \ge < x^*, x - z_0 > = \tau(S, x)$$

Then, there is z_0 in S such that $\tau(S, x) = \rho(x - z_0)$, and the theorem is proved.

The following definition it was introduced in [6]:

DEFINITION 3.1. We say that the gauge ρ has the *C*-intersection property, if for every bounded, closed and convex subset *S* in *X* and x_0 in $X \setminus S$, there exists r > 0 and x_1 in *X* such that $\rho(x_1, r) \supset C$ and $x_0 \notin \rho(x_1, r)$ where $\rho(x_1, r) = \{x \in X : \rho(x_1 - x) \leq r\}$

Remark 3.2. Repeating the same technics as in ([3] p. 55) one can prove the following: If the gauge ρ of C is Fréchet differentiable in $X \setminus \{0\}$, then ρ has the C-intersection property.

In the particular case where C is the unit ball this property was introduced by Mazur [11] and shown to hold for all Banach spaces having a Fréchet differentiable norm ([3] p. 55).

PROPOSITION 3.3. Let X be a Banach space. We assume that the Minkowski gauge ρ of C has the C-intersection property. Let S be a weakly compact convex subset in X. Then S is a closed convex hull of points which are C-farthest points in S to some points in X.

Therefore we deduce that, when C is the unit ball of X, then S is a closed convex hull of points which are farthest points in S to some points in X, this is exactly the Edelstein's theorem [4].

We give now the proof of Proposition 2.10.

220

Proof. Let Far(S) be the set of all points in S which are C-farthest to some points in X. We shall show that $S = \overline{conv}Far(S)$.

By absurd, assume that there is $s \in S \setminus \overline{conv}(Far(S))$. By hypothesis the Minkowski gauge ρ has the *C*-intersection property, then there is $x_0 \in X$ and r > 0 such that $S \subset \rho(x_0, r)$ and $s \notin \rho(x_0, r)$ where $\rho(x_0, r) = \{x \in X : \rho(x_0 - x) \leq r\}$. Then $\rho(x_0 - s) > r$. Let $\varepsilon = \frac{\rho(x_0 - s) - r}{4} > 0$. Now Theorem 2.1 confirm that there exists $x_1 \in X$ such that

$$||x_0 - x_1|| < \varepsilon =: \frac{\rho(x_0 - s) - r}{4},$$
 (1)

and x_1 has a C-farthest point $s_1 \in Far(S)$. Since $s \in S$, then

$$\rho\left(x_1 - s\right) \le \rho\left(x_1 - s_1\right) \tag{2}$$

combining (1), (2) and the fact that $\rho(x) \leq ||x|| \quad \forall x \in X$, we show that

$$\begin{aligned}
\rho(x_0 - s_1) &= \rho(x_0 - x_1 + x_1 - s_1) \\
&\geq \rho(x_1 - s_1) - \rho(x_0 - x_1) \\
&\geq \rho(x_1 - s) - \rho(x_0 - x_1) \\
&= \rho(x_1 - x_0 + x_0 - s) - \rho(x_0 - x_1) \\
&\geq \rho(x_0 - s) - \rho(x_1 - x_0) - \rho(x_0 - x_1) \\
&\geq \rho(x_0 - s) - 2 ||x_0 - x_1|| \\
&\geq \rho(x_0 - s) - 2\varepsilon \\
&= 4\varepsilon + r - 2\varepsilon \\
&= 2\varepsilon + r > r
\end{aligned}$$

a contradiction with $S \subset \rho(x_0, r) = \{x \in X : \rho(x_0 - x) \leq r\}$. Thus $S = \overline{conv}(Far(S))$ and the proof is complete.

Acknowledgements

The author will thank the referee for his/her valuable suggestions and for submitting him the two references [5] and [6].

References

- ASPLUND, E., Farthest points in reflexive locally uniformly rotund Banach spaces, Israel. J. Math., 4 (1966), 213–216.
- [2] DEVILLE, R., ZIZLER, V., Farthest points in w^{*}-compact sets, Bull. Austral. Math. Soc., 38 (1988), 433-439.

A. MAADEN

- [3] DEVILLE, R., GODEFROY, G., ZIZLER, V., "Smoothness and Renormings in Banach Spaces", Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, 1993.
- [4] EDELSTEIN, M., Farthest points of sets in uniformly convex Banach spaces, Israel. J. Math., 4 (1966), 171–176.
- [5] GEOREGIEV, P., GRANERO, A.S., JIMÉNEZ SEVILLA, M., MORENO, J.P., Mazur intersection properties and differentiability of convex functions in Banach spaces, J. London. Math. Soc., to appear.
- [6] JIMÉNEZ SEVILLA, M., MORENO, J.P., On denseness of certain norms in Banach spaces, Bull. Austral. Math. Soc., 54 (1996), 183–196.
- [7] KUTZAROVA, D., ROLEWICZ, S., On drop property for convex sets, Arch. Math., 56 (1991), 501-511.
- [8] LAU, K.S., Farthest points in weakly compact sets, *Israel. Journal. Math.*, 22 (2) (1975), 168-174.
- [9] LAU, K.S., Almost Chebychev subset in reflexive Banach spaces, Indiana Univ. Math. J., 27 (1978), 791-795.
- [10] MAADEN, A., C-nearest points and the drop property, Collect. Math., 46 (3) (1995), 289-301.
- [11] MAZUR, S., Über schwache konvergenz in den Raumen (L^p) , Studia. Math., 4 (1933), 128–133.