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Mathématiques, B.P. 523-Beni-Mellal, Maroc

(Research paper presented by J.P. Moreno)

AMS Subject Class. (2000): 46B10, 46B20 Received June 21, 1999

1. Introduction

Let X be a Banach space and let S be a bounded subset of X. We define
a real valued function r : X −→ R by

r (x) = sup {‖x− z‖ : z ∈ S}

and call r (x) the farthest distance from x to S. The function r is convex
(as supremum of convex functions) and Lipschitz-continuous, in fact, |r (x)−
r (y) | ≤ ‖x − y‖, for all x, y ∈ X. A point z ∈ S is called a farthest point of
S if there exists x ∈ X such that ‖x− z‖ = r (x) . The existence of a farthest
point of S is equivalent to the fact that the set

D = {x ∈ X : (∃z ∈ S) (‖x− z‖ = r (x))}

is nonempty.
Edelstein [4] showed that if X is uniformly convex Banach space, then

the set D defined above is dense in X. Asplund [1] showed that if X is both
reflexive and locally uniformly rotund, then the set D is dense in X. In several
years ago, Lau [8] proved that if S is a weakly compact subset of a Banach
space X, then the set D defined above contains a dense Gδ of X. In a few
years ago Deville and Zizler [2] showed how to characterise weak compactness
in terms of farthest points.

In the same way we define the nearest distance from x to a closed subset
F of X by

N (x) = inf {‖x− z‖ : z ∈ F}

211



212 a. maaden

and a point z ∈ F is called a nearest point of F, if there exists x ∈ X such that
N (x) = ‖x − z‖. Lau [9] showed that if X is reflexive and the norm has the
Kadec-Klee property (on the unit sphere, every weakly convergent sequence
converges in norm) then the set of X \ F with nearest point in F contains a
dense Gδ subset of X \ F.

Let C be a convex subset in X with 0 in its interior. The Minkowski
functional of C is ρ : X −→ R such that ρ (x) = inf

{
λ > 0: xλ−1 ∈ C

}
(it is

also called the gauge of C). Recently in [10], it was introduced the notion of
C−nearest points. Let us fix a closed convex C such that 0 in its interior in
a Banach space X. For a closed set F of X we define the C−nearest distance
from x to F by

ρ (F, x) := inf {ρ (x− s) : s ∈ F}

where ρ is the Minkowski functional of C. A point z ∈ F is called a C−nearest
point of F if there exists x ∈ X \ {x ∈ X : ρ (F, x) = 0} such that ρ (F, x) =
ρ (x− z) .

In [10] it is shown that if C has the Drop property (a closed convex set C
has the Drop property if for every closed set F disjoint from C there exists an
a ∈ F such that F ∩ conv (C ∪ {a}) = {a} , see [7], [10] for more details) then
for all closed subset F of X, the set of points of X \{x ∈ X : ρ (F, x) = 0} with
C−nearest point in F contains a dense Gδ subset of X\{x ∈ C : ρ (F, x) = 0} ,
thus extending a result of Lau [9].

In this work, we define the C−farthest distance. Let us fix a closed convex
set C in Banach space X and assume intC 6= ∅, without loss of generality
suppose the unit ball is contained in C. For a bounded subset S of X and x
in X we define the C−farthest distance from x to S by

τ (S, x) = sup {ρ (x− y) : y ∈ S}

where ρ is the Minkowski gauge of C. A point s ∈ S is called C−farthest point
of S if there exists x ∈ X such that

τ (S, x) = ρ (x− s) .

We prove that if S is weakly compact then the set of all points in X which
have C−farthest points in X contains a dense Gδ of X, thus extending a result
of Lau [8].

It is easy to see the C−farthest distance Lipschitz-continuous.
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Proposition 1.1. The function x −→ τ (S, x) is 1−Lipschitz-continuous.

Proof. Let x, y ∈ X. Then it is easy to see that

τ (S, x)− τ (S, y) = τ (S, x− y + y)− τ (S, y) ≤ ρ (x− y)

By hypothesis, the unit ball is contained in C, then ρ (y) ≤ ‖y‖ for all y ∈ X.
Therefore

τ (S, x)− τ (S, y) ≤ ρ (x− y) ≤ ‖x− y‖, ∀x, y ∈ X

then we deduce that τ is 1−Lipschitz-continuous, and the proof is complete.

For a convex function f and x in X with f (x) finite, we define the subd-
ifferential of f at x by

∂−f (x) = {x∗ ∈ X∗ : < x∗, y − x >≤ f (y)− f (x) , ∀y ∈ X} .

For f ∈ X∗, write ρ∗ (f) := sup {f (x) : x ∈ C} .

Lemma 1.2. Let X be a Banach space and let S be a bounded subset in
X. Then for x ∈ X, each element x∗ of ∂−τ (S, x) we have:

1) < x∗, y >≤ ρ (y) , for all y ∈ X

2) ρ∗ (x∗) ≤ 1.

Proof. We have

τ (S, x + ty)− τ (S, x) = sup
z∈S

{ρ (x + ty − z)} − sup
u∈S

{ρ (x− u)}
≤ sup

z∈S
{ρ (x− z)}+ ρ (ty)− sup

u∈S
{ρ (x− u)}

= ρ (ty)

then for t > 0,
τ (S, x + ty)− τ (S, x)

t
≤ ρ (y) .

Let x∗ ∈ ∂−τ (S, x) . Since the function τ (S, x) is convex (as supremum of
such functions), then

< x∗, y − x > +τ (S, x) ≤ τ (S, y) , ∀y ∈ X
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which is equivalent to say that:

0 ≤ τ (S, x + ty)− τ (S, x)− < x∗, x + ty − x >, ∀y ∈ X, ∀t ∈ R

which implies that

0 ≤ τ (S, x + ty)− τ (S, x)
t

− < x∗, y >, ∀t > 0, ∀y ∈ X

≤ ρ (y)− < x∗, y >, ∀y ∈ X

hence
< x∗, y >≤ ρ (y) , ∀y ∈ X,

consequently

ρ∗ (x∗) := sup {< x∗, y > : y ∈ C} ≤ sup {ρ (y) : y ∈ C} ≤ 1

and the proof is complete.

Proposition 1.3. Let X be a Banach space and let S be a bounded
subset in X. Let x in X and x∗ in ∂−τ (S, x) . Then

−τ (S, x) ≤ inf
y∈S

< x∗, y − x > .

Proof. Let x in X and let x∗ in ∂−τ (S, x) . Then by Lemma 1.2

< x∗, y >≤ ρ (y) , ∀y ∈ X

then
< x∗, x− y >≤ ρ (x− y) , ∀y ∈ X

which is equivalent to :

−ρ (x− y) ≤< x∗, y − x > ∀y ∈ X

therefore
− sup

y∈S
ρ (x− y) ≤ inf

y∈S
< x∗, y − x >

concluding
−τ (S, x) ≤ inf

y∈S
< x∗, y − x >

and the proof is complete.
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2. C−farthest points

Recall that C be a norm closed, convex and 0 ∈ intC in Banach space
X. Without loss of generality assume that the unit ball of X contained in C.
Denote by ρ the Minkowski functional of C : ρ (x) := inf

{
λ > 0: xλ−1 ∈ C

}
.

For a bounded subset S in X and x ∈ X we define the C−farthest distance
from x to S by τ (S, x) = sup {ρ (x− y) : y ∈ S} .

In this section we shall prove the following :

Theorem 2.1. Let X be a Banach space. Let S be a weakly compact sub-
set in X. Then the set {x ∈ X : ρ (x− z) = τ (S, x) for some z ∈ S} contains
a dense Gδ of X. Furthermore, the set of C−farthest points of S is nonempty.

Thus, in the particular case when C is the unit ball the set

{x ∈ X : ‖x− z‖ = sup {‖x− y‖ : y ∈ S} for some z ∈ S}
contains a dense Gδ of X, this is exactly Lau’s theorem [8].

It is well known that every bounded, weakly closed subset S in reflexive
Banach space X is weakly compact. Then the set

D := {x ∈ X : ρ (x− z) = τ (S, x) for some z ∈ S}
contains a dense Gδ subset of X and hence the set of C−farthest points of S
is nonempty. For the same reasons, the set

A = {x ∈ X : ‖x− z‖ = sup {‖x− y‖ : y ∈ S} for some z ∈ S}
contains a dense Gδ subset of X and hence the set of farthest points of S is
nonempty.

We like to extend Asplund [1] result. In this direction we give the following
definition :

Definition 2.2. 1) The Minkowski function ρ is said to be locally uni-
formly rotund at x, if lim ρ (x− xn) = 0 whenever (xn) is a sequence in X is
such that lim ρ (xn) = ρ (x) and lim ρ (x + xn) = 2ρ (x) . If ρ is locally uni-
formly rotund at each point of X, we call ρ locally uniformly rotund or locally
uniformly convex (L.U.R. for short).

2) A point x in a closed convex set F is said to be strongly C−exposed
provided there exists x∗ 6= 0 in X∗, such that x∗ (x) = supF x∗ and for each
(xn) ⊂ F,

< x∗, xn >−→ sup
F

x∗ implies ρ (xn − x) −→ 0.
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Noting that the definition of local uniform rotundity for the gauge has
been introduced independently in [5].

Remark 2.3. Assume now that the gauge ρ is L.U.R. and let S be a
bounded set in X and x ∈ X has a C−farthest point in S, i.e. there is s ∈ S
such that ρ (x− s) = sup {ρ (x− y) : y ∈ S} . Then s is strongly C−exposed
point of the set x − ρ (x− s) C and s is thus a strongly C−exposed point of
S ⊂ x − ρ (x− s) C. In an other hand, by using the separation theorem, one
can show that any point of ∂C is a strongly C−exposed point of C.

Corollary 2.4. Let X be a reflexive Banach space. We assume that ρ
is locally uniformly convex. Then for every bounded, closed subset S in X,
the set

A = {x ∈ X : ρ (x− z) = τ (S, x) for some z ∈ S}
contains a dense Gδ subset of X and hence the set of C−farthest points of S
is nonempty.

Proof. By Remark 2.3 we deduce that, each C−farthest point of convS is
a strongly C−exposed point of convS and hence is contained in S. So that, the
sets of C−farthest points of S and convS coincide. We apply now Theorem
2.1 on convS and the proof is complete.

In the particular case where C is the unit ball we have Asplund [1] result:

Corollary 2.5. Let X be a reflexive Banach space with locally uniformly
convex norm. Then for every bounded, closed subset S in X, the set

A = {x ∈ X : ‖x− z‖ = sup {‖x− y‖ : y ∈ S} for some z ∈ S}

contains a dense Gδ subset of X and hence the set of farthest points of S is
nonempty.

Proof. The unit ball of X is convex with nonempty interior and ‖.‖ is just
its Minkowski gauge. The corollary is now a particular case of the Corollary
2.4.

Now its time to give the proof of Theorem 2.1. For n ∈ N, put

Fn =
{

x ∈ X, inf
y∈S

< x∗, y − x >≥ −τ (S, x) +
1
n

, for some x∗ ∈ ∂−τ (S, x)
}
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Proposition 2.6. Fn is a closed subset of X.

Proof. Let (xm) be a sequence in Fn which converges to an x in X. For each
m, choose x∗m ∈ ∂−τ (S, xm) such that infz∈S < x∗m, z−xm >≥ −τ (S, xm)+ 1

n
and by Lemma 1.2: ρ∗ (x∗m) ≤ 1.

Since the unit ball is contained in C, then

ρ (x) ≤ ‖x‖, ∀x ∈ X and ‖x∗m‖X∗ ≤ ρ∗ (x∗m) ≤ 1. (1)

Therefore, without loss of generality, we assume that (x∗m) converges weak∗

to x∗.
Let y ∈ X. Then :

| < x∗m, y − xm >− < x∗, y − x > | ≤
|< x∗m, y − xm > − < x∗m, y − x >|+ |< x∗m, y − x > − < x∗, y − x >| =

|< x∗m, x− xm >|+ |< x∗m − x∗, y − x >| ≤
ρ∗ (x∗m) ρ (xm − x) + |< x∗m − x∗, y − x >| ≤

‖xm − x‖+ |< x∗m − x∗, y − x >|

(the last inequality is by (1)).
This shows that the sequence (< x∗m, y − xm >) converges to < x∗, y−x > .

In the other hand, we have x∗m ∈ ∂−τ (S, xm) , then

< x∗m, y − x > +τ (S, xm) ≤ τ (S, y) , ∀y ∈ X,

hence it follows that (by passing to the limit) :

< x∗, y − x > +τ (S, x) ≤ τ (S, y) , ∀y ∈ X,

which implies that
x∗ ∈ ∂−τ (S, x) . (2)

In the other hand, by definition of xm, we have

< x∗m, z − xm >≥ −τ (S, xm) +
1
n

, ∀z ∈ S

hence
< x∗, z − x >≥ −τ (S, x) +

1
n

, ∀z ∈ S. (3)

By (2) and (3) we deduce that x ∈ Fn, and Fn is a closed subset of X.
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For x ∈ X, write r (x) = sup {‖x− z‖ : z ∈ S} .

Proposition 2.7. For each n, Fn has empty interior.

Proof. Suppose that for some n, Fn has nonempty interior, then there is a
ball U centered at y0 ∈ Fn of radius 2λr (y0) (where r (y0) = sup{‖x − y0‖ :
x ∈ S}) for some λ > 0 such that U ⊂ Fn. Let ε = λ

4(1+λ)n min {r (y0) , 1} .
Choose z0 in S such that

τ (S, y0) ≥ ρ (y0 − z0) > τ (S, y0)− ε > τ (S, y0) /2 (1)

and put

x0 = y0 + λ (y0 − z0) . (2)

Choose x1 in the segment [x0, y0] such that

‖x0 − x1‖ = ε. (3)

We have ‖x0 − y0‖ = λ ‖y0 − z0‖ ≤ λr (y0) < 2λr (y0) . So x0 and thus x1 ∈
U ⊂ Fn. We have x1 ∈ Fn, therefore by definition of Fn, there exists x∗1 ∈
∂−τ (S, x1) such that

inf
y∈S

{< x∗1, y − x1 >} ≥ −τ (S, x1) +
1
n

, (4)

since x∗1 ∈ ∂−τ (S, x1) , by Lemma 1.2

ρ∗ (x∗1) ≤ 1, (5)

by (1) we have τ (S, y0) < ρ (y0 − z0) + ε. So

τ (S, y0)− τ (S, x1) < ρ (y0 − z0) + ε− τ (S, x1) , (6)

by (2) we have

x0 − z0 = (1 + λ) (y0 − z0) , then
ρ (x0 − z0)

1 + λ
= ρ (y0 − z0) . (7)
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Combining (3), (4), (5), (6) and (7) we show :

τ (S, y0)− τ (S, x1) <
1

1 + λ
ρ (x0 − z0) + ε− τ (S, x1)

≤ 1
1 + λ

τ (S, x0) + ε− τ (S, x1)

=
1

1 + λ
sup {ρ (x0 − z) ; z ∈ S}+ ε− τ (S, x1)

≤ 1
1 + λ

[τ (S, x1) + ρ (x0 − x1)] + ε− τ (S, x1)

≤ 1
1 + λ

τ (S, x1) +
‖x0 − x1‖

1 + λ
+ ε− τ (S, x1)

<
1

1 + λ
τ (S, x1) + 2ε− τ (S, x1)

=
−λ

1 + λ
τ (S, x1) + 2ε

≤ λ

1 + λ

[
< x∗1, z0 − x1 > − 1

n

]
+ 2ε

≤ λ

1 + λ

[
< x∗1, z0 − x0 > − 1

n

]
+ 3ε

= < x∗1, y0 − x0 > − λ

(1 + λ) n
+ 3ε

≤ < x∗1, y0 − x1 > − λ

(1 + λ) n
+ 4ε

≤ < x∗1, y0 − x1 > .

Hence τ (S, y0) < τ (S, x1)+ < x∗1, y0 − x1 > and this contradicts x∗1 ∈
∂−τ (S, x1) . Thus concluding the proof of the proposition.

Now we have all tools to give the proof of Theorem 2.1.

3. Proof of Theorem 2.1

Proof. For each n ∈ N, put

Fn =
{

x ∈ X, inf
y∈S

< x∗, y − x >≥ −τ (S, x) +
1
n

, for some x∗ ∈ ∂−τ (S, x)
}

and
F =

⋃
n

Fn.
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Let D = X\F = X\⋃
n Fn =

⋂
n (X\Fn)

By Propositions 2.6 and 2.7, for all n, Fn is closed and has empty interior,
then for all n,X\Fn is open and a dense subset in X. Hence D is a dense Gδ

in X.
For finishing the proof, we need to show that the set D is contained in the

set
{x ∈ X : ρ (x− z) = τ (S, x) for some z ∈ S} .

Let x ∈ D and let x∗ ∈ ∂−τ (S, x) . Then x is not in Fn for all n.
Which means that inf {< x∗, z − x > : z ∈ S} = −τ (S, x) . Since S is a weakly
compact subset in X, there exists a point z0 in S such that −τ (S, x) =<
x∗, z0 − x > . Therefore

τ (S, x) = sup
y∈S

ρ (x− y) ≥ ρ (x− z0) ≥< x∗, x− z0 >= τ (S, x)

Then, there is z0 in S such that τ (S, x) = ρ (x− z0) , and the theorem is
proved.

The following definition it was introduced in [6]:

Definition 3.1. We say that the gauge ρ has the C−intersection prop-
erty, if for every bounded, closed and convex subset S in X and x0 in X\S,
there exists r > 0 and x1 in X such that ρ (x1, r) ⊃ C and x0 /∈ ρ (x1, r) where
ρ (x1, r) = {x ∈ X : ρ (x1 − x) ≤ r}

Remark 3.2. Repeating the same technics as in ([3] p. 55) one can prove
the following: If the gauge ρ of C is Fréchet differentiable in X \ {0} , then ρ
has the C−intersection property.

In the particular case where C is the unit ball this property was introduced
by Mazur [11] and shown to hold for all Banach spaces having a Fréchet
differentiable norm ([3] p. 55).

Proposition 3.3. Let X be a Banach space. We assume that the Minkowski
gauge ρ of C has the C−intersection property. Let S be a weakly compact con-
vex subset in X. Then S is a closed convex hull of points which are C−farthest
points in S to some points in X.

Therefore we deduce that, when C is the unit ball of X, then S is a closed
convex hull of points which are farthest points in S to some points in X, this
is exactly the Edelstein’s theorem [4].

We give now the proof of Proposition 2.10.
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Proof. Let Far (S) be the set of all points in S which are C−farthest to
some points in X. We shall show that S = convFar (S) .

By absurd, assume that there is s ∈ S\conv (Far (S)) . By hypothesis
the Minkowski gauge ρ has the C−intersection property, then there is x0 ∈
X and r > 0 such that S ⊂ ρ (x0, r) and s /∈ ρ (x0, r) where ρ (x0, r) =
{x ∈ X : ρ (x0 − x) ≤ r} . Then ρ (x0 − s) > r. Let ε = ρ(x0−s)−r

4 > 0. Now
Theorem 2.1 confirm that there exists x1 ∈ X such that

‖x0 − x1‖ < ε =:
ρ (x0 − s)− r

4
, (1)

and x1 has a C−farthest point s1 ∈ Far (S) . Since s ∈ S, then

ρ (x1 − s) ≤ ρ (x1 − s1) (2)

combining (1), (2) and the fact that ρ (x) ≤ ‖x‖ ∀x ∈ X, we show that

ρ (x0 − s1) = ρ (x0 − x1 + x1 − s1)
≥ ρ (x1 − s1)− ρ (x0 − x1)
≥ ρ (x1 − s)− ρ (x0 − x1)
= ρ (x1 − x0 + x0 − s)− ρ (x0 − x1)
≥ ρ (x0 − s)− ρ (x1 − x0)− ρ (x0 − x1)
≥ ρ (x0 − s)− 2 ‖x0 − x1‖
≥ ρ (x0 − s)− 2ε

= 4ε + r − 2ε

= 2ε + r > r

a contradiction with S ⊂ ρ (x0, r) = {x ∈ X : ρ (x0 − x) ≤ r} . Thus S =
conv (Far (S)) and the proof is complete.
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[6] Jiménez Sevilla, M., Moreno, J.P., On denseness of certain norms in
Banach spaces, Bull. Austral. Math. Soc., 54 (1996), 183 – 196.

[7] Kutzarova, D., Rolewicz, S., On drop property for convex sets, Arch.
Math., 56 (1991), 501 – 511.

[8] Lau, K.S., Farthest points in weakly compact sets, Israel. Journal. Math.,
22 (2) (1975), 168 – 174.

[9] Lau, K.S., Almost Chebychev subset in reflexive Banach spaces, Indiana Univ.
Math. J., 27 (1978), 791 – 795.

[10] Maaden, A., C−nearest points and the drop property, Collect. Math., 46 (3)
(1995), 289 – 301.
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