
E extracta mathematicae Vol. 16, Núm. 2, 153 – 210 (2001)
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1. Introduction

The theory of characteristically nilpotent Lie algebras constitutes an in-
dependent research object since 1955. Until then, most studies about Lie
algebras were oriented to the classical aspects of the theory, such as semisim-
ple and reductive Lie algebras [92]. Though there exists a precedent in the
theory of nilpotent Lie algebras; the Ph.D. thesis of K. Umlauf [95] in 1891,
their structure was practically unknown and only classical results like Engel’s
theorem were known. From 1939 on, when Lie theorists were seeking from
adequate presentations of the semisimple Lie algebras in terms of generators
and relations, N. Jacobson proved that the exceptional complex simple Lie
algebra G2 of dimension 14 could be presented as the algebra of derivations
of the Cayley algebra [47]. This result increased the interest in analyzing the
derivations of an arbitrary Lie algebra. However, it was not until the fifties
when the first determining results about derivations of nilpotent Lie algebras
were obtained. It was proven that any nilpotent Lie algebra has an outer
derivation, i.e., there exists at least one derivation which is not the adjoint
operator for a vector of the algebra. Two years earlier, E. V. Schenkman [85]
had published his derivation tower theorem for centerless Lie algebras, which
described in a nice manner the derivation algebras. This theory was not ap-
plicable to the nilpotent algebras, as the adjoint representation is not faithful.
This fact led to the assumption that the structure of derivations for nilpotent
Lie algebras is much more difficult than for classical algebras. Again, Jacobson
proved in 1955 that any Lie algebra over a field of characteristic zero which
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has nondegenerate derivations is nilpotent. In the same paper [48] he asked
for the converse. This result is assumed to be the origin of the theory of char-
acteristically nilpotent Lie algebras. Dixmier and Lister [29] gave a negative
answer to the converse of Jacobson’s theorem. They defined a generaliza-
tion of the central descending sequence and called the algebras satisfying the
nullity of a power characteristically nilpotent. The example of Dixmier and
Lister constituted the milestone for a new class of Lie algebras which seem, in
appearance, to be scarce. The first paper about the structure of characteris-
tically nilpotent Lie algebras, short CNLA, is due to Leger and Tôgô in 1959.
They proved the equivalence of the sequence condition of Dixmier and Lister
and the nilpotence of the Lie algebra of derivations. Although this paper does
not give any additional example of such an algebra, it reduces the search to
the class of nilpotent Lie algebras. On the other side, the deduced properties
of a CNLA excluded the 2-step nilpotent or metabelian Lie algebras. The last
author, S. Tôgô, published in 1961 an excellent work which contained much
of the information known about derivation algebras of Lie algebras. Among
others, he introduced special classes of algebras which were shown to be non
CNLA [93]. The importance of CNLAs within the variety of nilpotent Lie
algebra laws was soon recognized by the author, and he also formulated an
interesting question which is nowadays not satisfactorily solved: the problem
of Tôgô. He asked for the existence of CNLA of derivations, this is, algebras
for which both the derivations and the derivations of these are nilpotent. Very
little is known about the general structure of such Lie algebras, though its ex-
istence has been verified by various authors [8]. The deformations theory for
algebraic structures of M. Gerstenhaber in 1964 [38], originally developed to
study the rigidity of algebraic structures, has become since then a powerful
tool to determine the nilpotence of derivations.

M. Vergne [96] applied in 1966 the cohomology theory of Lie algebras [60]
to the study of the variety of nilpotent Lie algebras, obtaining in particular
interesting results about its irreducible components. In particular, she showed
the existence of only two naturally graded filiform Lie algebras, Ln and Qn,
the second existing only in even dimension. In particulñar, the first algebras
has been a central research object for the last thirty years. Studying its de-
formations, lots of families of CNLA have been constructed [52]. In 1970 J.
L. Dyer gave a nine dimensional example of CNLA [33], which was interesting
in its own as it had an unipotent automorphism group. This property is not
satisfied by the original example of Dixmier and Lister, and showed than even
CNLA can have quite different behaviours. By that time, it was perfectly
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known that such algebras could exist only from dimension 7 on, as a conse-
quence of the classification in 1958 of the six dimensional algebras [75]. In
1972 G. Favre discovered the lowest dimensional CNLA known until then [35],
which additionally was of the same nature as Dyer’s example. At the same
time, G. D. Leger and E. Luks investigated the metabelian Lie algebras and
proved several results about their rank, and establishing that rank one alge-
bras were given if the existence of a characteristic ideal containing the derived
subalgebra is assured. These results can be interpreted as a constructive proof
that the original example of 1957 is the known CNLA with lowest character-
istic sequence. The last author applied in 1976 computational methods to
prove the existence of CNLA in any dimension greater or equal to seven. Four
years later, S. Yamaguchi constructed families of CNLA in arbitrary dimen-
sion, constructions that have been completed and generalized in later years
[52]. The topological study of the variety of Lie algebra laws led R. Carles [18]
to study the topological properties of CNLA. Among other results he states
that the set of CNLA is constructible for n ≥ 7. For the particular dimen-
sion 7, he also proves that CNLA do not form an open set. Recently [8] this
result has been generalized to any dimension. Another interesting approach
to the CNLA has been deformation theory applied to the Borel subalgebras
of complex simple Lie algebras, like done by Y. B. Khakimdjanov in 1988 to
prove that almost all deformations of the nilradical of Borel subalgebras of
complex simple Lie algebras are characteristically nilpotent. This has shown
that these algebras are in fact in abundance within the variety of nilpotent
laws. M. Goze and the last cited author [40] proved, in 1994, that for any
dimension n ≥ 9 an irreducible component of the filiform variety Fn contains
an open set consisting of CNLA.

Filiform Lie algebras, specifically the model filiform Lie algebra Ln, has
been also the fundamental source for constructing families of CNLAs. In par-
ticular, its cohomology has been calculated, which has allowed to describe its
deformations in a precise manner and characterize those deformations which
are characteristically nilpotent [54]. Recently, we have turned our interest to
nilpotent Lie algebras which structurally “look like Qn”. As known, this al-
gebra cannot appear in odd dimension. This is a consequence of the so called
centralizer property [22], which codifies information about the structure of
the commutator subalgebra and the ideals of the central descending sequence.
Now the centralizer property can be generalized to any naturally graded nilpo-
tent Lie algebra, and defines a class of algebras which can be interpreted as
those which are the “easiest nilpotent Lie algebras to deform for obtaining
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CNLAs”. The key to this is extension theory combined with deformation
theory. This approach also leads to certain questions about the rigidity of a
nilpotent Lie algebra. In 1970 Vergne postulated the nonexistence of nilpotent
Lie algebras that are rigid in the variety Ln for n 6= 1. In his study about
the structure of rigid Lie algebras [18], Carles established that if a nilpotent
Lie algebra is rigid, then it necessarily must be a CNLA. The strongness of
this result seems to confirm the validity of the conjeture, although there is no
known procedure to prove it.

Finally, we review some results about affine structures over Lie algebras.
This kind of structures are of great importance not only for purposes of co-
homology theory [15], but also for representation theory of nilpotent Lie al-
gebras. The interesting point is that CNLA can admit an affine structure,
such as it was proven for the example of Dixmier and Lister by Scheunemann
[87] in 1974. Although practically nothing is known about CNLA with affine
structures, the cohomological method developed by Burde in [15] could be an
important source for studying these algebras.

2. Generalities

In this section we resume the elementary facts about Lie algebras that will
be used thorughout the paper. Although it is often unnecessary to specify the
base field, we will asume here that all Lie algebras are complex.

Definition. Let g be a finite dimensional vectorial space over C. A Lie
algebra law over Cn is a bilinear alternated mapping µ ∈ Hom(Cn × Cn,Cn)
which satisfies the conditions

(1) µ (X, X) = 0 for all X ∈ Cn;

(2) µ (X, µ (Y, Z))+µ (Z, µ (X, Y ))+µ (Y, µ (Z, X)) = 0 for all X, Y, Z ∈ Cn

(Jacobi identity).

If µ is a Lie algebra law, the pair g = (Cn, µ) is called Lie algebra. From now
on we identify the Lie algebra with its law µ.

Remark. We say that µ is the law of g, and where necessary we use the
bracket notation to describe the law:

[X, Y ] = µ (X, Y ) ∀ X,Y ∈ g .

The nondefined brackets are zero or obtained by symmetry.
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Definition. Given an ideal I of g, we call centralizer of I in g to the
subalgebra

CgI = {X ∈ g | µ (X, I) = 0} .

To any Lie algebra we can associate the two following sequences:

D0g = g ⊃ D1g = [g, g] ⊃ · · · ⊃ Dkg =
[
Dk−1g, Dk−1g

]
⊃ · · ·

C0g = g ⊃ C1g = D1g ⊃ C2g =
[
C1g, g

] ⊃ · · · ⊃ Ckg =
[
Ck−1g, g

]
⊃ · · ·

called respectively derived and descending central sequences of g.

Definition. Let g be a Lie algebra. We say that

(1) g is solvable if there exists an integer k ≥ 1 such that Dkg = {0};
(2) g is nilpotent if there exists an integer (called nilindex n (g) of g) k ≥ 1

such that Ckg = {0}.

Definition. An n-dimensional nilpotent Lie algebra is called filiform if

dimCkg = n− k − 1, 1 ≤ k ≤ n− 1 .

Remark. Calling pi = dim
(

Ci−1g
Cig

)
for 1 ≤ pi ≤ n (g), the type of the

nilpotent Lie algebra is the sequence {p1, . . . , pr}. Then a filiform algebra
corresponds to those of type {2, 1, . . . , 1} [97].

We recall the laws for the (n + 1)-dimensional filiform Lie algebras Ln and
Qn, which are basically the only filiform Lie algebras we have to deal with
here:

• Ln (n ≥ 3): [X1, Xi] = Xi+1, 2 ≤ i ≤ n, over the basis {X1, . . . , Xn+1}.
• Q2m−1 (m ≥ 3): [X1, Xi] = Xi+1, 2 ≤ i ≤ 2m−1, and [Xj , X2m+1−j ] =

(−1)jX2m, 2 ≤ j ≤ m, over the basis {X1, . . . , X2m}.

Definition. A Lie algebra g is graded over Z if it admits a decomposition

g =
⊕

k∈Z
gk

where the gk are C-subspaces of g which satisfy [gr, gs] ⊂ gr+s, r, s ∈ Z.
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Observe that any graduation defines a sequence Sk = Fk (g) =
⊕

t≥k gt

with the properties

(1) g =
⊔

Sk ,

(2) [Si, Sj ] ⊂ Si+j ∀i, j ,

(3) Si ⊂ Sj si i > j .

Definition. A family {Si} of subspaces of g define a filtration (descend-
ing) over g if it satisfies the above properties (1)-(3). The algebra is called
filtered.

The construction can be reversed, i.e., any filtration defines a graduation
by taking gk = Sk−1

Sk
for k ≥ 1. The graduation is called associated to the

filtration {Si} and it defines a Lie algebra.

Definition. A nilpotent Lie algebra is called naturally graded if g '
gr (g), where gr (g) is the graduation associated to the filtration induced in g

by the central descending sequence.

It follows immediately that both Ln and Qn are naturally graded. They
are in fact the only filiform Lie algebras having this property [97].

Definition. A derivation f of a Lie algebra g is a linear mapping f : g →
g satisfying

[f(X), Y ] + [X, f(Y )]− f [X,Y ] = 0 ∀ (X,Y ) ∈ g2 .

We denote by Der g the set of derivations of g. It is a Lie subalgebra of End g.

Proposition. For all X in g, the endomorphism adX is a derivation of g.

Definition. The derivations f of g which are of type f = adX for X ∈ g

are called inner derivations.

2.1. Cohomology of Lie Algebras. There exists a general study of
the cohomology of Lie algebra by considering the cohomology with values on
a g-module. See for example references [60].

Let g be a Lie algebra. A p-dimensional cochain of g (with values in g) is
a p-linear alternating mapping of gp in g (p ∈ N∗). A 0-cochain is a constant
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function from g to g. We denote by Cp (g, g) as the space of the p-cochains
and

C∗ (g, g) =
⊕

p≥0

Cp (g, g) .

We can provide Cp (g, g) of a g-module structure by putting

(XΦ) (X1, . . . , Xp) = [X, Φ(X1, . . . , Xp)]−
∑

1≤i≤p

Φ(X1, . . . , [X,Xi] , . . . , Xp)

for all X1, . . . , Xp ∈ g.
On the space C∗ (g, g) we define the endomorphism

δ : C∗ (g, g) → C∗ (g, g)
Φ → δΦ

by putting δΦ(X) = X.Φ if Φ ∈ C0 (g, g) and

δΦ(X1, . . ., Xp+1) =
∑

1≤s≤p+1

(−1)s+1 (Xs.Φ) (X1, . . . , X̂s, . . . , Xp+1)

+
∑

1≤s≤t≤p+1

(−1)s+t Φ([Xs, Xt] , X1, . . . , X̂s, . . . , X̂t,..., Xp+1)

if Φ ∈ Cp (g, g), p ≥ 1.
By this definition, δ (Cp (g, g)) ⊂ Cp+1 (g, g) and we can verify that

δ ◦ δ = 0.

For all p ≥ 1 we denote

Zp(g, g) = Ker d
∣∣
Cp(g,g) , Bp(g, g) = Im d

∣∣
Cp(g,g)

and Hp(g, g) = Zp(g, g)/Bp(g, g). This quotient space is called the cohomol-
ogy space of g of degree p (with values in g). For p = 0 we put B0(g, g) = {0}
and H0(g, g) = Z0(g, g). This last space can be identified to the space of
all g-invariant elements that is {X ∈ g | adY (X) = 0 ∀ Y ∈ g}. Then
Z0(g, g) = Z(g) (the center of g).
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2.1.1. The Space H1 (g, g). We have Z1(g, g) = {f : g → g | δf = 0}.
But δf (X,Y ) = [f (X) , Y ] + [X, f (Y )]− f [X, Y ]. Then Z1 (g, g) is nothing
but the algebra of derivations of g:

Z1 (g, g) = Der g .

It is the same for:
B1 (g, g) = {adX | X ∈ g} .

Thus the space H1 (g, g) can be interpreted as the set of the outer derivations
of the Lie algebra g.

Let I be an ideal of g. We consider the cochains ϕ : Ip → g on I with values
in g. For these cochains we can also define, by restriction, the coboundary
operator δ. As I is an ideal of g, H1 (g, g) is a g-module. So we can consider
the cohomology space H∗ (I, g).

A p-cochain ϕ of Cp (I, g) is g-invariant if it satisfies:

Xϕ (X1, . . . , Xp) = [X, ϕ (X1, . . . , Xp)]

−
∑

1≤i≤p

ϕ (X1, . . . , Xi−1, [X, Xi]] , . . . , Xp) = 0 .

We denote by C∗ (I, g)g the set of cochains on I which are g-invariant and
H∗ (I, g)g the correspondent cohomology space. Each element ϕ of Hp (I, g)g

has a representative which is the restriction to I of a cochain Ψ in Cp (g, g)
such that dψ ∈ (

g/I, gI
)

where gI = {X ∈ g | [X, Y ] = 0 ∀ Y ∈ I}. This
element dψ does not depend upon the choice of the representative of ϕ. Let
tp+1be the homomorphism so defined:

tp+1 : Hp (I, g)g → Hp+1
(
g/I, gI

)
.

We define an exact sequence:

0 → Hp
(
g/I, gI

) lp−→ Hp (g, g)
rp−→ Hp (I, g)g

rp+1−→ Hp+1
(
g/I, gI

) → Hp+1 (g, g)

where rp is the homomorphism restriction and lp is defined by looking upon
the cochains of g/I in gI as cochain of g in g.

Example. We suppose that codim (I) = 1. Then dim g/I = 1 and
Cp (g/I, g) = 0 for p ≥ 2. Thus 0 → 0 → H2 (g, g) → H2 (I, g)g → 0
and we have

H2 (g, g) = H2 (I, g)g .
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2.2. The Spaces H2 (g,C). Recall that the space H2 (g,Cp) can be in-
terpreted as the space of classes of p-dimensional central extensions of the Lie
algebra g. We recall the elementary facts:

Let g be an n-dimensional nilpotent Lie algebra with law µ0. A central
extension of g by Cp is an exact sequence of Lie algebras

0 → Cp → ḡ → g → 0

such that Cp ⊂ Z(ḡ). Let α be a cocycle of the De Rham cohomology
Z2 (g,Cp). This gives the extension

0 → Cp → Cp ⊕ g → g → 0

with associated law µ = µ0 + α defined by

µ ((a, x) , (b, y)) = (αµ0 (x, y) , µ0(x, y)) .

In the following we are only interested in extensions of C by g, i.e, extensions of
degree one. It is well known that the space of 2-cocycles Z2 (g,C) is identified
with the space of linear forms over

∧2 g which are zero over the subspace Ω:

Ω := 〈µ0 (x, y) ∧ z + µ0 (y, z) ∧ x + µ0 (z, x) ∧ y〉C .

The extension classes are defined modulus the coboundaries B2 (g,C). This
allows to identify the cohomology space H2 (g,C) with the dual of the space
Ker λ

Ω , where λ ∈ Hom(
∧2 g, g) is defined as

λ (x ∧ y) = µ0 (x, y) x, y ∈ g .

In fact we have H2 (g,C) = Ker λ
Ω for the 2-homology space, and as H2 (g,C) =

HomC (H2 (g,C) ,C) the assertion follows.

Notation. Let ϕij ∈ H2 (g,C) the cocycles defined by

ϕij (Xk, Xl) = δikδjl .

Observe that a cocycle ϕ can be written as a linear combination of the
preceding cocycles. We have:

Lemma.
∑

aijϕij = 0 if and only if
∑

aij (Xi ∧Xj) ∈ Ω.



162 j.m. ancochea, r. campoamor

Let g be an n-dimensional nilpotent Lie algebra. The subspace of central
extensions is noted by Ec,1 (g). It has been shown that this space is irreducible
and constructible. However, for our purpose this space is too general. We only
need certain cohomology classes of this space.

Notation. For k ≥ 2 let

H2,t
k (g,C) =

{
ϕij ∈ H2 (g,C) | i + j = 2t + 1 + k

}
, 1 ≤ t ≤

[
n− 3

2

]
,

H
2, t

2
k (g,C) =

{
ϕij ∈ H2 (g,C) | i + j = t + 1 + k

}
,

t ∈ {1, . . . ,
[

n−3
2

]}
t ≡ 1 (mod 2)

.

These cocycles are essential to determine the central extensions which are
additionally naturally graded. If Ec,1 (g) denotes the central extensions that
are naturally graded, we consider the subspaces

Et,k1,...,kr
c,1 (g) =

{
µ ∈ Ec,1(g) | µ = µ0 +

(∑
ϕki

ij

)
, ϕki

ij ∈ H2,t
ki

(g,C)
}

,

E
t
2
,k1,...,kr

c,1 (g) =
{

µ ∈ Ec,1(g) | µ = µ0 +
(∑

ϕki
ij

)
, ϕki

ij ∈ H
2, t

2
ki

(g,C)
}

,

where 0 ≤ kj ∈ Z, j = 1, . . . , r.
Given a basis {X1, . . . , Xn, Xn+1} of µ belonging to any of these spaces,

the Lie algebra law is defined by:

µ (Xi, Xj) = µ0 (Xi, Xj) +
(∑

ϕk
ij

)
Xn+1, 1 ≤ i, j ≤ n (Xi, Xj) ∈ g2 .

Lemma. As vector spaces, the following identity holds:

Ec,1 (g) =
∑

t,k

Et,k1,...,kr
c,1 (g) + E

t
2
,k1,...,kr

c,1 (g) .

This follows easily. Observe that, though t is bounded by the dimension,
k ≥ 2 has no restrictions. However, the sum is finite, for the spaces Et,k1,...,kr

c,1

are zero for almost any choice (k1, . . . , kr).
Given the Lie algebra g = (Cn, µ0), we have the associated graduation

gr (g) =
∑n(g)

i=1 gi, where gi = Ci−1g
Cig and n (g) is the nilindex of g. Indepen-

dently of g being naturally graded or not, any vector X has a fixed position
in one of the graduation blocks. The study of the central extensions which
preserve a graduation is reduced to the study of the position of the adjoined
vector Xn+1. Note that in this sense the cocycles ϕij ∈ H2,t

k (g,C) codify this
information.
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2.3. The Algebraic Variety Ln. A n-dimensional complex Lie alge-
bra can be seen as a pair g = (Cn, µ) where µ is a Lie algebra law on Cn, the
underlying vector space to g is Cn and µ the bracket of g. We will note by
Ln the set of Lie algebra laws on Cn. It is a subset of the vectorial space of
alternating bilinear mappings on Cn.

Definition. Two laws µ and µ′ ∈ Ln are said isomorphic, if there is
f ∈ Gl(n,C) such that

µ′(X, Y ) = f ∗ µ(X,Y ) = f−1(µ(f(X), f(Y )))

for all X, Y ∈ Cn.

In this case, the Lie algebras g = (Cn, µ) and g′ = (Cn, µ′) are isomorphic.
The set O(µ) of the laws isomorphic to µ is called the orbit of µ.

Let us fix a basis {e1, e2, · · · , en} of Cn. The structural constants of µ ∈ Ln

are the complex numbers Ck
ij given by

µ(ei, ej) =
n∑

k=1

Ck
ijek.

As the basis is fixed, we can identify the law µ with its structural constants.
These constants satisfy:

(I)

{
Ck

ij = −Ck
ji , 1 ≤ i < j ≤ n , 1 ≤ k ≤ n ,

∑n
l=1 C l

ijC
s
lk + C l

jkC
s
li + C l

kiC
s
jl = 0 , 1 ≤ i < j < k ≤ n , 1 ≤ s ≤ n .

Then Ln appears as an algebraic variety embedded in the linear space of

alternating bilinear mapping on Cn, isomorphic to C
n3−né

2 .
Let be µ ∈ Ln and consider the Lie subgroup Gµ of Gl(n,C) defined by

Gµ = {f ∈ Gl(n,C) | f ∗ µ = µ}.
Its Lie algebra is the Lie algebra of derivations of µ. Let be O(µ) the orbit of
µ respect the action of Gl(n,C). It is isomorphic to the homogeneous space
Gl(n,C)/Gµ. Then it is a C∞ differential manifold of dimension

dimO(µ) = n2 − dimDer(µ).

It is not difficult to see that the orbit O(µ) of µ is a differentiable manifold
[96] embedded in Ln defined by

O(µ) =
Gl(n,C)

Gµ
.
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We consider a point µ′ close to µ in O(µ). There is f ∈ Gl(n,C) such that
µ′ = f ∗µ. Suppose that f is close to the identity: f = Id+εg, with g ∈ gl(n).
Then

µ′(X, Y ) = µ(X, Y ) + ε[−g(µ(X,Y )) + µ(g(X), Y ) + µ(X, g(Y ))]

+ ε2[µ(g(X), g(Y ))− g(µ(g(X), Y ) + µ(X, g(Y ))− gµ(X,Y )] .

Then
µ′(X, Y )− µ(X, Y )

ε
−→ε→0 δµg(X,Y ) .

Among the possible orbits, those which are open are specially important for
the study of the variety, as we will see later.

Definition. Let µ be a law such that the orbit O(µ) is open in Ln. Then
µ is called a rigid law.

Proposition. The tangent space to the orbit O(µ) at the point µ is the
space B2(µ, µ) of the 2-cocycles of the Chevalley cohomology of µ.

Let µ be in Ln and consider a bilinear alternating mapping µ′ = µ + tϕ
where t is a small parameter. Then µ′ ∈ Ln for all t if and only if we have:

δϕ = 0
ϕ ∈ Ln

}
.

Proposition. A straight line ∆ passing throught µ is a tangent line in
µ to Ln if its direction is given by a vector of Z2(µ, µ).

Suppose that H2(µ, µ) = 0. Then the tangent space to O(µ) at the point
µ is the set of the tangent lines to Ln at the point µ. Thus the tangent
space to Ln exists in this point and it is equal to B2(µ, µ). The point µ is a
nonsingular point. We deduce of this that the inclusion O (µ) ↪→ Ln is a local
homeomorphism. This property is valid for all points of O(µ), then O(µ) is
open in Ln (for the induced metric topology).

Proposition. Let µ ∈ Ln such that H2(µ, µ) = 0. If the algebraic variety

Ln is provided with the metric topology induced by C
n3−n2

2 , then the orbit
O(µ) is open in Ln.

This geometrical approach shows the problems underlying to the existence
of singular points in the algebraic variety Ln [21].
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2.4. Formal Deformations. Let be ϕ,ψ ∈ C2(Cn,Cn) two skew-
symmetric bilinear maps on Cn. We define the trilinear mapping ϕ ◦ ψ on
Cn by

ϕ ◦ ψ(X, Y, Z) = ϕ(ψ(X, Y ), Z) + ϕ(ψ(Y, Z), X) + ϕ(ψ(Z,X), Y )
+ ψ(ϕ(X, Y ), Z) + ψ(ϕ(Y, Z), X) + ψ(ϕ(Z,X), Y )

for all X,Y, Z ∈ Cn. Using this notation, the Lie bracket is written µ ◦µ = 0.
Let be µ0 ∈ Ln and ϕ ∈ C2(Cn,Cn). Then ϕ ∈ Z2(µ0, µ0) if and only if

µ0 ◦ ϕ + ϕ ◦ µ0 = δµ0ϕ = 0.

Definition. A (formal) deformation of a law µ0 ∈ Ln is a formal sequence
with parameter t

µt = µ0 +
∞∑

t=1

tiϕi

where the ϕi are skew-symmetric bilinear maps Cn × Cn → Cn such that µt

satisfies the formal Jacobi identity µt ◦ µt = 0.

Let us develop this last equation

µt ◦ µt = µ0 ◦ µ0 + tδµ0ϕ1 + t2(ϕ1 ◦ ϕ1 + δµ0ϕ2)

+ t3(ϕ1 ◦ ϕ2 + ϕ2 ◦ ϕ1 + δµ0ϕ3) + · · · ,

and the formal equation µt ◦ µt = 0 is equivalent to the infinite system

µ0 ◦ µ0 = 0
δµ0ϕ1 = 0

ϕ1 ◦ ϕ1 = −δµ0ϕ2

ϕ1 ◦ ϕ2 + ϕ2 ◦ ϕ1 = −δµ0ϕ3
...

ϕp ◦ ϕp +
∑

1≤i≤p−1 ϕi ◦ ϕ2p−i + ϕ2p−i ◦ ϕi = −δµ0ϕ2p∑
1≤i≤p ϕi ◦ ϕ2p+1−i + ϕ2p+1−i ◦ ϕi = −δµ0ϕ2p+1

...





. (II)

Then the first term ϕ1 of a deformation µt of a Lie algebra law µ0 belongs
to Z2(µ0, µ0). This term is called the infinitesimal part of the deformation
µt of µ0.
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Definition. A formal deformation of µ0 is called linear deformation if it
is of lenght one, that is of the type µ0 + tϕ1 with ϕ1 ∈ Z2(µ0, µ0).

For a such deformation we have necessarily ϕ1 ◦ ϕ1 = 0 that is ϕ1 ∈ Ln.
Now consider ϕ1 ∈ Z2(µ0, µ0) for µ0 ∈ Ln. It is the infinitesimal part of a

formal deformation of µ0 if and only if there are ϕi ∈ C2(µ0, µ0), i ≥ 2, such
that the system (II) is satisfied.

Proposition. If H3(µ0, µ0) = 0 then every ϕ1 ∈ Z2(µ0, µ0) is an in-
finitesimal part of a formal deformation of µ0.

In fact, if ϕ1 ∈ Z2(µ0, µ0) then ϕ1 ◦ ϕ1 ∈ Z3(µ0, µ0). If H3(µ0, µ0) = 0,
then it exits ϕ2 ∈ C2(µ0, µ0) such that ϕ1 ◦ ϕ1 = δϕ2. In this case ϕ1 ◦ ϕ2 +
ϕ2 ◦ ϕ1 ∈ Z3(µ0, µ0). It exits ϕ3 ∈ C2(µ0, µ0) such that

ϕ1 ◦ ϕ2 + ϕ2 ◦ ϕ1 = δϕ3.

As this we can solve step by step all the equations of the system (II).
Let us consider two formal deformations µ1

t and µ2
t of a law µ0. They are

called equivalent if there exits a formal linear isomorphism Φt of Cn of the
following form:

Φt = Id +
∑

i≥1

tigi

with gi ∈ gl(n,C) such that

µ2
t (X, Y ) = Φ−1

t (µ1
t (Φt(X), Φt(Y ))

for all X; Y ∈ Cn.

Definition. A deformation µt of µ0 is called trivial if it is equivalent to µ0.

Let µ1
t = µ0 +

∑∞
t=1 tiϕi and µ2

t = µ0 +
∑∞

t=1 tiψi be two equivalent
deformation of µ0. It is easy to see that

ϕ1 − ψ1 ∈ B2(µ0, µ0).

Thus we can consider that the set of infinitesimal parts of deformations is
parametrized by H2(µ0, µ0).
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2.5. Characteristic Sequence of a Nilpotent Lie Algebra. Let
n be a complex finite dimensional Lie algebra. Consider the derived subalgebra
C1n. Let Y ∈ n− C1n be a vector of n which does not belong to the derived
subalgebra. Consider the ordered sequence

c(Y ) = (h1, h2, · · · , )

h1 ≥ h2, . . . ,≥ hp, where hi is the dimension of the ith Jordan block of the
nilpotent operator adY . As Y is necessary an eigenvector of adY , then hp = 1.
Let Y1 and Y2 be in n − C1n. Let be c(Y1) = (h1, . . . , hp1 = 1) and c(Y2) =
(k1, . . . , kp2 = 1) the corresponding sequences. We have h1 ≥ h2 ≥ · · · ≥ hp1

and k1 ≥ k2 ≥ · · · ≥ kp2 with h1 + · · · + hp1 = k1 + · · · + kp2 = n = dim n.
We will say that c(Y1) ≥ c(Y2) if there is i such that h1 = k1, h2 = k2,
. . . , hi−1 = ki−1, hi > ki. This defines a total order relation on the set of
sequences c(Y ) (lexicografic order) and we can consider the maximum of these
sequences.

Definition. The characteristic sequence of the nilpotent Lie algebra n is
the following sequence:

c(n) = sup
{
c(Y ) | Y ∈ n− C1n

}
.

It is an invariant up to isomorphism of n, fintroduced by Ancochea and
Goze in [5]. A vector X ∈ n − C1n such that c(X) = c(n) is called a charac-
teristic vector of n.

This invariant is well adapted for study the deformations of nilpotent Lie
algebras. In fact let n and n′ be two n-dimensional complex nilpotent Lie
algebras and µ and µ′ the corresponding laws. Suppose that µ′ is a pertur-
bation of µ, that is, in a fixed basis, the structural constant of µ′ are close of
those of µ. In this case, the linear operator adµ′Y is a perturbation (in the
classical sense) of the linear operator adµY . As these two operators are nilpo-
tent, the restriction of adµ′Y to the first Jordan block Jh1of adµY satisfies
(adµ′Y | Jh1)

h1−2 6= 0. Then, the first Jordan block of adµ′Y has a dimension
greater or equal than h1. This proves that

c(n′) ≥ c(n).

Proposition. If n and n′ are two n-dimensional complex nilpotent Lie
algebras such that n′ is a perturbation of n, then

c(n′) ≥ c(n).
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This last property allowed to determine, for example, all the irreducible
components of the algebraic variety of n-dimensional nilpotent Lie algebras
for n ≤ 8.

3. Characteristically nilpotent Lie algebras

In studying the varieties of laws, the characteristically nilpotent algebras
have shown their importance in the determination of irreducible components.
For example, in dimension 7 there are two components, the first formed by
filiform Lie algebras and the second generated by the orbit closure of a family
of characteristically nilpotent Lie algebras [8].

The main problem in the study of characteristically nilpotent Lie algebras
is the determination of conditions for an algebra of derivations to be nilpotent:
for an arbitrary nilpotent Lie algebra the structure of the algebra of derivations
can variate from representations of the special linear algebras sln to certain
nilpotent Lie algebras.

The origin of all this is the cited result of Jacobson [48].

Theorem 1. Let g be a Lie algebra and suppose that it admits a nonde-
generate derivation f . Then g is a nilpotent Lie algebra.

According to our convention, the Lie algebra is defined over a the field
of complex numbers. Otherwise the assertion would be false, as it has been
verified that this result fails when the characteristic of the base field is nonzeo.

The example of Dixmier and Lister, appearing as the first known charac-
teristically nilpotent Lie algebra, was the response to the validity question of
Jacobson’s theorem of 1955. This algebra is very interesting in many aspects;
it is one of the few known CNLA of nilindex 3, which is the lowest possible
nilindex such an algebra can have. We find this intriguing; the authors not
only gave the first example to a new class of nilpotent Lie algebras, that also
developed an ”extreme” example in that sense. Unfortunately, we do not
know how Dixmier and Lister came to this algebra.

The construction is of an eight dimensional Lie algebra g0 defined over the
basis {X1, . . . , X8} and law

[X1, X2] = X5 ; [X1, X3] = X6 ; [X1, X4] = X7 ; [X1, X5] = −X8 ;
[X2, X3] = X8 ; [X2, X4] = X6 ; [X2, X6] = −X7 ; [X3, X4] = −X5 ;
[X3, X5] = −X7 ; [X4, X6] = −X8 .
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Let us define the following generalization of the central descending se-
quence for a Lie algebra g:

g[1] = Der (g) (g) = {X ∈ g | X = f (Y ) , f ∈ Der (g) , Y ∈ g}
and

g[k] = Der (g)
(
g[k−1]

)
, k > 1 .

The main result about this algebra is the following:

Theorem 2. If f is a derivation of g0 then f (g0) ⊂ C1g0; hence any
derivation if nilpotent.

The proof of this is strongly related with the fact that the algebra g0

annihilates a power of the preceding sequence. For this reason, they defined
characteristically nilpotent Lie algebras as follows:

Definition. A Lie algebra g is called characteristically nilpotent if there
exists an integer m such that g[m] = 0.

The listed algebra has a twelve dimensional Lie algebra of derivations,
from which six correspond to inner derivations. Now, any linear operator
sending the algebra g0 into its center, which is generated by the vectors X7

and X8, is easily seen to be a derivation of g0. The ideal uf these derivations
has dimension eight, having a two dimensional subspace in common with the
space of inner derivations. This fact can be interpreted in the sense that the
dimension of the cohomology space H1 (g0, g0) is as small as possible. Dixmier
and Lister asked if the algebras of this type, which satisfy the generalization of
the central descending sequence, were more treatable than ordinary nilpotent
Lie algebras. In certain aspects this is true, as the topological properties of
CNLA show, but on the other their determination and classification is a rather
difficult question, and one can hardly say that it constitutes a simplification.
However, CNLA have undoubtly contributed to a better understanding of the
geometry of the variety N n. The theorem above proves in fact much more
than the characteristic nilpotence of the listed algebra: g0 is not the derived
subalgebra of any Lie algebra. Thus one can pose the question: if g is a
CNLA, is it true that g cannot be the derived subalgebra of a Lie algebra?
A first condition is given above, as the nilpotence of g and the fact that any
derivation maps the algebra into its derived subalgebra ensures that it cannot
be a commutator algebra. Leger and Tôgô found out other conditions to
assure the nonexistence of an algebra containing a given CNLA as derived
subalgebra [66]:
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Proposition. Let g be a CNLA. If Der (g) annihilates the center Z (g) of
g, then g is not a derived algebra.

This proposition is based on the fact that for a CNLA we have

[g, Zi] ⊂ Zi−2

where Z0 = (0) and Zi is the largest subspace of g such that Der (g) Zi ⊂ Zi−1

for i ≥ 1. The existence of an index such that g = Zr follows immediately.
The authors also deduce an interesting numerical condition, also based on this
inductively defined sequence:

Theorem 3. Let g be a CNLA, and n and m be the smallest integers for
which Cn−1g = 0 and g[m] = 0. If 2(m − 1) > n + 1, then g is not a derived
subalgebra.

In particular, it follows that g is no derived subalgebra if Der (g) g ⊂ C1g,
which recovers the property of Dixmier and Lister’s algebra, or g[4] = 0.

Now, for the general case E. Luks [69] proved in 1976 that a CNLA can
appear as derived subalgebra of a Lie algebra. This remarkable fact divides
in fact the CNLA into two classes: those being commutators of others and
those not. The algebra L of Luks has dimension 16, and is defined over the
basis {X1, . . . , X16} by the law:

[X1, Xi] = X5+i , i = 2, 3, 4, 5 ; [X1, X6] = X13 ; [X1, Xi] = X8+i , i = 7, 8 ;
[X2, Xi] = Xi+8 , i = 3, 4, 6 ; [X2, X5] = X15 ; [X2, X7] = −X16

[X3, X4] = −X13 − 9
5
X15 ; [X3, X5] = −X14 ; [X3, X6] = −X16 ;

[X4, X5] = 2X16 .

The procedure used is the following: consider the transporter of an ideal I
into J , where both ideals are characteristic. Then the following statements
are verified:

1. I3 is the transporter of C1L to 0;

2. I4 is the transporter of L to Z(L);

3. I2 is the transporter of C1L to [I4, I4];

4. I6 is the transporter of L to [I2, I2];

5. I5 is the transporter of I2 to [L, I6].
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where Ii is the ideal generated by the vectors {Xj}j≥i (for 1 ≤ i ≤ 16).
Clearly I2, . . . , I6 are characteristic ideals, and it follows that L is a CNLA.
For the second part, consider the derivations f and g defined respectively by:

f(X3) = X7 ; f(X4) = 2X8 ; f(X5) = 3X9 + 2X11 ;
f(X6) = 4X10 + 5X12 ; f(X8) = X15 ; f(X9) = 2X16 ; f(X11) = −X16 ;
g(Xi) = Xi+1 , i = 2, 3, 4, 5, 7, 11, 13 ; g(X8) = X9 + X11 ;
g(X9) = X10 + X12 ; g(X10) = X13 + X15 ;

g(X12) = −X13 − 4
5
X15 ; g(X14) = −X16 .

If one considers the brackets [f, g] in Der (L), it gives ad (X1) as result. Thus
we can extend the algebra to the semidirect product L = {f ′, g′}+ L, where
the brachets in L are the same and the action of {f ′, g′} over L is given by
[f ′, Xi] = f (Xi) , [g′, Xi] = g (Xi) for all i and [f ′, g′] = X1. It follows at once
that

[
L,L

]
= L.

This algebra not only gives a surprising response to the question of Dixmier
and Lister, it moreover gives an idea of how the algebra has to be structured for
being candidate for derived algebra. Observe that the key of the preceding cos-
ntruction is the existence of two derivations (whose rest class modulo B1 (L,L)
is nonzero) whose composition equals the adjoint operator of the character-
istic vector X1. Thus, a necessary condition is deduced immediately, namely
the existence of derivations in the algebra such that their composition is in
the linear subspace generated by the adjoint operators ad (Xi) , i = 1, . . . , k,
where these vectors are generators of the nilpotent Lie algebra.

Using a similar argumentation one can show that Luks’ algebra also has
an unipotent automorphism group. One may ask if there is a connection
between the property of being a commutator algebra and an automorphism
group of this kind. L. Auslander remarked in [33] that Dixmier and Lister’s
example has not an unipotent automorphism group. Now, a CNLA which
is additionally a derived algebra and posseses a nonunipotent automorphism
group could be constructed by considering the direct sum of two Lie algebras
which satisfy the two first conditions [66]. Inspite of this result, there are
wide known classes of CNLA which cannot appear as a commutator algebra.
This concerns the filiform Lie algebras. It can be shown that if a filiform Lie
algebra g is the derived algebra of g′, then it suffices to consider the case where
dim g′ = dim g + 1. This has been done in [24]. The reduction is not difficult
to prove, and using it the assertion that g is not a derived algebra follows at
once. In fact, this reduction can be seen as a conseuence of a more general
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result due to M. Goze and Y. B. Khakimdjanov [40], where they analyze in
detail the maximal tori of derivations of an arbitrary filiform Lie algebra. The
following result can be interpreted as a characterization of those filiform Lie
algebras which are not characteristically nilpotent:

Theorem 4. Let g be an (n + 1)-dimensional filiform Lie algebra which
has a nontrivial semisimple derivation f . There exists a basis {X0, . . . , Xn}
adapted to f such that the brackets of g satisfy one of the following cases:

(i) g = Ln ;
[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 1 ;

(ii) g = Ar
n+1 (α1, . . . , αt) , 1 ≤ r ≤ n− 3, t =

[
n−r−1

2

]
;

[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 1 ;

[Xi, Xj ] =
( ∑t

k=1 αk(−1)k−iCk−1
j−k−1

)
Xi+j+r,

1 ≤ i, j ≤ n, i + j + r ≤ n ;

(iii) g = Qn, n = 2m− 1 ;
[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 2 ;
[Xi, Xn−i] = (−1)iXn, 1 ≤ i ≤ n− 1 ;

(iv) g = Br
n+1 (α1, . . . , αt) , n = 2m + 1, 1 ≤ r ≤ n− 4, t =

[
n−r−2

2

]
;

[Xi, Xj ] =
( ∑t

k=1 αk(−1)k−iCk−1
j−k−1

)
Xi+j+r,

1 ≤ i, j ≤ n− 1, i + j + r ≤ n− 1 ;
[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 2 ;

(v) g = Cn+1 (α1, . . . , αt) , n = 2m + 1, t = m− 1 ;
[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 2 ;
[Xi, Xn−i] = (−1)iXn, 1 ≤ i ≤ n− 1 ;
[Xi, Xn−i−2k] = (−1)iαkXn, 1 ≤ k ≤ m− 1, 1 ≤ i ≤ n− 2k − 1 ;

where (α1, . . . , αt) are parameters satisfying the polynomial relations given by
the Jacobi relations over this basis.

4. Structural properties of CNLA

After the example of Dixmier and Lister in 1957, Leger and Tôgô iniciated
the structural study of CNLA. Their paper [66] does not provide additional
examples, but it is of considerable significance for later work. At first, they ob-
serve that the property of being characteristically nilpotent does not depend
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on the ground field. More precisely: if the Lie algebra g is characteristi-
cally nilpotent as F -algebra (here it is not necessary to suppose that it has
characteristic zero) and K\F is a field extension, then g is also a CNLA as
K-algebra. However, the structural properties deduced by the authors are
more important, as they give an idea of which algebras have to be avoided in
the search after CNLA:

Lemma. If g is characteristically nilpotent, then

(i) the center Z (g) of g is contained in the derived subalgebra C1g;

(ii) C2g 6= 0.

The first condition makes reference to the nonexistence of direct summands
in g which constitute of central vectors. Thus the study of characteristically
nilpotent Lie algebras reduces to nonsplit nilpotent Lie algebras. The second
condition has a more important consequence: it tells that for a Lie algebra
being characteristically nilpotent, the nilindex must be at least three (observe
that this is the index for the algebra of Dixmier and Lister). This fact is
remarkable, as it shows the incompatibility of being as nilpotent as possible
(as it occurs for the 2-step nilpotent or metabelian Lie algebras) and having
all its derivations nilpotent. Metabelian Lie algebras and their derivations
have been deeply studied by Leger and Luks [64], where they proved that
its rank is always greater than one, the equality given only under certain
conditions. Recently Galitski and Timashev [37] have used invariant theory
to classify these algebras up to dimension nine. The preceding lemma leads
to the question wheter a CNLA can be a direct sum. The following result is
also from [66]:

Lemma. Let g be a nilpotent Lie algebra. If g is the direct sum of two
nontrivial ideals, one of which is central, then it posseses at least nontrivial
semisimple derivation.

These two lemmas give the following reinterpretation of the sequence g[k]

introduced earlier:

Theorem 5. Let g be a Lie algebra and Der (g) its Lie algebra of deriva-
tions. Then g is characteristically nilpotent if and only if Der (g) is nilpotent
and dim g ≥ 2.

It follows from the proof that if all derivations of g are nilpotent, then g is
also a nilpotent Lie algebra. Thus the characteristic nilpotence is a phenomena
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which can only be observed in the variety of nilpotent Lie algebra laws N n.
The theorem can be reformulated by saying that the holomorph H (g) of g

is nilpotent, where the holomorph is the split extension of Der (g) by g. In
connection with metabelian Lie algebras, this reformulation says that for a 2-
step nilpotent Lie algebra the holomorph cannot be nilpotent. The holomorph
is also useful to describe properties valid also for solvable Lie algebras, as the
following:

Theorem 6. Let g be a Lie algebra. If a Cartan subalgebra H of g is
characteristically nilpotent, then g is a solvable Lie algebra.

As noted by the authors, the algebra g can be solvable non-nilpotent. We
remark that this theorem has been generalized in 1961 by S. Tôgô [94].

It has often been asked wheter CNLA exist for any possible dimension.
The answer is in the affirmative, and in fact it was enough to find examples of
dimension 7 ≤ n ≤ 13 to derive its existence in any dimension. The key result
was the possibility of a decomposition into smaller blocks that have also the
property of being characteristically nilpotent, as done in the classical theory:

Theorem 7. Let g =
⊕n

i=1 gi be a direct sum of ideals. Then g is
characteristically nilpotent if and only if gi is characteristically nilpotent for
1 ≤ i ≤ n.

As said, having examples from dimensions seven to thirtheen, the direct
sums of them give CNLA in any dimension. The nine dimensional example
was given by J. Dyer in 1970, in connection with her study of nilpotent Lie
groups which have expanding automorphisms. Over the basis {X1, . . . , X9}
the Lie algebra is given by

[X1, X2] = X3 ; [X1, X3] = X4 ; [X1, X5] = X7 ; [X1, X8] = X9 ;
[X2, X3] = X5 ; [X2, X4] = X7 ; [X2, X5] = X6 ; [X2, X7] = −X8 ;
[X3, X7] = − [X4, X5] = X9 .

This was the first given CNLA with an unipotent automorphism group. Two
years later G. Favre constructed a seven dimensional example with the same
property. This example is one of the three filiform CNLA in dimension 7:

[X1, Xi] = Xi+1 , 2 ≤ i ≤ 6 ;
[X3, X2] = X6 ;
[X4, X2] = [X5, X2] = X7 ;
[X4, X3] = −X7 .
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To complete the construction of CNLA, there remains to find examples in
dimensions 10− 13. These were given by Luks using computational methods
[68]. Once the question of their existence in any possible dimension, we can
ask even more: for any possible nilindex p ≥ 3, does there exist a CNLA in
any dimension? In [7] the question is answered in the affirmative for p =
5. This is a consequence of the classification of nilpotent Lie algebras of
characteristic sequence (5, 1, . . . , 1) whose derived subalgebra is non-abelian.
In fact, we prove that if a Lie algebra g with this characteristic sequence is
characteristically nilpotent, then it satisfies D2g 6= 0.

In 1961 Tôgô published a paper reviewing most of known results about
the derivation algebras of Lie algebras (over a field of charateristic zero).
He also gives an example about two nonisomorphic Lie algebras whose Lie
algebra of derivations is the same, proving in that manner that a Lie algebra
is not entirely determined by its derivations. Among various results about
classical and reductive algebras, he also generalizes the concept of CNLA
to characteristically solvable Lie algebras [94]. However, here we are only
concerned with results about nilpotent Lie algebras. An often asked question
is the relation between a Lie algebra g which is a (finite) sum of ideals and the
structure of Der (g). To this respect, in [94] the following theorem is proved:

Theorem 8. Let g =
⊕n

i=1 gi be a direct sum of ideals. Then Der (g) =⊕n
i=1 Der (gi) if and only if g satisfies one of the following conditions:

(i) Z (g) = (0) ;

(ii) g is a perfect Lie algebra (i.e. g = [g, g]) ;

(iii) All the gi’s except one is such that Z (gi) = (0) and gi = [gi, gi] .

For a nilpotent Lie algebra g, this implies that the structure of its deriva-
tions is more than the sum of the derivations corresponding to its summands.
The following proposition gives the precise form of Der (g):

Proposition. Let g =
⊕n

i=1 gi be a direct sum of ideals. Then

Der(g) =
n⊕

i=1

(
Der(gi)⊕

(⊕

i6=j

D(gi, gj)
))

where D(gi, gj) = {h ∈ End(g) | h(gk) = 0 if k 6= i, h(gi) ⊂ Z(gi) and
h([gi, gj ]) = 0}.
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Thus if one of the conditions in theorem 8 is satisfied, then D (gi, gj)
vanishes.

In the same paper Tôgô presents a list of problems of interest, specially
in connection with CNLA: do there exists CNLA of derivations? From the
structure of derivations for the example of Dixmier and Lister, as well as the
scarceness of outer derivations, it is obvious that this algebra does not have
a characteristically nilpotent algebra of derivations. As to our knowledge,
nobody has answered explicitely to this question until now, though the answer
is in the affirmative. In [8] we construct examples of CNLA of derivations and
generalize the question to higher indexes.

Example. Let g be the Lie algebra with associated law

µ5 (X1, Xi) = Xi+1 , i ∈ {2, 3, 4, 5} ; µ5 (X5, X2) = µ5(X3, X4) = X6 ;
µ5 (X7, X3) = X6 ; µ5 (X7, X2) = X5 + X6 .

over the basis {X1, . . . , X7}. The Lie algebra of derivations Der (g) is ten
dimensional and isomorphic to

[Z1, Z2] = Z3 , [Z2, Z6] = −Z5, [Z7, Z8] = 2Z5 − 2Z6 + 2Z10 ,

[Z1, Z3] = Z4 , [Z2, Z8] = −Z6 , [Z7, Z9] = Z5 − 2Z6 + 2Z10 ,

[Z1, Z4] = Z5 , [Z2, Z9] = −Z4 − 2Z6 , [Z8, Z9] = 2Z6 − 2Z10 ,

[Z1, Z7] = −Z4 , [Z2, Z10] = −Z5 ,

[Z1, Z8] = −Z6 , [Z3, Z8] = −Z5 ,

[Z3, Z9] = −Z5 .

It is routine to verify that this algebra is a CNLA.

Among many other examples, we present the following, which is important
in connection with the study of irreducible components of the variety Nn:

Theorem 9. For any α ∈ C− {0, 2} the family of nilpotent Lie algebras
given by

[X1, Xi] = Xi+1 , 2 ≤ i ≤ 5 ;
[X4, X2] = αX6 ;
[X3, X2] = αX5 + X7 ;
[X7, X3] = X6 ;
[X7, X2] = X5 + X6 .

has a characteristically nilpotent Lie algebra of derivations.
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This follows at once from the fact that the derivatiosn are given by:

[Z1, Z2] = Z3 , [Z2, Z3] = −αZ5 − Z6 , [Z7, Z9] = 2Z5 ,

[Z1, Z3] = Z4 , [Z2, Z6] = −Z5 , [Z7, Z10] = Z5 ,

[Z1, Z4] = Z5 , [Z2, Z10] = −Z4 − αZ5 , [Z9, Z10] = 2
αZ8 + 2

αZ4 ,

[Z1, Z7] = −Z4 , [Z3, Z9] = −Z5 ,

[Z1, Z8] = −Z5 , [Z3, Z10] = −Z5 ,

[Z1, Z9] = −Z6 ,

[Z1, Z10] = −Z8 − Z4 .

This examples, as well as other considered in [8] have a common property:
there always exists an outer derivation θ which belongs to the derived subal-
gebra of Der (g). This and the method used to deduce the examples have led
to the

Conjecture 1. If g is a CNLA of derivations, then there exist outer
derivations θ1, θ2, θ3 such that

[θ1, θ2] = λθ3 (mod IDer (g))

where λ ∈ C− {0} and IDer (g) denotes the space of inner derivations.

We now come to the generalization announced. Let Der[k] g = Der(Der(. . .
(Der(g)) . . . ) be the k-th Lie algebra of derivations. Thus we have the sequence

(
Der (g) , Der[2] g, . . . ,Der[k] g, . . .

)
.

Definition. A Lie algebra g is called characteristically nilpotent of index
k if the (k − 1)th Lie algebra of derivations Der[k−1] g is characteristically
nilpotent.

Remark. It would be of great interest to know if there exist CNLA of
infinite index, as this would us give the possibility to develop a theory analogue
to Schenkman’s one [85] for these algebras. The structure of the variety of
filiform Lie algebras Fm for m ≥ 8 seems to suggest the existence of such
algebras, but there is no manner to prove it. Observe that the determination
of such an algebra is far from being a computational problem. The question
is more to find a new invariant which measures which is the gratest possible
index, if any. Up to the moment, the biggest index known is 5.
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5. Subspaces of CNLA

Around 1984, when some authors had already constructed infinite fam-
ilies of CNLA, the interest on these algebras turned to its topological and
geometrical properties. R.C̃arles proved in [19] the following result:

Proposition. The CNLA constitute a constructible set of the variety Nn

which is empty for n ≤ 6 and nonempty for n ≥ 7.

This proposition is another way to prove the existence of CNLA in arbi-
trary dimension, and its advantage is being independent from any example.
Its proof is based on the conjugacy classes of maximal tori of derivations over
a nilpotent Lie algebra of dimension n ([36]), as well as the action of the
general linear group GL (n,C) on g (the result is in fact true for any alge-
braically closed field of characteristic zero). The seven dimensional CNLA
given by Favre in 1972 is generalized in the following manner: over the basis
{X1, . . . , Xn, Xn+1} the Lie algebra structure is given by:

[X1, Xi] = Xi+1 , 2 ≤ i ≤ n ;
[X2, X3] = Xn ;
[X2, X4] = [X2, X5] = − [X3, X4] = Xn+1 .

For n = 6 Favre’s example is recovered. The interest of this family is that it is
obtained by considering central extensions of an algebra g′ by C, which proves
the power of extension theory for the study of CNLA. It is also proven that
any extension by the center of a CNLA is also characteristically nilpotent,
where an extension by the center is a central extension of a Lie algebra g by
Cp whose center is isomorphic to Cp. The same procedure has been used in
[22] to obtain lots of CNLA in arbitrary dimension and mixed characteristic
sequences. Carles also remarks that the set of CNLA is never closed, which
is immediate from the preceding, and for the particular case of dimension 7
he proves that it is neither open. In [8] we have extended this result to any
dimension:

Theorem 10. For n ≥ 8 the set Sn of CNLA is not open in the
variety Nn.

The family constructed is based on the results of the classification of 8
dimensional filiform Lie algebra due to Goze and the first author [4]. Also the
deformation structure is based on this result:
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Let gn,17 (n ≥ 8) be the Lie algebra defined by the brackets

[X1, Xi] = Xi+1 , 1 ≤ i ≤ n− 1 ;
[X4, X2] = Xn ;
[X3, X2] = Xn−1 + Xn .

It is immediate that the algebra is filiform and characteristically nilpotent.
Let ψ ∈ Z2 (gn,17, gn,17) be the linear expandable cocycle defined by

ψ (X5, X3) = Xn , ψ (X5, X2) = ψ (X4, X3) = Xn−1 ,

ψ (Xk, X2) = 2Xn−4+[ k
2 ]

, k = 3, 4 .

Let gn,17 + εψ be an infinitesimal deformation of gn,17. Now we consider the
change of Jordan basis X ′

1 = X1, X ′
2 = X2 + a3X3 + a4X4 + a5X5 with the

relations

1 + a2
3ε− 2εa4 = 0 ,

3a5ε + a3a4 − a2
3ε− 2εa4 = 0 .

Written in the new basis the algebra gn,17+εψ is isomorphic to the Lie algebra
gn,18 defined by

[X1, Xi] = Xi+1 , 1 ≤ i ≤ n− 1 ;
[X5, X3] = εXn ;
[X5, X2] = [X4, X3] = εXn−1 ;
[X4, X2] = 2εXn−2 ;
[X3, X2] = 2εXn−3 .

From the linear system (S) associated to this algebra [6] we deduce the exis-
tence of nonzero eigenvalues for diagonalizable derivations of gn,18, so it cannot
be characteristically nilpotent.

Following with the seven dimensional case, in [18] the irreducible compo-
nents of the variety N7 are analyzed in relation with characteristic nilpotence.
It is well known that this variety has two irreducible components, one corre-
sponding to the filiform Lie algebras, F7, and one consisting of non-filiform
Lie algebras. The filiform components has only three CNLA, which obviously
don’t constitute a dense subset as none of them has an open orbit, while for
the other component there exists a family of CNLA constituting a nonempty
Zariski open subset. The family is precisely the one given as example above.
For n ≥ 8, the situation for F8 changes radically:
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Theorem 11. Let n ≥ 8. Then any irreducible component C of Fn con-
tains a nonempty Zariski open subset A cosisting of CNLAs.

The result is proven in [40], where even more is obtained, namely that for
any open set in Fn a CNLA belonging to this set can be found. Other versions
relative to this have been treated by H. Kraft and Ch. Riedtmann in [61]. Is
it true that for dimensions n ≥ 8 any irreducible component of the variety Nn

contains an open subset of CNLAs. For n = 8 the response is affirmative, and
can be found in [8].

Proposition. For any irreducible component C of the variety N8 there
exists a nonempty Zariski-open subsets consisting of CNLAs.

As commented above, the 1-parameter family that defines the second irre-
ducible component of N7 has the property of being characteristically nilpotent
of index 2, according to the definition given. This leads naturally to the ques-
tion wheter there exist irreducible components in Nn (n ≥ 9) which admit
nonempty open susbsets formed by CNLA od derivations. We finally remark
that this problem is related with the tower problem in group theory.

5.1. Characteristically nilpotent Lie algebras obtained from
nilradicals of Borel subalgebras. As commented earlier, the difficulty
of constructing and characterizing CNLA led many authors to conclude that
they were scarce within the variety of nilpotent Lie algebra laws, though
results like those of Carles [18] pointed out their importance. The question
was definitively solved by Khakimdjanov in 1988, in a series of papers ([53],
[54]), where he treated with the cohomology of parabolic subalgebras of simple
Lie algebras, first studied by Kostant in 1963 ([58], [59]), and applied these
results to the study of deformations of the nilradicals of Borel subalgebras of
simple Lie algebras. For classical topics we refer the reader to [46], [44], [23]
and [58].

In [53] the author developes the cohomological tools needed, such as the
fundamental cohomologies, as well as adequate filtrations for these spaces. In
[54] this information is applied to prove that almost all deformations of the
cited nilradicals are CNLA.

Following the notation used in [44], let L be a simple Lie algebra of rank
l > 1, H its Cartan subalgebra, Φ the root system associated to H, Φ+ the
system of positive roots relative to a certain ordering and ∆ the system of
simple roots. Recall that a Borel subalgebra is a maximal solvable subalgebra
of L.
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We consider the subalgebra B (∆) = H +
∐

α∈Φ+ Lα , where Lα is the
root space corresponding to the root α. This subalgebra is a Borel subalgebra
of L called standard relative to the Cartan subalgebra H. Now any Borel
subalgebra of L is conjugated to a standard Borel subalgebra [11], and if n

denotes the nilradical of an algebra g we have n (B (∆)) =
∐

α∈Φ+ Lα. Define
Φ (i) as

Φ (i) =
{
α ∈ Φ+ | α = αj1 + · · ·+ αji , αjt ∈ ∆ for 1 ≤ t ≤ i

}
.

Then we can define a graduation on n (B (∆D)) by setting Fkn (B (∆)) =⊕
i≥k ni (B (∆)) , where ni (B (∆)) =

∐
α∈Φ(i) Lα. The filtration in the space

of cochains is given by

FkC
j (n, n) =

{
c ∈ Cj(n, n) | c (a1, . . . , aj) ∈ Ft1+···+tj+kn

}

whenever ai ∈ Ftin (B (∆)) and where n = n (B (∆)).
This filtration extends to the cocycles and coboundaries. Until now we

exclude L to be a simple algebra of the following types:

Ai (1 ≤ i ≤ 5) , B2 , B3 , C3 , C4 , D4 , G2 .

The reason is that for these algebras certain identities among the funda-
mental cohomologies and the spaces FkH

j (n, n) for k = 0, 1 do not coincide
[53, theorem 6]. For example, for those algebras excluded and distinct from
Ai (i = 1, 2, 3) , G2 the cohomology space F0H

2 (n, n) is not zero. On the
other side, it is shown that the following system of cocycles suffices for a set
of representatives of a basis of F0H

2 (n, n) : {fα,β | (α, β) ∈ E} with

fα,β (xγ , xδ) =

{
xσασβ(δ) for (γ, δ) = (α, σα (β))

0 otherwise

where σα is the involution associated to the root α and E is the set of pairs
of simple roots (α, β) in which (α, β) is identified with (β, α) if α is not joined
to β in the Dynkin diagram.

Theorem 12. Let L be a simple Lie algebra and n be the nilradical of a
Borel subalgebra. Let ψ =

∑
ω∈E λωfω an element of F0H

2 (n, n) with λω 6= 0
for all ω. Then the Lie algebra n (ψ) obtained from the linearly expandable
cocycle ψ is characteristically nilpotent.
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Let L ∈ {A4, A5, B3, C3, C4, D4}. For these algebras we have F0H
2 (n, n) 6=

0. In [53] it is proven that the basis is composed by cocycles of the form
xα ∧ xβ → xγ , where α, β and γ are enumerated in the following table:

L α β γ

A4

α1

α1

α4

α4

α1 + α2

α3 + α4

α2 + α3

α2 + α3 + α4

α1 + α2 + α3

A5
α2

α4

α1 + α2

α4 + α4

α3 + α4 + α5

α1 + α2 + α3

B3 α1 α1 + α2 α2 + 2α3

C3 α1 α1 + α2 2α2 + α3

C4 α2 α1 + α2 2α3 + α4

D4

α1

α3

α4

α1 + α2

α2 + α3

α2 + α4

α2 + 2α3

α1 + α2 + α4

α1 + α2 + α3

Theorem 13. Let L be a simple Lie algebra of types A4, A5, B3, C3, C4 or
D4. Let n be the nilradical of the standard Borel subalgebra B (∆) and ϕ =∑

ω∈E λωfω, where {fω | ω ∈ E} is a basis of F0H
2 (n, n) from the previous

table, with λω 6= 0 for all ω ∈ E. Then the nilpotent Lie algebra defined by a
deformation

[X, Y ]t = [X,Y ] + tϕ (X, Y ) + t2ϕ2 (X,Y ) , t 6= 0 ,

is a CNLA.

These results are certainly of interest for the theory of CNLA. It provides
not only a relation between the classical Cartan theory of Lie algebras, it
moreover gives, in a certain manner, a natural interpretation of the charac-
teristic nilpotence. On the other side, the frequency of CNLA in Nn is proven
in an elegant manner.

6. Characteristically nilpotent filiform Lie algebras

Most constructions of CNLA made are based on the deformation theory
of the naturally graded filiform Lie algebra Ln. The reason is not only its
simplicity; it turns out to have the most elementary law among the filiform Lie
algebras. Vergne proved in [96] that any filiform Lie algebra can be obtained
by a deformation of this algebra. For this reason this algebra has been the
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preferred starting point for constructing families of CNLA [100], [54], though
recently other authors have turned their interest into the deformations of the
other naturally graded filiform Lie algebra [22].

Certain results about the cohomologies of filiform Lie algebras are con-
tained in Vergne’s paper [97]. Recall the notations introduced for the filtered
cohomology:

Lemma. Let g be a p-step nilpotent Lie algebra and di = dim Fig.

(i) If j > d1 then FrZ
j (g, g) = Zj (g, g) = 0 for r ∈ Z.

(ii) If ds < j ≤ ds−1 for some 1 < s ≤ p then FrZ
j (g, g) = Zj (g, g) for

r ≤ q, where q = −[
pdp + (p− 1) (dp−1 − dp) + · · · + s (ds − ds+1) +

(s− 1) (j − ds − 1)
]
.

Corollary. Let g be an n-dimensional filiform Lie algebra. For 2r ≤
(j − 1) (j − 2p− 2) with 1 ≤ j ≤ n− 1 we have

FrZ
j (g, g) = Zj (g, g) .

Further, it can be proven (see [96] or [54]) that if r ≤ p − pj, then
FrZ

j (g, g) = Zj (g, g). As a consequence, any derivation of the Lie alge-
bra g will map the space Frg on Trg for any r. This leads to the equality
given by Vergne, namely that for r ≤ −p, where p is the nilindex of the alge-
bra, we have FrH

2 (g, g) = H2 (g, g). This equality has been of importance in
the study of the irreducible components of the variety of filiform laws.

Now let g = Ln be the mopdel filiform Lie algebra introduced in section 1.
For this algebra, it is not difficult to prove that its Lie algebra of derivations
is (2n + 1)-dimensional, where dimLn = n + 1. Thus the dimension of the
cohomology space H1 (Ln, Ln) is also n + 1, and from this dim B2 (Ln, Ln) =
n2. The description of the spaces F0Z

2 (Ln, Ln) is the key to construct its
characteristically nilpotent deformations. Let {X0, . . . , Xn} be a basis of Ln

and define the cochians φ (X0, Xi) = Xj for 1≤ i, j ≤ n. As they are cocycles,
the determination of the space Z2 (Ln, Ln) is reduced to the study of those
cocycles which satisfy φ (X0, Xi) = 0 and preserve the natural graduation. In
[54], the author construct the following cocycles:

ψk,s (Xi, Xi+1) =

{
Xs if i = k ,

0 if i 6= k .
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Therefore, the remaining images are given by the relation

ψk,s (Xi, Xj) = (−1)k−i Cj−k−1
k−i (adX0)

i+j−1−2k Xs .

Now these and the preceding cocycles describe completely the cohomology
space F0Z

2 (Ln, Ln):

Proposition. The cocycles φi,j and ψk,s (i < j, s ≤ 2k + 1) form a basis
of F0Z

2 (Ln, Ln).

Corollary. We have

dim F0H
2 (Ln, Ln) =

{
3n2−4n+1

4 for n ≡ 1 (mod 2) ,

n2−2n−4
4 for n ≡ 0 (mod 2) .

Moreover, a basis is given by the cohomology classes of ψk,s for 1 ≤ k ≤ n, 4 ≤
s ≤ n whenever s ≥ 2k + 1.

Using the Chevalley cohomology of the Lie algebra gn it can be shown that
the elements of the space Z2 (gn, gn) correspond to infinitesimal deformations
of the algebra gn = (Cn, µn) (see [22], [25]). Let ψ be a cocycle and define the
operation

[x, y]ψ := [x, y] + ψ (x, y) , x, y ∈ Cn.

Then the deformation is linearly expandable if the previous operation satisfies
the Jacobi condition, i.e., defines a Lie algebra structure on Cn. Let ψ ∈⊕

H2
i (Ln, Ln) = F1H

2 (Ln, Ln). Then the cocycle admits a decomposition
ψ =

∑r
i=1 ψi with ψi ∈ H2

i (Ln, Ln). The last nonzero component of this
decomposition is called the sill cocycle of ψ.

The idea used in [54] is to decompose the preceding basis into layers, where
a layer k0 contains those cocycles ψk,s whose entry k is k0. Now a cocycles
ψ =

∑
ak,sψk,s ∈ F0H

2 (Ln, Ln) is called degenerate in the layer k0 if all ak0,s

are zero. If it is nondegenerate in this layer we choose ψk0,s0 with a−k0, s0 6= 0
of least class. This has been called the nondegeneracy class of ψ. Moreover,
under the asumption that this last class is r, the layer k0 is called special if
2k0 + r + 1 < s for any nonzero ak,s for which k > k − 0.

Definition. A nonzero cocycle ψ ∈ F1H
2 (Ln, Ln) is called regular if it

is linearly expandable and satisfies one of the following conditions:

(1) There exist two special layers in which the cocycle is nondegenerate with
distincts nondegeneracy class.
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(2) The cocycle belongs to F2H
2 (Ln, Ln) and there exists a special layer k0

of class r such that ak0,r+2+2k0 6= 0 with 2k0 + r + 2 < s for those ak,s

with k > k0.

Provided with these cocycles, Khakimdjanov shows then the following:

Theorem 14. Let ψ be a regular cocycle in F1H
2 (Ln, Ln). Then the

deformation (Ln)ψ is a CNLA.

Corollary. Let S be the set of pairs (k, s) of positive integers such that
(n−5)

2 + 2k + 1 ≤ s ≤ n and ψ =
∑

(k,s)S ak,sψk,s. Let s0 be the least integer

such that s0 ≥ n+1
2 . If one of the following conditions

(i) n > 8 and a1,s0 , a1,s0+1 6= 0,

(ii) n ≥ 6, a1,s0 = 0 and a1,s0+1, a1,s0+2 6= 0,

holds, then (Ln)ψ is a CNLA.

This and other corollaries contained in [54] allow to cosntruct large fami-
lies of CNLAs. The idea is to consider subsets of the basis given above such
that the elements of the linear envelope of this set gives lineraly expandable
cocycles. Imposing additional conditions on the coefficients, the cocycles are
made regular. It is remarked that there exist characteristically nilpotent de-
formations of Ln based on nonregular cocycles [54]. Moreover, the closure of
the orbit corresponding to the set of CNLA of the preceding corollary is a
closed irreducible set of the variety Nn+1 containing a nonempty Zariski-open
subset formed by CNLAs.

Other results of the same nature due to this author are the follwoing:

Lemma. Let ψ ∈ F1H
2 (Ln, Ln) be a linearly expandable nonzero cocycle.

Then its sill cocycle ψr is also linearly expandable.

Now let (Ln)ψ be a deformation with ψ ∈ F1H
2 (Ln, Ln). Let ψr be

the sill cocycle of ψ. Then the Lie algebra (Ln)ψr
is called the sill algebra

of (Ln)ψ. The relation between these two algebras is the crucial point to
construct characteristically nilpotent Lie algebras 1.

1 It is evident that the infinitesimal deformations are filiform, for we have seen that the
characteristic sequence of the deformation is greater or equal than c (Ln), and this is the
maximal one.
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Theorem 15. Let ψ ∈ F1H
2 (Ln, Ln) be a nonzero linearly expandable

cocycle. Then the Lie algebra (Ln)ψ is characteristically nilpotent if and only
if it is not isomorphic to its sill algebra (Ln)ψr

.

From the theorem we obtain for example the following characteristic nilpo-
tent Lie algebras with basis {X0, . . . , X2m} and law

[X0, Xi] = Xi+1 , i = 1, . . . , 2m− 1 ;
[X1, Xi] = Xi+3 , i = 2, . . . , 2m− 3 ;

[Xi, X2m−i−1] = (−1)i+1X2m , i = 1, . . . , m− 1 .

For the nonfiliform Lie algebras the determination of characteristically
nilpotent Lie algebras is not so well structured. In fact, for any lower charac-
teristic sequence there will appear more naturally graded models than it was
the case in the filiform algebras. This construction allowed to obtain certain
results on the structure of the neighborhhods of filiform Lie algebras on the
variety Nn [23], so it is of interest for the determination of the irreducible
components of the variety of filiform Lie algebra laws, thus for the variety Nn

itself. We mantain the notation for the cohomology introduced earlier.

Lemma. Let s > r, s 6= 2r. If there is a nonzero cocycle ψ ∈ H2
s (Ln, Ln)

belonging to H2
s (Ln, Ln) ∩B2((Ln)ψ , (Ln)ψ), then this cocycle is unique (up

to multiples).

The proof is based on the structure of the algebra of derivations of a
sill algebra and is omitted here. It can be found in [23] and [26]. Now let
A = (Ln)ψ be a filiform algebra, where ψ ∈ Z2 (Ln, Ln) ∩ F1H

2 (Ln, Ln) and
ψr denotes the sill cocycle of ψ.

Lemma. Let n ≥ 8 and V an open set of Nn containing A. Then there
exists a characteristically nilpotent Lie algebra in V .

Then we obtain immediately the following:

Corollary. For Nn (n ≥ 7) there exists an open set whose elements
are characteristically nilpotent Lie algebras.

7. Lie algebras of type Q and its deformations

In this section we use the other naturally graded filiform Lie algebra, Qn,
to obtain characteristically nilpotent Lie algebras in any dimension n ≥ 9 and
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mixed characteristic sequence. This approach is perhaps not so natural, but
it is based on an important property of “noncommutativity”, which allows
to obtain “easier” deformations. Combined with central extensions of special
kind, we obtain the desired characteristically nilpotent deformations. Let us
concentrate on the Lie algebra Qn. In contrast to Ln, it can only appear in
even dimension. Thus the algebra Qn posesses a structural obstruction that
forces its even-dimensionality. This obstruction is strongly related with the
properties of the descending central sequence CkQn.

Let ω1, . . . , ω2m be the dual basis of the basis X1, . . . , X2m of Qn. Then
the Cartan-Maurer equations of this algebra are:

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m−1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j .

In particular, the nonzero exterior product ωm∧ωm+1 shows that the ideal
Cp−1Qn, where

[
2m−1

2

]
and n = 2m− 1 of the central descending sequence is

not abelian, while CpQn is abelian. This can be interpreted in the following
manner: while Ln has abelian commutator algebra C1Ln, the model Qn is
as far as possible from being an abelian algebra. This fact is important for
deformation theory, as it can be interpreted in the sense that deforming Qn

will be easier than deforming Ln.
The previous property can be expressed in terms of centralizers:

CQn (CpQn) ⊃ CpQn ,

CQn (CqQn) ! CqQn ,

for n = 2m− 1, p =
[

2m−1
2

]
and 1 ≤ q ≤ p− 1. We will say that Qn satisfies

the centralizer property.
It is rather convenient to generalize this property to any naturally graded

Lie algebra:

Definition. Let gn be an n-dimensional, naturally graded nilpotent Lie
algebra of nilindex p. Then gn is called of type Q if

Cgn (Cpgn) ⊃ Cpgn ,

Cgn (Cqgn) ! Cqgn ,

for n = 2m− 1, p =
[p

2

]
and 1 ≤ q ≤ p− 1.
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We are principally concerned with the Lie algebras of type Q that are
central extensions of the filiform Lie algebra Qn, as well as other extensions.

Observe however that the index fixed in the previous definition is maximal,
i.e, there do not exist Lie algebras which are “less abelian” with respect to
the previous definition. The index, will depends only on the nilindex of the
algebra, is very important and appears in apparently different contexts, such
as the parabolic subalgebras [58].

Theorem 16. Let n be the nilradical of a standard Borel subalgebra b (∆)
of a complex simple Lie algebra distinct from G2. Then n satisfies the cen-
tralizer property.

The proof is an immediate consequence of the following result:

Proposition. Let n be the nilradical of a standard Borel subalgebra b (∆)
of a complex simple Lie algebra distinct from G2. Let p = ht (δ) be the height

of the maximal root. Then there exist roots α, β whose height is [ht(δ)
2 ] such

that α + β is a positive root.

Thus we see that the classical theory provides a lot of naturally graded
Lie algebras satisfying the centralizer property. However, it is usually uncon-
venient to manipulate these algebras, because of the great difference between
its dimension and nilpotence class: the first is too high in comparison with
the last.

From the definition it follows also that a central extension e of Qn by C
of type Q cannot be filiform. This implies that the cocycle ϕ ∈ H2 (Qn,C)
that defines the extension cannot be affine [17]. As a central extension of a
filiform Lie algebra is filiform if and only if the cohomology class of ϕ is affine,
we conclude that for our special case, the extension e cannot be given by an
affine cocycle.

Let e ∈ Ec,1 (Qn) be an extension of type Q. As the nilindex is preserved,
we conclude that the characteristic sequence of e must be lower than (2m, 1).
Thus these algebras will play, in the set of Lie algebras with this characteristic
sequence, the same role that Qn plays for the filiform algebras.

Let
∼
Ec,1 (Qn) = {e ∈ Ec,1 (Qn) | e is of type Q}. If e is any such element

expresed over the basis X1, . . . , X2m+1, it follows immediately from the defi-
nition of type Q that e is naturally graded. The first 2m vectors are fixed in
the natural graduation of the extension, thus e is completely determined once
we know the position of the vector X2m+1 in the graduation. The next lemma
establishes that the positions are not arbitrary.
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Lemma. Let e ∈ Ec,1(Qn) be an extension. If X2m+1 ∈ e2t (1 ≤ t ≤[
2m−1

2

]
) then e is not naturally graded. In particular, e /∈

∼
Ec,1 (Qn).

It follows that the position of the vector X2m+1 is only admissible if the
graduation block is odd indexed. As we are not interested in split Lie algebras,
we convene that X2m+1 /∈ e1. Moreover, we define the depth h of X2m+1 like
follows:

h (X2m+1) = t if X2m+1 ∈ e2t+1 , 1 ≤ t ≤
[
2m− 1

2

]
− 1 .

For convenience Lie algebras will be written usually in their contragradi-
ent representation. This will be of importance for the deformations, as lin-
early expandable cocycles are easier recognized when using this notation.
Let ω1, . . . , ω2m+1 be the dual basis to X1, . . . , X2m+1 for the extension e ∈
Ec,1 (Qn). Then its Cartan-Maurer equations are:

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m−1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+1 =
∑

i,j

aijωi ∧ ωj , aij ∈ C , i, j ≥ 2 ,

where d2ω2m+1 = 0. Then the determination of the extensions of type Q of
Qn reduces to the determination of the possible differential forms dω2m+1.
As known, the coefficient ai,j is given by a linear form over

∧2 Qn which
annihilates over Ω.

Let ϕij ∈ Hom(
∧2 Qn,C), 2 ≤ i, j ≤ 2m, be defined by

ϕij (Xk, Xl) = δikδkl , (Xk, Xl) ∈ g2.

Lemma. For m ≥ 4, 1 ≤ t ≤ m− 2 the cochain ϕt =
∑t+1

j=2(−1)jϕj,3+2t−1

defines a cocycle of H2(Qn,C). If g(m,t) denotes the extension defined by ϕt,

then g(m,t) ∈
∼
Ec,1(Qn).

In particular, it follows from the proof [22] that the Cartan-Maurer equa-
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tions of such an extension are

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m−1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+1 =
t+1∑

j=2

(−1)j ωj ∧ ω3−j+2t , 1 ≤ t ≤ m− 2 .

The family of extensions (which is locally finite and depends on m) is
proven to be the class of algebras we are interested in, as follows from the
next:

Proposition. An extension e ∈ Ec,1 (Qn) is of type Q if and only if there
exists a t ∈ {1, . . . ,m− 2} such that e ' g(m,t).

Let Ĥ2 (Qn,C) =
{
ϕ ∈ H2 (Qn,C) | eϕ is of type Q

}
, where eϕ is the ex-

tension defined by ϕ. The above result proves that dim Ĥ2 (Qn,C) = m− 1,
where n = 2m− 1. Moreover, the type of the extension g(m,t) satisfies

p1 = p2t+1 = 2 ,

pj = 1 if 1 ≤ j ≤ 2m− 1 , j /∈ {1, 2m + 1} .

As we have seen, the structure of the extensions g(m,t) is very similar, in
the sense that the differential form dω2m+1 has a precise form which depends
only on the depth of the (added) vector X2m+1 dual to X2m+1.

Now a construction method for characteristically nilpotent Lie algebras is
given. These deformations will be also interpretable in term of the graded
cohomology spaces H2

k (g, g) associated to the lie algebra g. The results given
here are more widely covered in [22]:

Notation. Let g be a n-dimensional Lie algebra defined over the basis
{X1, . . . , Xn} and let Der (g) be its algebra of derivations. If f ∈ Der (g), we
will use the notation

f (Xi) =
n∑

j=1

f j
i Xj , 1 ≤ i ≤ n .



characteristically nilpotent lie algebras 191

We consider the following cocycle (class) for the Lie algebras g(m,t) and
t ≥ 2:

ϕm,t (X2, X3+j) = X2t+2+j , 0 ≤ j ≤ 2m− 2t− 2 .

The reason for excluding the value t = 1 lies in the simplicity of its last
differential form. For these algebras special cocycles have to be considered
[22]:

Lemma. For m ≥ 5, 1 ≤ t ≤ m− 2 ϕm,t is linearly expandable.

Proposition. For m ≥ 5, 1 ≤ t ≤ m− 2 the Lie algebra g(m,t) + ϕm,t is
characteristically nilpotent.

Note that the cocycle which defines the deformation g(m,t) +ϕm,t is chosen
such that the incorporated brackets do not change the exterior differential of
the system. The cocycle ϕm,t admits the following cohomological interpreta-
tion:

Proposition. For t ≥ 3 let ψ ∈ H2
2t−2

(
g(m,t), g(m,t)

)
be a cocycle that

satisfies:

(i) for all X ∈ Z
(
g(m,t)

)
such that h (X) = t, we have ψ

(
X, g(m,t)

)
= {0}

and X /∈ im (ψ);

(ii) if X ∈ g(m,t) is such that there exists an Y ∈ Z
(
g(m,t)

)
with h (Y ) = t

and Y /∈ im ad (X), then ψ
(
X, C1g(m,t)

)
= {0}.

Then
ψ =

∑

2≤i≤t+2
3≤j≤2m−3

λijψij , (λij ∈ C) ,

where
ψij (Xi, Xj) = Xi+j+1 , i + j ≤ 2m.

Writing

Ĥ2
2t−2

(
g(m,t), g(m,t)

)
= {ψ | ψ satisfies (i) and (ii)}

we isolate the cohomology classes that give the desired deformations:

Corollary. A cocycle ψ ∈ Ĥ2
2t−2(g(m,t), g(m,t)) such that ψ(C1g(m,t),

C1g(m,t) = {0} is linearly expandable if and only if ψ = λϕm,t (λ ∈ C).
Moreover, g(m,t) + λϕm,t ' g(m,t) + ϕm,t for any λ 6= 0.
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From the corollary we deduce that ϕm,t is fixed, up to multiples, by the
restriction property to the derived subalgebra.

Theorem 17. Let ψ ∈ Ĥ2
2t−2

(
g(m,t), g(m,t)

)
be a linearly expandable co-

cycle. Then the algebra g(m,t) + ψ is characteristically nilpotent.

Any supplementary deformation to the one defined by the cocycle ϕm,t

changes the law g(m,t) in the same way as ϕm,t, so that it does not alter the
conditions on the derivations. Further, we determine certain central extensions
of the algebras g(m,t) obtained before. Observe that the characteristic of an
extension of g(m,t) by C can be either (2m− 1, 1, 1, 1) or (2m− 1, 2, 1). The
first one is not interesting for our purposes, as it is linear, while the second
one is mixed 2.

Let G1
2 =

{
g(m,t) | m ≥ 4, 1 ≤ t ≤ m− 2

}
. For any fixed m and t we define

E1
c,1(g(m,t)) = {e ∈ Ec,1(g(m,t)) | e is of type Q and h(X2m+2) = h(X2m+1)+1}

where {X1, . . . , X2m+1} is a basis of g(m,t), {X1, . . . , X2m+2} a basis of e and
h is the depth funtion.

Proposition. Let t ≥ 2 and g(m,t) ∈ G1
2 . Then an extension e ∈

Ec,1(g(m,t)) belongs to E1
c,1

(
g(m,t)

)
if and only if its structural equations are

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m+1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+1 =
t+1∑

j=2

(−1)j ωj ∧ ω3+2t−j ,

dω2m+2 = ω1 ∧ ω2m+1 +
t+1∑

j=2

(−1)j (t + 2− j) ωj ∧ ω4+2t−j .

An extension e with the previous Cartan-Maurer equations will be denoted
by g1

(m,t). Observe that the case t = 1 has been excluded from the proposition.
The reason is that, by the simplicity of the differential form dω2m+1, in this
case there are two possible extensions.

2 A characteristic sequence c (g) is called mixed if there are two or more Jordan blocks of
dimension ≥ 2.
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Lemma. For m ≥ 4, e ∈ Ec,1

(
g(m,1)

)
belongs to E1

c,1

(
g(m,1)

)
if the struc-

tural equations of e over a basis {ω1, . . . , ω2m+2} are

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m+1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+1 = ω2 ∧ ω3 ,

dω2m+2 = ω1 ∧ ω2m+1 + ω2 ∧ ω4 + kω2 ∧ ω2m+1 , k = 0, 1 .

The proof is analogous to the preceding one. The reason for the existence
of the second extension is the weakness of the restrictions imposed by the
differential form dω2m+1. For higher depths the existence of additional exte-
rior products in the adjoined form dω2m+2 is not compatible with its closure
d2ω2m+2 = 0.

Notation. For k = 0 the extension is denoted by g1
(m,1), and for k = 1

by g2
(m,1).

As known, the set of nilpotent Lie algebras g of a given dimension n and
characteristic sequence c (g) is denoted by δUn

c(g) [3]. Now let Ec,2 (Qn) be the
set of central extensions of Qn by C2. The following result shows that we have
obtained practically all the extensions that interest us.

Let g1+k
(m,0) (k = 0, 1) be the Lie algebras with structural equations

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m+1 +
m∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+1 = 0 ,

dω2m+2 = ω1 ∧ ω2m+1 + kω2 ∧ ω2m+1 .

Theorem 18. For n = 2m− 1, m ≥ 4 the following identity holds:

Ec,2(Qn) ∩ δU2m+2
(2m−1,2,1) =

m−2⋃

j=2

O(g1
(m,t)) ∪ O(g2

(m,1)) ∪ O(g1+k
(m,0)) , k = 0, 1 ,

where O(g) denotes the orbit of g by the action of the general linear group.
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Any extension of Qn by C2 must have characteristic sequence (2m− 1, 1,
1, 1) or (2m − 1, 2, 1) if it preserves the nilindex. Observe however that for
the first sequence, the split algebra Qn⊕C cannot generate a nonsplit central
extension. Now it is convenient to introduce some notation. For 1 ≤ t ≤ m−2
we can write the algebras g1

(m,t) formally as

g1
(m,t) = g(m,t) + dω̄m,t

where

dω̄m,t = ω1 ∧ ω2m+1 +
t+1∑

j=2

(−1)j (t + 2− j) ωj ∧ ω4−j+2t

is called extensor of type I.

7.1. Deformations of g1
(m,t) (t ≥ 2). Let g1

(m,t) and consider an exten-
sor of type I dω̄m,t. We know that g1

(m,t) = g(m,t) + dω̄m,t.
Consider a cocycle ψ ∈ H2(g1

(m,t), g
1
(m,t)) defined by

ψ(Xi, Xj) =

{
ϕm,t(Xi, Xj) if 1 ≤ i, j ≤ 2m + 1 ,

0 if i = 2m + 2 or j = 2m + 2 ,

ψ is clearly a prolongation by zeros of the cocycle ϕm,t; it will be convenient
to preserve the notation ϕm,t to denote ψ, whenever there is no ambiguity. In
the previous section we saw that the adjoined extensors have no influence on
the characetristic nilpotence of the deformation g(m,2) + ϕm,2. This property
is in fact generalizable to any t ≥ 3:

Proposition. For any m ≥ 4, 1 ≤ t ≤ m − 2 the cocycle ϕm,t ∈
H2(g1

(m,t), g
1
(m,t)) is linearly expandable.

Corollary. For any m ≥ 4, 1 ≤ t ≤ m− 2 the following identity holds:

(g(m,t) + dω̄m,t) + ϕm,t = (g(m,t) + ϕm,t) + dω̄m,t .

Theorem 19. For m ≥ 4, 1 ≤ t ≤ m− 2 the Lie algebra g1
(m,t) + ϕm,t is

characteristically nilpotent.

The cocycles ϕm,t are a special case of a more wide family of cocycles of
the subspace H2

2t−2(g
1
(m,t), g

1
(m,t)):
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Lemma. If ψ ∈ H2
2t−2(g

1
(m,t), g

1
(m,t)) is a prolongation by zeros of a cocycle

ϕ ∈ H2
2t−2(g(m,t), g(m,t)), then ψ satisfies the conditions:

(i) for all X ∈ Z(g1
(m,t)) such that h(X) = 2t+1

2 , we have ψ(X, g1
(m,t)) = {0}

and X /∈ im(ψ);

(ii) for all X ∈ Z2(g1
(m,t)) such that h(X) = t, we have ψ(X, g1

(m,t)) = {0}
and X /∈ im(ψ);

(iii) if X ∈ g1
(m,t) is such that there exists an Y ∈ Z2(g1

(m,t)) with h(Y ) = t

and Y /∈ imad(X), then ψ(X, C1g
2,1
(m,t)) = {0}.

Proposition. A cocycle ψ ∈ H2
2t−2(g

1
(m,t), g

1
(m,t)) is a prolongation by

zeros of a cocycle ϕ ∈ H2
2t−2(g(m,t), g(m,t)) if and only if it satisfies conditions

(i), (ii) and (iii).

We note

Ĥ2
2t−2(g

1
(m,t), g

1
(m,t)) = {ψ | ψ satisfies (i), (ii) and (iii)}.

Corollary. A cocycle ψ ∈ H2
2t−2(g

1
(m,t), g

1
(m,t)) is a prolongation by zeros

of ϕm,t if and only if the restriction of ψ to the derived subalgebra C1g1
(m,t) is

identically zero.

Theorem 20. Let ψ ∈ Ĥ2
2t−2(g

1
(m,t), g

1
(m,t)) be linearly expandable. Then

g1
(m,t) + ψ is characteristically nilpotent.

These results can be resumed graphically. We introduce the following
notations [22]:

M1
m,1(g(m,t) + ϕm,t) = g(m,t+1) + ϕm,t+1

D1
1,t(g(m,t) + ϕm,t) = g(m+1,t) + ϕm+1,t

dω̄m,t(g(m,t) + ϕm,t) = g1
(m,t) + ϕm,t

M2
m,1(g

1
(m,t) + ϕm,t) = g1

(m,t+1) + ϕm,t+1

D2
1,t(g

1
(m,t) + ϕm,t) = g1

(m+1,t) + ϕm+1,t

for m ≥ 4 and 1 ≤ t ≤ m− 2.
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Figure 1.

Theorem 21. For m ≥ 4 and 1 ≤ t ≤ m − 2 the faces of the following
cube are commutative diagrams.

8. Nilpotent Lie algebras and rigidity

Let Ln be the algebraic variety of complex Lie algebra laws on Cn. Each
open orbit of the natural action of GL (n,C) on Ln gives, considering its
Zarisky closure, an irreducible component of Ln. Therefore, only a finite
number of those orbits exists; or, equivalently, only a finite number of isomor-
phism classes of Lie algebras with open orbit. The first results about rigid
Lie algebras are due to Gerstenhaber [38], Nijenhuis and Richardson [78]. The
last two authors have transformed the topological problems related to rigidity
into cohomological problems, proving in that an algebra is rigid if the sec-
ond group in the Chevalley cohomology is trivial. This theorem allows the
construction of examples or rigid Lie algebras and is used in the proof that
semisimple algebras are rigid. However, the existence of rigid Lie algebras
whose second cohomology group is non trivial shows that the cohomological
viewpoint is not fully satisfactory in the study of rigidity.
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Definition. A Lie algebra g is called decomposable if it can be written

g = s⊕ t⊕ n

where s is a Levi subalgebra, n the nilradical and t an abelian subalgebra
whose elements are ad-semisimple and which satisfies [s, t] = 0.

The abelian subalgebra T of Der g defined by

T = {adX | X ∈ t}

is called, following Malcev, an exterior torus on g. It is called maximal torus,
if it is maximal for the inclusion. Malcev has proved that all maximal torus
are pairwise conjugated, thus they have the same dimension called the rank
of g and noted r(g).

Theorem 22. Rigid Lie algebras are algebraic.

8.1. Roots system associated to a rigid solvable Lie algebra.
Let µ0 be a solvable decomposable law on Cn. We fix a maximal exterior torus
T . Let X be a non-zero vector such that adµ0X belongs to T .

Definition. We say that X is regular if the dimension of

V0 (X) = {Y | µ0 (X, Y ) = 0}

is minimal ; that is, dimV0 (X) ≤ dimV0 (Z) for all Z such that adµ0Z ∈ T .

Definition. Suppose that µ0 is not nilpotent. The root system of µ0

associated to (X,Y1, . . . , Yn−p, X1, . . . ,p−1 ) is the linear system (S) defined by
the following equations:

xi + xj = xk if the Xk-coordinate of µ0 (Xi, Xj) is non-zero ,

yi + yj = yk if the Yk-coordinate of µ0 (Yi, Yj) is non-zero ,

xi + yj = yk if the Yk-coordinate of µ0 (Xi, Xj) is non-zero ,

yi + yj = xk if the Xk-coordinate of µ0 (Yi, Yj) is non-zero .

In these notations we state.

Theorem 23. If rank (S) 6= dim (I0)− 1, the law µ0 is not rigid.
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Corollary. If µ0 is rigid, the rank of a root system for µ0 is independent
of the basis (X, Y1, . . . , Yn−p, X1, . . . , Xp−1) used for its definition.

Corollary. If µ0 is rigid, there is regular vector X such that adµ0X is
diagonal and its eigenvalues are integers.

Let Rn be the variety of n-dimensional solvable Lie algebras. The principal
structure theorem referring to rigid Lie algebras was proven by Carles in [18]:

Theorem 24. Any Lie algebra g which is rigid in either Ln or Rn is
algebraic and belongs to one of the following cases:

(i) The radical Rad (g) is not nilpotent and dimDer (g) = dim g (if moreover
codimC1g > 1, the algebra is complete).

(ii) The radical is nilpotent and satisfies one of the following conditions:

(a) g is perfect;

(b) g is the direct product of C by a rigid perfect Liealgebra whose
derivations are inner;

(c) g is non-perfect, has no direct abelain factor and is of rank zero;
morover, for any ideal of codimension one is also of rank zero.

Corollary. Any Lie algebra g rigid in Rn is algebraic and satisfies one
of the following conditions:

(i) dimDer(g) = dim g (if moreover codim C1g > 1, the algebra is com-
plete);

(ii) g is characteristically nilpotent, as well as any of its codimension one
ideals.

From the structure of the derivations for filiform Lie algebras, as found for
example in [40], it follows easily that none filiform Lie algebra can be rigid
in Ln or Rn; by Carles’ theorem, such an algebra would be characteristically
nilpotent, and a contradiction with the dimension formulas is served. Thus the
counterexamples, if any, must be searched within the nonfiliform Lie algebras.
This would give an effective answer To Vergne’s conjeture (1970)

Conjecture 2. For any n 6= 1 there do not exist nilpotent Lie algebras
which are rigid in Ln or Rn.
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Recently we have found another curious relation between CNLA and rigid
algebras. If we consider the Lie algebra g(m,m−1) (m ≥ 3) defined by the
equations

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j < 2m ,

dω2m+1 =
[ 2m+1

2 ]∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

it is immediate to see that its characteristic sequence is (2m− 1, 1, 1) and
its rank is two. Then there exists deformations which are isomorphic to the
nilradical of a solvable rigid law, as gives the

Proposition. The solvable Lie algebras r(m,m−1) (m ≥ 3) defined by
the equations

dω1 = ω2m+2 ∧ ω1 ,

dω2 = (2m− 3)ω2m+2 ∧ ω2 ,

dωj = ω1 ∧ ωj−1 + (2m− 5 + j) ω2m+2 ∧ ωj , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m−1 + ω2 ∧ ω3 + (4m− 5)ω2m+2 ∧ ω2m ,

dω2m+1 =
[ 2m+1

2 ]∑

j=2

(−1)j ωj ∧ ω2m+1−j + (6m− 9)ω2m+2 ∧ ω2m+1 ,

dω2m+2 = 0 ,

are rigid and complete. Moreover, their nilradical has codimension one and is
isomorphic to the Lie algebra g(m,m−1)+ψ, where ψ ∈ H2

(
g(m,m−1), g(m,m−1)

)
is the linearly expandable cocycle defined by ψ (X2, X3) = X2m.

These algebras are a particular case of rigid Lie algebras whose nilrad-
ical has codimension one, characteristic sequence (2m− 1, 1, 1) and whose
eigenvalues are (1, k, k + 1, . . . , 2k + 1, 3k). There exist classifications of rigid
algebras having similar sequences of eigenvalues and filiform nilradical. How-
ever, there is nothing similar for nonfiliform Lie algebras. Now the interesting
fact is that we can extend centrally the preceding nilradicals of rigid laws to
obtain characteristically nilpotent Lie algebras [22]:
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Theorem 25. The Lie algebras e1

(
g(m,m−1) + ψ

)
(m ≥ 3) defined by the

structural equations

dω1 = dω2 = 0 ,

dωj = ω1 ∧ ωj−1 , 3 ≤ j ≤ 2m− 1 ,

dω2m = ω1 ∧ ω2m−1 + ω2 ∧ ω3 ,

dω2m+1 =
[ 2m+1

2 ]∑

j=2

(−1)j ωj ∧ ω2m+1−j ,

dω2m+2 = ω1 ∧ ω2m+1 +
[ 2m+1

2 ]∑

j=2

(−1)j (m + 1− j) ωj ∧ ω2m+2−j ,

are characteristically nilpotent.

Corollary. There are characteristically nilpotent Lie algebras g with
nilindex 2m + 2 for any m ≥ 3.

Observe that the previous algebras have characteristic sequence (2m, 1, 1).
This fact is directly related with the position of the vector X2m+1 in the
graduation of g(m,m−1). The joined differential form involves the form ω2∧ω2m,
so that the nilindex of the algebra increases. Moreover, observe that we have

e1

(
g(m,m−1) + ψ

) ' e1

(
g(m,m−1)

)
+ ψ

so that we could have constructed the algebras extending and then deforming
by taking the same deformation. This gives, in a certain manner, a proce-
dure to generate characteristically nilpotent Lie algebras by extensions and
deformations of naturally graded Lie algebras (see [10]).

9. Affine structures over Lie algebras

The origin of affine structures over Lie algebras is the tudy of affine left-
invariant structures over Lie groups [9]. The question wheter any solvable Lie
group admits a left invariant affine structure is a problem of great interest,
as it relates geometrical aspects of affine manifold theory with representation
theory of Lie algebras. Translated into Lie algebra language, the question is
if any solvable Lie algebra satisfies a certain condition which is called affine
structure. This goes back to Milnor in the seventies, and is therefore called
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the Milnor conjeture. By the time the problem was posted, all known results
referred to low dimensions, where the answer is positive. The first counterex-
ample to Milnor’ s conjecture was given by Benoist [12]. He constructed a
11-dimensional filiform Lie algebra which does not admit an affine structure.
Explicitely, let a (t) be the filiform Lie algebra given by

[X1, Xi] = Xi+1 , 2 ≤ i ≤ 10 ;
[X2, X3] = X5 ;
[X2, X5] = −2X7 + X8 + tX9 ;

over the basis {X1, . . . , X11}. The main point is to prove that this algebra does
not admit a faithful representation of degree 12, which proves the nonexistence
of an affine connection [12]. This example has been widely generalized in [15]:

Theorem 26. There exist filiform Lie algebras of dimensions 10 ≤ n ≤ 12
which do not admit an affine structure. For n ≤ 9 any filiform Lie algebra
admits an affine structure.

For this, cohomological methods are of importance, in particular the di-
mensions of the cohomology spaces H2 (g,C), which are usually called Betti
numbers. Let g be an n-dimensional Lie algebra and G its associated Lie
group. If the group posseses a left-invariant affine structure, then this induces
a flat torsionfree left-invariant affine conection ∇ on G, that is

∇XY −∇Y X − [X, Y ] = 0 ,

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 0 ,

for all left invariant vector fields X, Y, Z on G. Now, defining

X.Y = ∇XY

we obtain a bilinear product which satisfies

X. (Y.Z)− (X.Y ) .Z − Y. (X.Z) + (Y.X) .Z = 0 .

Observe that this implies that the product is left symmetric.

Definition. An affine structure on a Lie algebra g is a bilinear product
g× g → C which is left symmetric and satisfies

[X,Y ] = X.Y − Y.X , ∀ X, Y ∈ g .
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It is known that there exists a one-to-one correspondence between affine
structures on g and left invariant structures on the associated Lie group G
[28]. The interesting fact is that the problem can be dealt with methods of
representation theory of nilpotent Lie algebras.

Proposition. Let g be an n-dimensional Lie algebra. If g admits an
affine structure then g possesses a faithful module M of dimension n + 1.

By the theorem of Ado [1], any Lie algebra admits a faithful representation.
Unfortunately, the results does not say anything about the minimal degree of
such a representation. Nowadays, it is accepted that the best lower bound is
given in [16]. This bound, equal to α√

n
2n with α ∼ 2, 76287, has been used

to obtain other counterexamples to Milnor’s conjecture [16]. In relation with
the derivations structure, we have the following:

Proposition. A Lie algebra g admits an affine structure if and only if
there is a g-module M of dimension dim g such that Z1 (g, M) contains a
nonsingular cocycle.

The result is a consequence of the inversibility for a nonsingular cocycle.
An immediate corollary is:

Corollary. If g admits a nonsingular derivation, then it admits an affine
structure.

Observe in particular the importance of this for graded Lie algebras: if g

is naturally graded (the results remains valid for any positive indexed graded
Lie algebra) then the natural operation defines a nonsingular derivation, from
which we obtain that any naturally graded Lie algebra has an affine structure.
As it is known that metabelian Lie algebras and those of dimensions n ≤ 6
can be graded in such manner, all them admit an affine structure. For 3-step
nilpotent Lie algebras Scheunemann [87] proved in 1974 the following:

Theorem 27. Any 3-step nilpotent Lie algebra g admits an affine
structure.

Observe that the algebra of Dixmier and Lister is 3-step nilpotent, thus
it has such a structure. Clearly all derivations are singular, which proves the
existence of CNLA with affine structures. The question is which of the struc-
tural properties of CNLA allow the existence of such structures. In particular,
has it any relation with the structure of the automorphism group?
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For 4-step nilpotent Lie algebras the question is open, and the best result
achieved can be found in [27]. However, the fundamental source (once more)
for the study of affine structures is the variety Fn of filiform Lie algebras. In
[16] the author defines the following cocycles:

Definition. Let g be a filiform Lie algebra. A cocycle ω ∈ Z2 (g,C) is
called affine if it is nonzero over Z (g) ∧ g. A class [ω] ∈ H2 (g,C) is called
affine if every representative is affine.

Then the next result characterizes certain extensions of filfirom Lie
algebras:

Proposition. A filiform Lie algebra g has a filiform extension of dimen-
sion dim g + 1 if and only if there exists an affine cohomology class in g.

This result has two interesting consequences:

Corollary. If the filiform Lie algebra g admits an affine cohomology
class [ω], then it admits an affine structure.

Corollary. If g is filiform of dimension n ≥ 6 and dimH2 (g,C) = 2,
then g has no affine cohomolofgy class.

Endowed with these methods, Burde has constructed two classes of filiform
Lie algebras [17] which provide a lot of counterexamples to Milnors conjecture.

We conclude giving CNLAs which admit an affine structure but whose
Lie algebra of derivations is not characteristically nilpotent: over the basis
{X1, . . . , X11} let g(ai) be the filiform Lie algebra given by

[X1, Xi] = Xi+1 , 2 ≤ i ≤ 10 ,

[X2, X3] = X5 ,

[X2, X4] = X6 ,

[X2, X5] = −2X7 + X8 ,

[X2, X6] = −5X8 + 2X9 ,

[X2, X7] = −13
9 X9 + a1X10 + a2X11 ,

[X2, X8] = 26
5 X10 + a3X11 ,

[X2, X9] = a4X11 ,

[X3, X4] = 3X7 −X8 ,

[X3, X5] = 3X8 −X9 ,

[X3, X6] = −12
5 X9 + a5X10 + a6X11 ,

[X3, X7] = −39
5 X10 + a7X11 ,

[X3, X8] = a8X11 ,

[X4, X5] = 27
5 X9 + a9X10 + a10X11 ,

[X4, X6] = 27
5 X10 + a9X10 ,

[X4, X7] = a11X11 ,

[X5, X6] = a12X11 ,
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where the following relations are satisfied:

a5 − 3a1 + 26
5 − a9 = 0

3a2 − a3 + a10 − a6 = 0
a3 − 3a2 − 2a10 = 0
a12 − 27

5 a4 − 54
5 = 0

2a2 − a3 + 2a6 − a5 − a7 + 2 = 0
−3a3 + a4 + 2 + 4a9 − 31

5 − a11 = 0
a1 + a5 − 2 = 0

5a3 − 2a4 − 2a8 + 52
2 + 5a5 + 5a7 − 10 = 0

a7 + a3 − a1 = 0
a4 + a8 − 26

5 = 0
a9 − 4a5 + 6− 26

5 = 0





.

This example, for the values

a1 =
51
25

, a2 = −a6 = a10 =
28
125

, a3 =
28
25

, a4 =
19
16

, a5 = − 1
25

,

a7 =
23
25

, a8 =
321
80

, a9 = −24
25

, a11 = −189
16

, a12 =
1377
80

,

is due to Remm and Goze [83].

10. Associative characteristic nilpotent algebras

Motivated by the paper of Dixmier and Lister, in 1971 T.S. Ravisankar
[81] extended the concept of being characteristically nilpotent to general alge-
bras. This approach has been useful for the study of Malcev algebras, as for
associative algebras and its deformation theory [72].

Let A be a nonassociative complex algebra (again we convene that the
base field is C, though this assumption is not generally necessary). We denote
its Lie algebra of derivations by D (A). Let

A[1] =
{∑

Dixi | xi ∈ A, Di ∈ D (A)
}

and define inductively A[k+1] =
{∑

Diyi | yi ∈ A[k], Di ∈ D (A)
}
.

Definition. An algebra A is called characteristically nilpotent (C-nilpo-
tent) if there exists an integer n such that A[n] = 0.
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It is clear that if A is a C-nilpotent algebra, then any derivation of A is a
linear nilpotent transformation on A. The converse also holds [81]. For the
special case of associative algebras, in [43], let eα be the (r + 1)2 matrix whose
α = (i, j) entry is one, otherwise zero. The space generated by this vector is
denoted by Eα. Let us then define

R = {α = (i, jt) | 1 ≤ i, j ≤ r + 1},
R+ = {α = (i, j) | i < j}.

It follows that R− = R−R+ and S = {(i, i + 1) ∈ R | 1 ≤ i ≤ r} is the set of
simple roots, in analogy with the Lie algebra case [23]. Then L =

∑
R+ Eα is

a nilpotent associative algebra. Consider the bilinear mappings of L×L → L
defined by

gk,m (eαk
, eαm) = eδ , where αi = (i, i + 1) and δ = (1, r + 1) .

Obviously the center of L is generated by the root δ. Let us now consider the
linear combination ψ =

∑
1≤k,m≤r ak,mgk,m for ak,m ∈ C. In [43] it is proven

that this is a lineraly expandable cocycle, and further that:

Theorem 28. Let ψ be the cocycle given by ψ =
∑

1≤k,m≤r ak,mgk,m

with
∏

1≤i≤r aii 6= 0. Then the associative algebra L + ψ is characteristically
nilpotent.

Constructing families of this kind, the variety N n of associative algebras
can be studied as Lie algebras have been [72]. In particular, among other re-
sults the following shows the similarity between the theory of characteristically
nilpotent Lie algebras and C-algebras:

Theorem 29. For n ≥ 2 there exists a Zariski-open subset of N n formed
by characteristically nilpotent associative algebras. Moreover, its dimension
is n2 − n.
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