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I. Introduction

We survey in these notes some recent progress on the understanding of the
Banach space c0 an of its subspaces. We did not try to complete the (quite
ambitious) task of writing a comprehensive survey. A few topics have been
selected, in order to display the variety of techniques which are required in
such investigations. It is hoped that this selection can provide the reader with
some intuition about the behaviour of the space. Our choice has also been
influenced by the open problems which conclude these notes. It is our hope
that some of these problems are not desperately hard.

The unit ball of c0 can be (vaguely) visualized as a cubic box with no
vertices; somehow, only the internal parts of the sides remain. Cubic boxes
are suitable for packing, and indeed it is easy to map a space to c0 (see
§ II). A cube is a polyhedron, and indeed the polyhedral nature of c0 and its
subspaces inform us of some of their isometric properties (see § III). The space
c0 contains “very few” compact sets, unlike spaces which do not contain c0 and
retain some features of reflexive spaces (see § IV). The natural norm of c0 is
flat at every point in the direction of a finite-codimensional space and c0 is the
largest space with this property. This helps to prove that the unit ball of c0

is a sturdy box, whose shape cannot be altered by non-linear Lipschitz maps
(see §V). Finally, vectors in c0 can easily be approximated by restricting their
support to given finite subsets. Subspaces of c0 are in general not stable under
this operation. However, smoothness properties of these subspaces sometimes
help to build a decent approximation scheme (see §VI). A sample of open
problems is displayed in the last section VII.

1



2 g. godefroy

Notation We denote by c0 the separable Banach space of all real se-
quences (un) such that limn→∞(un) = 0. This space is equipped with its
canonical norm

‖(un)‖∞ = sup
{|un|; n ≥ 1

}
.

Capital letters such as X, Y , . . . will denote Banach spaces. By “sub-
space”, we mean “closed subspace”. We denote by e∗n the linear form defined
on c0 by

e∗n((uk)) = un.

Of course, e∗n ∈ c∗0 = `1. We denote by NA(X) the subset of the dual space
X∗ consisting of norm-attaining linear functionals. We otherwise follow the
classical notation as it can be found e.g. in [32].

II. c0 is an easy target

It is quite easy to give a usable representation for operators T from a
Banach space X to c0. Indeed, if we let

T ∗(e∗n) = x∗n ∈ X∗

then clearly
T (x) = (x∗n(x))n≥1 (1)

and the sequence (x∗n) is w∗-convergent to 0 in X∗. Conversely, if (x∗n) is a
w∗-null sequence in X∗, then (1) defines an operator from X to c0.

This very simple representation provides us with a bunch of operators
from X into c0, at least when the space X is separable since in this case,
bounded subsets of X∗ are w∗-metrizable and thus convergent sequences are
easily constructed.

This simple idea lies in the background of an old but important result on
c0: Sobczyk’s theorem.

Theorem II.1. ([35]) Let X be a separable Banach space, and Y a sub-
space of X. Let T : Y → c0 be a bounded operator. There exists T̃ : X → c0

such that

(i) T̃|Y = T .

(ii) ‖T̃‖ ≤ 2‖T‖.
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Proof. ([36]) Let y∗n = T ∗(e∗n). Clearly ‖T‖ = supn ‖y∗n‖. By Hahn–
Banach theorem, there exist x∗n ∈ X∗ such that ‖x∗n‖ ≤ ‖T‖ and x∗n|Y = y∗n
for all n ≥ 1. We set

K = {x∗ ∈ X∗; ‖x∗‖ ≤ ‖T‖}

and L = K ∩ Y ⊥. When equipped with the w∗-topology, K is metrizable
compact. Let d be a distance which defines the weak-star topology on K.

Since limx∗n(y) = lim y∗n(y) = 0 for every y ∈ Y , every w∗-cluster point to
the sequence (x∗n) belongs to L. It follows by compactness that the distance
from (x∗n) to L in (K, d) tends to 0, hence we can pick t∗n ∈ L such that

w∗- lim(x∗n − t∗n) = 0.

If we now define T̃ : X → c0 by

T̃ (x) =
(
(x∗n − t∗n)(x)

)
n≥1

it is easily seen that T̃ works. Moreover

‖T̃‖ = sup
n
‖x∗n − t∗n‖ ≤ sup

n

(‖x∗n‖+ ‖t∗n‖
) ≤ 2‖T‖.

Let us spell out two important applications.

Corollary II.2. Let X be a separable Banach space, and let Y be a
subspace which is isomorphic to c0. Then Y is complemented in X.

Proof. Let T : Y → c0 be an isomorphism onto c0. In the notation of
Theorem II.1, T−1 ◦ T̃ : X → Y is a projection.

Corollary II.3. Let X be a separable Banach space which has a sub-
space Y such that both spaces Y and X/Y are isomorphic to subspaces of c0.
Then X is isomorphic to a subspace of c0.

Proof. Let T : Y → c0 and S : X/Y → c0 be isomorphisms onto sub-
spaces of c0. We denote again T̃ : X → c0 an operator extending T , and
Q : X → X/Y the canonical map. It is easily checked that V : X →
c0 ⊕ c0 ' c0 defined by V (x) =

(
T̃ (x), S ◦Q(x)

)
is an isomorphism of X into

c0.
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Remark II.4. Sobczyk’s theorem, and the above corollaries, fail in the
nonseparable case. Indeed we can take X = `∞ in corollary II.2 and c0 is not
complemented in `∞. There is a compact set K [9, Example VI.8.7.], such
that C(K) = X contains a subspace Y isomorphic to c0(N) such that X/Y is
isomorphic to c0(Γ), with |Γ| = c, but X is not a subspace of c0(Γ) since X is
not weakly compactly generated.

Although it is harder to map a nonseparable Banach space into a c0(Γ)
space, such mappings play a fundamental role in the study of “nice” nonsep-
arable spaces. We refer to the last three chapters of [9] for this topic.

III. Some isometric properties

It is easy to characterize spaces which are isometric to subspaces of c0 by
applying the formula (1) from § II to an isometric embedding.

Proposition III.1. Let X be a Banach space. The following assertions
are equivalent:

(i) X is isometric to a subspace of c0.

(ii) There exists a sequence of (x∗n) in X∗ such that w∗-limn(x∗n) = 0 and
for all x ∈ X,

‖x‖ = sup
{ |x∗n(x)|; n ≥ 1

}
.

The proof follows immediately from the consideration of

T (x) =
(
x∗n(x)

)
n≥1

which is an isometric embedding into c0 if and only if (x∗n) satisfies (ii). This
simple proposition has some interesting consequences. We first need a defini-
tion.

Definition III.2. Let X be a Banach space, and g : X → R a continuous
function. We say that g locally depends upon finitely many coordinates if for
every x ∈ X, there exist ε > 0, a finite subset {f1, f2, . . . , fn} of X∗ and a
continuous function ϕ : Rn → R such that g(y) = ϕ(f1(y), f2(y), . . . , fn(y))
for every y such that ‖x− y‖ < ε.

When g : X → R is a norm, we say that it locally depends upon finitely
many coordinates if the above condition holds for every x ∈ X \ {0}. We note
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that when this happens, ϕ can be chosen to be a norm on Rn. Indeed, let
T : X → Rn be defined by

T (y) =
(
fi(y)

)
1≤i≤n

and pick any y ∈ SX with ‖x− y‖ < ε. For every u ∈ KerT , the function

λ −→ ‖y + λu‖

is convex, and ≥ 1 on some neighbourhood of 0, hence ≥ 1 on R and we have

‖y‖X/ Ker T = 1.

It follows that we can take ϕ(·) = ‖ · ‖X/ Ker T .

Proposition III.3. Let X be a subspace of c0, and let ‖ · ‖ be the re-
striction of ‖ · ‖∞ to X. Then, for any x ∈ X \ {0}, there are δ > 0 and a
finite subset (x∗n)n∈J of X∗ such that if ‖x− y‖ < δ, then

‖y‖ = sup
{|x∗n(y)|; n ∈ J

}
.

In particular, ‖ · ‖ depends locally of finitely many coordinates. Moreover, X
is polyhedral; that is, the unit ball of every finite dimensional subspace of X
has finitely many extreme points.

Proof. Pick x ∈ X \ {0}. We have

‖x‖ = sup
n
|e∗n(x)|

and limn e∗n(x) = 0. Hence if

I = {n ≥ 1; |e∗n(x)| < ‖x‖}

one has
‖x‖ − sup

{|e∗n(x)|; n ∈ I
}

= ε > 0

and the set J = N \ I is finite.
If y ∈ X is such that ‖x− y‖ < ε/3, one clearly has

‖y‖ = sup
{|e∗n(y)|; y ∈ J

}

and this show our first assertion. Note that this assertion really means that
the norm is locally linear when J is a singleton.
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For showing polyhedrality, we pick E ⊆ X a finite dimensional subspace.
Let SE = {x ∈ E; ‖x‖ = 1}. For all x ∈ SE , there is ε(x) > 0 and F (x) ⊆ X∗

a finite subset such that ‖y − x‖ < ε(x) implies

‖y‖ = sup
{|x∗(y)|; x∗ ∈ F (x)

}
.

Since SE is compact, there are x1, . . . , xn in SE such that

SE ⊆
n⋃

i=1

B
(
xi, ε(xi)

)
.

If F = ∪n
i=1F (xi), F is a finite subset of X∗ such that

‖x‖ = sup
{|x∗(x)|; x∗ ∈ F

}

for all x ∈ E, hence E is isometric to a subspace of (R|F |, ‖ · ‖∞) and polyhe-
drality follows.

Subspaces of c0 are typical examples of polyhedral spaces, but they are
far from exhausting the class of polyhedral spaces. We refer to [13] for an
up-to-date survey of this theory.

We shall use these notions for investigating nearest points to subspaces in
the class of subspaces of c0. We recall that a subspace Y of a Banach space
X is called proximinal if for every x ∈ X, there exist y0 ∈ Y such that

‖x− y0‖ = inf
{‖x− y‖; y ∈ Y

}
.

If for instance Y = Ker(x∗) is an hyperplane, Y is proximinal if and only
if x∗ ∈ NA(X), where NA(X) denotes the subset of X∗ consisting of norm-
attaining functionals. That is, x∗ ∈ NA(X) when

sup
{|x∗(x)|; ‖x‖ ≤ 1

}

is attained.
This observation has an easy useful generalization, namely:

Proposition III.4. ([15]) Let X be a Banach space, and Y a subspace
of X of finite codimension. If Y is proximinal in X, then Y ⊥ is contained into
NA(X).
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Proof. Let Q : X → X/Y be the quotient map. Clearly Y is proximinal
if and only if Q(BX) = BX/Y . Since X/Y is finite dimensional, every linear
form on (X/Y ) attains its norm. The result follows since Q∗ is an isometry
from (X/Y )∗ onto Y ⊥.

Proposition III.4 can be reformulated as follows: if Y ⊆ X is a proximinal
subspace of finite codimension, every hyperplane H such that Y ⊆ H ⊆ X is
proximinal. The converse does not hold in general [34]. We will show however
that it holds in subspaces of c0. Indeed one has:

Theorem III.5. ([18]) Let X be a subspace of c0. Let Y be a finite
codimensional subspace of X. Then Y is proximinal in X if and only if the
orthogonal Y ⊥ of Y in X∗ is contained in NA(X).

Proof. We have to show that Y is proximinal if Y ⊥ is contained in NA(X).
This is obtained by combining the following facts.

Lemma III.6. Let Y be a finite codimensional subspace of a Banach space
X such that Y ⊥ is contained in NA(X) and Y ⊥ is polyhedral. Then Y is
proximinal.

Indeed X/Y = (Y ⊥)∗ is polyhedral as well and thus every extreme point
e of B(Y ⊥)∗ is in fact exposed. That is, there is x∗ ∈ Y ⊥ with ‖x∗‖ = 1 and

{t ∈ (Y ⊥)∗; t(x∗) = 1} = {e}. (2)

But since x∗ ∈ NA(X), there is x ∈ X with x∗(x) = ‖x‖ = 1. If we denote
by Q the quotient map from X onto X/Y = (Y ⊥)∗, it follows from (2) that
Q(x) = e. Hence

Q(BX) ⊇ Ext(BX/Y )

and thus by the Krein–Milman theorem

Q(BX) = BX/Y

which means that Y is proximinal.

Lemma III.7. Let X be a subspace of c0. For any x∗ ∈ SX∗ , we denote

J(x∗) = {x∗∗ ∈ X∗∗; x∗∗(x∗) = ‖x∗∗‖ = 1}.
If x∗ ∈ NA(X), there exists a w∗-neighbourhood V of x∗ such that if y∗ ∈
V ∩ SX∗ , then J(y∗) ⊆ J(x∗).
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Indeed, let j : X → c0 be the canonical injection, and j∗ : `1 → X∗ be
the corresponding quotient map. We work by contradiction: if the conclusion
fails, there is a sequence (x∗n) ⊆ SX∗ such that w∗-lim(x∗n) = x∗ and

J(x∗n) ⊂/ J(x∗) (3)

for all n. Pick y∗n ∈ `1 with ‖y∗n‖ = 1 and j∗(y∗n) = x∗n. If we let for z∗ ∈ S`1

J̃(z∗) = {t ∈ `∞; ‖t‖ = 1 = t(z∗)}

we formally have when ‖j∗(z∗)‖ = 1

j∗∗
(
J(j∗(z∗))

)
= j∗∗(X∗∗) ∩ J̃(z∗). (4)

We may and do assume that the sequence (y∗n) is w∗-convergent in B`1 to
y∗. Clearly j∗(y∗) = x∗, and y∗(x) = ‖y∗‖ = 1. Hence, y∗ ∈ NA(c0) and it
follows that the set

supp(y∗) = {k ≥ 1; y∗(ek) 6= 0}

is finite. It follows from (3) and (4) that one has

J̃(y∗n) ⊂/ J̃(y∗)

for all n. On the other hand, it is clear that

J̃(y∗) = {t ∈ S`∞ ; t(e∗k) = sign(y∗(ek)) for all k ∈ supp(y∗)}

with a similar formula for J̃(y∗n). Now since w∗-lim(y∗n) = y∗, it follows that
for n large enough, one has for all k ∈ supp(y∗) that

sign(y∗n(k)) = sign(y∗(k))

and thus J̃(y∗n) ⊂ J̃(y∗), which is a contradiction.
To conclude the proof of Theorem III.5 it suffices by Lemma III.6 to show

that Y ⊥ is polyhedral. Since it is contained in NA(X), we may apply Lemma
III.7 to every x∗ ∈ Y ⊥. By compactness, we find {x∗i ; i ≤ n} in SY ⊥ and
w∗-open neighbourhoods Vi of x∗i such that

SY ⊥ ⊆
n⋃

i=1

Vi
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and
J(y∗) ⊆ J(x∗i )

if y∗ ∈ Vi. Therefore,

⋃
{J(y∗); y∗ ∈ SY ⊥} =

n⋃

i=1

J(x∗i )

it follows that for any t ∈ (Y ⊥)∗,

‖t‖ = sup
{|t(x∗i )|; 1 ≤ i ≤ n

}

hence (Y ⊥)∗ is polyhedral and so is Y ⊥.

Remark III.8. By using sharper analytical tools, one can show [19] that
under the assumptions of Theorem III.5, the proximinal subspace Y is in
fact strongly proximinal, in the following sense. For every x ∈ X, denote
d(x, Y ) = inf{‖x−y‖; y ∈ Y } and PY (x) = {y ∈ Y ; ‖x−y‖ = d(x, Y )}. Then
for every ε > 0, there is δ > 0 such that if y ∈ Y and ‖x− y‖ < d(x, Y ) + δ,
then there is y′ ∈ PY (x) such that ‖y− y′‖ < ε. In other words, if y is almost
a nearest point to x, then y is close to a nearest point. Another result of [19]
is that under the assumption of Theorem III.5, the multivalued map PY (·)
has a continuous selection.

The conclusion of Lemma III.7 and the above assertions, are satisfied for
a collection of spaces which is quite larger that the class of subspaces of c0.
However, it provides strong restrictions on the isometric structure. We now
provide a proof of a result from [12]. If x∗ ∈ X∗, we denote

JX(x∗) = {x ∈ SX ; x∗(x) = ‖x∗‖}.

We recall that a boundary is a subset B of SX∗ on which every x ∈ X attains
its norm. With this notation, the following holds:

Proposition III.9. Let X be a separable Banach space such that for all
x∗ ∈ SX∗ ∩ NA, there is a w∗-open neighbourhood V∗(x∗) of x∗ such that
y∗ ∈ V∗(x∗) ∩ SX∗ implies JX(y∗) ⊆ JX(x∗). Then there is a boundary
B ⊆ SX∗ such that no w∗-accumulation point of B belongs to SX∗ ∩NA.

Proof. For x ∈ X, we denote

JX∗(x) = {x∗ ∈ SX∗ ; x∗(x) = ‖x‖}.
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For all x ∈ SX , the set

Vx = {y ∈ SX ; JX∗(y) ∩ JX∗(x) 6= ∅}

is open in (SX , ‖ · ‖). Indeed if lim ‖yn − x‖ = 0 and x∗n ∈ JX∗(yn), we may
and do assume that

w∗- lim(x∗n) = x∗ ∈ JX∗(x).

By our assumption, JX(x∗n) ⊆ JX(x∗) if n ≥ N , hence x∗(yn) = 1 if n ≥ N ,
and thus JX∗(yn) ∩ JX∗(x) 6= ∅ if n ≥ N .

Since (SX , ‖ · ‖) is a separable metric space, by paracompactness and the
Lindelöf property, there is a sequence (xn) ⊆ SX such that:

(i) SX = ∪n≥1Vxn .

(ii) For all x ∈ SX , there is U 3 x open such that {n; Vxn ∩U 6= ∅} is finite.

If for x ∈ SX , we denote

Ex = {n ≥ 1;JX∗(x) ∩ JX∗(xn) 6= ∅}

then by (i) and (ii), En is a non-empty and finite set.
For all n, JX∗(xn) is a w∗-compact subset of NA ∩ SX∗ , hence there is a

finite subset Fn ⊆ JX∗(xn) such that

JX∗(xn) ⊆
⋃
{V∗(x∗); x∗ ∈ Fn}.

We let
B =

⋃

n≥1

Fn.

The set B is a boundary. Indeed, pick x ∈ Sx. There is n0 such that x ∈ Vxn0
;

pick
x∗ ∈ JX∗(x) ∩ JX∗(xn0).

There is b∗ ∈ Fn0 ⊆ B such that x∗ ∈ V∗(b∗). We have JX(x∗) ⊆ JX(b∗),
hence b∗(x) = 1.

Finally, let (b∗k) ⊆ B and

w∗- lim
k→∞

b∗k = x∗

with x∗ 6= b∗k for all k. We have to show that x∗ /∈ SX∗ ∩NA.
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If not, let x ∈ SX be such that x∗ ∈ JX∗(x). For k ≥ K, one has

JX(b∗k) ⊆ JX(x∗).

Let (nk) be such that b∗k ∈ JX∗(xnk
). We note that for any y ∈ SX

JX∗(y) ∩B ⊆
⋃

n∈Ey

Fn

and thus JX∗(y)∩B is finite. It follows that we may and do assume that the
points (xnk

) are all distinct.
If k ≥ K, we have

xnk
∈ JX(b∗k) ⊆ JX(x∗)

hence x∗(xnk
) = x∗(x) = 1 and thus

JX∗(xnk
) ∩ JX∗(x) 6= ∅.

This means that x ∈ Vnk
for all k ≥ K. But this cannot be since Ex is finite.

It should be mentioned that the converse of Proposition III.9 holds true as
well [12]. That is, the existence of such a boundary B implies the existence of
weak∗ open neighbourhoods V∗(x∗) satisfying the assumptions of Proposition
III.9. We refer to [19, Examples III.5] for applications of this condition of
proximinality results. We note that the conditions of Proposition III.9 are
hereditary; every polyhedral isometric predual of `1 satisfies them.

IV. The space c0 is minimal among non-reflexive spaces
which are smooth enough

In contrast with the previous section, we now consider isomorphic proper-
ties, which are however related with the existence of special norms. We will
show in particular that c0 is minimal among the spaces whose norm locally
depends upon finitely many coordinates. Let us first prove that such spaces
are Asplund spaces.

Proposition IV.1. Let X be a separable space whose norm ‖ · ‖ locally
depends upon finitely many coordinates. Then X∗ is separable.
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Proof. For every x ∈ SX , there are ε(x) > 0 and a linear operator

Tx : X −→ (Rn(x), ‖ · ‖x)

such that if ‖y − x‖ < ε(x), then

‖y‖ = ‖Tx(y)‖x

(see the comments after Definition III.2). By the Lindelöf property, there is
a sequence {xn; n ≥ 1} such that

SX ⊆
⋃

n≥1

B
(
xn, ε(xn)

)
.

Let now Sn be the unit sphere of the space (Rn(x), ‖ · ‖x)
∗
, and Kn = T ∗x (Sn).

It is clear that Kn is norm-compact, hence

B =
⋃

n≥1

Kn

is a norm-separable subset of SX∗ . For all y ∈ SX , there is x∗ ∈ B such that
x∗(y) = 1, hence B is a separable boundary. Now [16, Th. III.3] shows that
X∗ is separable.

Remark IV.2. An alternative proof of Proposition IV.1 consists into ob-
serving that since ‖ · ‖x is strongly sub-differentiable (S.S.D.) for all x ∈ SX

by Dini’s theorem, the norm of X is S.S.D. as well. Now, every Banach space
which has a S.S.D. norm is an Asplund space.

If a space does not contain c0(N), its supply of compact subsets allows to
show a compact variational principle ([8]; see [9, Th. V.2.2]) which we state
below.

Theorem IV.3. Let X be a Banach space not containing c0(N). let U 3 0
be a bounded open symmetric subset of X. let f : U → R be a continuous
function such that:

(i) f(x) > 0 for all x ∈ ∂U ,

(ii) f(−x) = f(x),

(iii) f(0) ≤ 0,
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then there is a compact subset K of U , and V 3 0 open such that K +V ⊆ U ,
and such that if we let

fK(x) = sup{f(x + h); h ∈ K}

then fK(0) = 0 and fK(x) > 0 if x ∈ V \ {0}.

Proof. By a result of Bessaga–Pelczynski [4], if X 6⊃ c0(N) and (xi)i∈N is
such that

sup
{‖∑

εixi‖; (εi) ∈ {−1, 1}[N]
}

< ∞
then the series (

∑
xi) is unconditionally convergent, and thus the set

E =
{∑

εixi; (εi) ∈ {−1, 1}[N]
}

is ‖ · ‖-relatively compact.
Let x0 = 0 ∈ U . If x0, · · · , xn have been chosen, let

Kn =
{ nX

i=0

εixi; εi ∈ {−1, 1}
}

and

En =
{
x ∈ X; for all k ∈ Kn, (x + k) ∈ U and f(x + k) ≤ 0

}
.

Denote
αn = sup

{‖x‖; x ∈ En

}

and choose xn+1 ∈ En such that

‖xn+1‖ ≥ αn

2
.

Note that the construction can be continued since 0 ∈ En for all n. Let
now

K = ∪Kn.

Since K ⊆ U , it is bounded, and Bessaga–Pelczynski’s result shows that K is
compact and that lim(αn) = 0.

We observe now that f ≤ 0 on K, hence K ∩ ∂U = ∅ and fK(0) ≤ 0. Let
V be a neighbourhood of 0 such that K + V ⊆ U . If x ∈ V \ {0}, there is
n ≥ 1 such that ‖x‖ > αn, and thus fK(x) > 0; it also follows that fK(0) = 0.



14 g. godefroy

The unit ball of X 6⊃ c0(N) may fail to contain extreme points; however,
it contains “extreme compact sets”. Indeed:

Corollary IV.4. If X does not contain c0, there is a compact subset K
of BX such that (K + h) 6⊂ BX for all h 6= 0.

Proof. Let U = {x ∈ X; ‖x‖ < 2}. We denote

f(x) = dist(x,BX) = ‖x‖ − 1.

Theorem IV.3 provides us with a compact symmetric set K such that fK(0) =
0 (hence K ⊆ BX) and fK(h) > 0 (hence (K + h) 6⊂ BX) if 0 < ‖h‖ < δ for
some δ > 0. Clearly, this set K works.

Note that if K is a compact subset of c0, one has

lim
n→∞

(
sup

{|x(i)|; x ∈ K, i ≥ n
})

= 0.

Hence, c0 equipped with its natural norm does not satisfy the conclusion of
Corollary IV.4, which says that c0 is minimal for this property. It follows that
it is also minimal for local dependence upon finitely many coordinates.

Corollary IV.5. If the norm of X locally depends upon finitely many
coordinates and dimX = ∞, then X contains c0.

Proof. If not, pick K ⊆ BK satisfying the conclusion of Corollary IV.4.
We may and do assume that 0 /∈ K. For all x ∈ K, there is ε(x) > 0 such
that if ‖x− y‖ < ε(x), then

‖y‖ = ϕx(Tx(y))

where Tx is a finite rank map. By compactness, we have

K ⊆
n⋃

i=1

B
(
xi, ε(xi)

)
.

Since dimX = ∞, the space H = ∩n
i=1 Ker(Txi) is not reduced to {0}. Hence

we can pick h ∈ H with 0 < ‖h‖ < ε = inf1≤i≤n ε(xi). Clearly, (K +h) ⊆ BX ,
contradicting our choice of K.
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The compact variational principle (Theorem IV.3) can be used to provide
some uniform continuity in spaces which do not contain c0. For instance, if
X 6⊃ c0, and if there is a Ck-smooth bump function b0 : X → R (k ≥ 1), then
there is a Ck-smooth bump function b such that b(k−1) is uniformly continuous
(see [9, Th. V.3.2]). In particular, if X 6⊃ c0 and X has a C2-smooth bump,
then X is superreflexive of type 2 (see [9, Cor. V.3.3]).

Note that c0 has a C∞-smooth bump which locally depends upon finitely
many coordinates (see [9, Chapter V]). Indeed, pick f : R → R a C∞-
smooth function such that f(t) = 1 if |t| ≤ 1 and f(t) = 0 if |t| ≥ 2. If
x = (x(i)) ∈ c0, we let

b(x) =
∞∏

i=1

f(x(i)).

Note that for this bump function b, like for any differentiable bump function
on c0, the derivable b′ is not uniformly continuous.

V. The space c0 is maximal among asymptotically flat spaces

The following “modulus of asymptotic smoothness” has been defined in
[33]. If x ∈ SX , τ > 0 and Y is a linear subspace of X, define

ρ(x, τ, Y ) = sup
{‖x + τy‖ − 1; y ∈ SY

}

and then
ρ(x, τ) = inf

{
ρ(x, τ, Y ); dimX/Y < ∞}

and finally
ρX(τ) = sup

{
ρ(x, τ); x ∈ SX

}
.

In other words, ρX(τ) measures the uniform smoothness of the norm of X,
when one is allowed to “neglect” at every point x ∈ SX a well-chosen finite
dimensional space.

Following [29], one says that X is asymptotically uniformly smooth if

lim
τ→0

ρX(τ)
τ

= 0.

Let us say that X is asymptotically uniformly flat if there is τ0 > 0 such
that ρX(τ0) = 0 (or equivalently, ρX(τ) = 0 for all τ ∈ [0, τ0]).

It is easily seen that when (X = c0, ‖ · ‖∞), then ρX(1) = 0. But it turns
out that c0 is the largest space with this property.
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Theorem V.1. Let X be an asymptotically uniformly flat Banach space.
Then X is isomorphic to a subspace of c0.

Proof. Let x ∈ SX and x∗ ∈ SX∗ such that x∗(x) = 1. Let (u∗n) be a
sequence in X∗ with w∗-lim(u∗n) = 0 and lim ‖x∗ + u∗n‖ = α > 0. Pick any
ε > 0. Since X is asymptotically uniformly flat, there is τ0 > 0 independent
of x such that we can find Y ⊂ Ker(x∗) finite codimensional, such that for all
y ∈ SY ,

‖x + τ0y‖ ≤ 1 + ετ0.

Since w∗-lim(u∗n) = 0, there exists by [20, Lemma 2.5] a sequence (yn) ⊂ SY

with w-lim(yn) = 0 such that

lim〈u∗n, yn〉 ≥ α

2

and thus we have

lim〈x∗ + u∗n, x + τ0yn〉 ≥ 1 + τ0
α

2
.

It follows that

lim ‖x∗ + u∗n‖ ≥
1 + τ0

α
2

1 + τ0ε
,

hence since ε > 0 is arbitrary

lim ‖x∗ + u∗n‖ ≥ 1 + τ0
α

2
. (5)

Summarizing, we have shown (5) for all w∗-null sequences (u∗n) with
lim ‖u∗n‖ = α, provided that x∗ is norm-attaining. Since such functionals
are norm-dense by the Bishop–Phelps theorem, (5) holds for every x∗ ∈ SX∗ .

In the terminology of [21], (5) means that the norm of X is “Lipschitz
w∗-Kadec–Klee”. Now [21, Th. 2.4] shows that X is isomorphic to a subspace
of c0.

It should be noted that the proof of [21, Th. 2.4], which is quite technical,
can be made simpler if one assumes that X has a shrinking F.D.D., in which
case it boils down to a skipped blocking argument. Now if E is an arbitrary
space with E∗ separable, there is Y ⊆ E such that Y and (E/Y ) both have
a shrinking F.D.D. To conclude the proof, it suffices to show that “being a
subspace of c0” is a 3-space property (see Cor II.3 above). This approach is
followed in [29] (see also [17, Th. V.7]).
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A motivation for Theorem V.1 is the following non-linear result: if
(X, ‖ · ‖X) is asymptotically uniformly flat and U : X → Y is a bijective
map such that U and U−1 are both Lipschitz maps, then the formula

|||y∗|||Y ∗ = sup
{ |y∗(Ux− Ux′)|

‖x− x′‖ ; (x, x′) ∈ X2, x 6= x′
}

defines an equivalent dual norm on Y ∗ whose predual norm is asymptotically
uniformly flat. It follows from this (non trivial) fact and Theorem V.1 that
the class of subspaces of c0 is stable under Lipschitz isomorphisms, and in par-
ticular that a space which is Lipschitz isomorphic to c0 is linearly isomorphic
to c0 [21].

It should be noted that “asymptotic uniform flatness” is in fact equivalent
to “Lipschitz w∗-uniform Kadec Klee”; more generally, asymptotic uniform
smoothness is equivalent to w∗-uniform Kadec Klee. This is a non-reflexive
version of the well-known duality between uniform convexity and uniform
smoothness.

We recall that a Banach space Y is said to be M-embedded if for every
y∗ ∈ Y ∗ and t ∈ Y ⊥ ⊂ Y ∗∗∗, one has ‖y∗ + t‖ = ‖y∗‖ + ‖t‖. We refer to
[28] for numerous examples and applications. Note that any non reflexive M-
embedded space contains an isomorphic copy of c0 [2] (see [23, Th. 3.5] for a
more general result).

It is clear that (c0, ‖·‖∞) is M-embedded. We prove now that this property
characterizes c0 among the isomorphic preduals of `1.

Corollary V.2. Let X be a separable L∞ space. If X is M-embedded,
then X is isomorphic to c0.

Proof. Since X is M-embedded, the weak∗ and weak topologies coincide
on SX∗ (see [28, Cor. III.2.15]) and thus X∗ is separable. Since X is L∞,
X∗ is a separable L 1 dual space, and thus [31] it is isomorphic to `1. Let us
show that ‖ · ‖X is asymptotically uniformly flat.

To show this, take a sequence (u∗n) with w∗-lim(u∗n) = 0 and lim ‖u∗n‖ = ε,
such that lim ‖x∗ + u∗n‖ ≤ 1. We have to show that ‖x∗‖ ≤ 1 − Kε for
some fixed constant K > 0. Since X∗ is isomorphic to `1, it has the strong
Schur property (see [5]). Hence there is a subsequence (u∗nk

) of (u∗n) such that
‖u∗nk

− u∗nl
‖ ≥ ε/2 for all k 6= l, and the strong Schur property provides a

further subsequence which we denote (v∗n) which is (K0ε)-equivalent to the
canonical basis of `1. It follows that (v∗n) has a w∗-cluster point G in X∗∗∗
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such that dist(G,X∗) ≥ Kε for some K > 0. Note that G ∈ X⊥ since w∗-
lim(v∗n) = 0 and thus dist(G,X∗) = ‖G‖ ≥ Kε. Now since lim ‖x∗ + v∗n‖ ≤ 1,
we have ‖x∗ + G‖ ≤ 1 and thus by the M-ideal property,

‖x∗‖ ≤ 1− ‖G‖ ≤ 1−Kε.

By Theorem V.1, X is isomorphic to a subspace of c0. The conclusion follows
since any L∞ subspace of c0 is isomorphic to c0.

Corollary V.2 has been originally shown in [25] through an application of
Zippin’s converse to Sobczyk’s theorem [37]. We refer to [21] for non separable
versions of Corollary V.2.

VI. Approximation properties in subspaces of c0

We recall that a Banach space X has the approximation property (in
short, A.P.) if for any compact set K and any ε > 0, there is a finite rank
operator R such that ‖x − Rx‖ < ε for all x ∈ K. If there is M < ∞
such that R can be chosen with ‖R‖ ≤ M , we say that X has the bounded
approximation property (B.A.P.); if M = 1, X has the metric approximation
property (M.A.P.). It is easily seen that a separable space X has the B.A.P.
if and only if there is a sequence (Rn) of finite rank operators such that
‖Rn‖ ≤ M for all n and lim ‖x − Rn(x)‖ = 0 ( with M = 1 if and only if X
has M.A.P.). A remarkable result from [6] asserts that if X is any separable
Banach space with M.A.P., there is a sequence (Rn) of finite rank operators
such that

(i) ‖Rn‖ ≤ 1 for all n.

(ii) lim ‖x−Rn(x)‖ = 0 for all x ∈ X.

(iii) RnRk = RkRn for all n, k.

We now investigate some aspects of the approximation properties in sub-
spaces of c0.

Theorem VI.1. Let X be an M-embedded separable Banach space, such
that there exists a sequence (Rn) of finite rank operators satisfying (ii), (iii)
and such that ‖Rn‖ < 2− ε for some ε > 0. Then there is a sequence (R′

n) of
finite rank operators satisfying (i), (ii) and (iii).

Note that being M-embedded is a hereditary property; hence Theorem VI.1
applies in particular to every subspace of c0.



the banach space c0 19

Proof. We consider the conjugate operators (R∗
n) on X∗. It follows from

(ii) that
w∗- limR∗

n(x∗) = x∗

for all x∗ ∈ X∗. We claim that
⋃

n≥1

R∗
n(x∗) = X∗. (6)

If not, there is F ∈ X∗∗ with ‖F‖ = 1 such that F (R∗
n(x∗)) = 0 for all x∗ ∈ X∗

and for all n. We pick x∗ ∈ X∗ such that ‖x∗‖ ≤ (2− ε)−1 and F (x∗) > 1/2.
We have

‖R∗
n(x∗)‖ ≤ ‖R∗

n‖‖x∗‖ ≤ 1.

Let t ∈ X∗∗∗ be a w∗-cluster point in X∗∗∗ to the sequence (R∗
n(x∗)). It is

clear that F (t) = 0 and t|X = x∗. Since X is M-embedded, we have

‖x∗ − t‖ = ‖t‖ − ‖x∗‖ ≤ 1− F (x∗) <
1
2
.

On the other hand, F (x∗ − t) > 1/2, a contradiction which shows (6).
We now claim that in fact

lim ‖x∗ −R∗
k(x

∗)‖ = 0 (7)

for all x∗ ∈ X∗. Indeed by (6), for any ε > 0, there is y∗ ∈ X∗ and n ≥ 1 such
that

‖x∗ −R∗
n(y∗)‖ < ε.

Using (iii), we have for all k ≥ 1

‖R∗
k(x

∗)−R∗
nR∗

k(y
∗)‖ = ‖R∗

k(x
∗)−R∗

kR
∗
n(y∗)‖ ≤ 2ε.

Now since R∗
n is a conjugate finite rank operator, it is (w∗-‖ · ‖) continuous

and thus
lim
k
‖R∗

n(y∗)−R∗
nR∗

k(y
∗)‖ = 0.

It follows that there is A(ε) such that if k ≥ A(ε) then

‖x∗ −R∗
k(x

∗)‖ < 4ε

and this shows (7).
To conclude the proof, we note that (7) implies that X∗ is a separable dual

with the approximation property. By a theorem of Grothendieck (see [32, Th.
I.e.15]) it follows that X∗ has the M.A.P., and thus X has M.A.P. as well (see
[32, Th. I.e.7]) and we may apply [6].
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We refer to [24] for an alternative construction of commuting approxi-
mating sequences in spaces not containing `1, which applies in particular to
M-embedded spaces.

It follows, immediately from Theorem VI.1 and [6] that we have

Corollary VI.2. Let X be a separable M-embedded space. If there
exists a Banach space Y with the metric approximation property such that
dBM (X,Y ) < 2 then X has the metric approximation property.

It is natural to wonder whether 2 can be replaced by an arbitrary constant
in Theorem VI.1 and Corollary VI.2. It is not so, as shown by the following
example due to W.B. Johnson and G. Schechtman (see [30]).

Theorem VI.3. There exists a subspace X of c0, such that there is a
sequence (Rn) of finite rank operators satisfying (ii), (iii) and sup ‖Rn‖ ≤ 8,
but X fails the metric approximation property.

Proof. It follows from Enflo’s theorem [10] that there is a subspace Y of c0

failing A.P. (see [32, p. 37]). Let (Yn)n≥1 be an increasing sequence of finite
dimensional subspaces of Y such that Y = ∪nYn.

We consider the space

c((Yn)) = {yn ∈ Yn : (yn) is norm-convergent}.

When equipped with the supremum norm, c((Yn)) is clearly a Banach space.
The map

L : c((Yn)) −→ Y
(yn) 7→ lim(yn)

is a quotient map, whose kernel is the space c0((Yn)).
We observe that by Corollary II.3, the space c((Yn)) is isomorphic to a sub-

space of c0, since its subspace c0((Yn)) and the corresponding quotient space
Y are both isomorphic (in fact, isometric) to subspaces of c0. An examination
of the proof of Corollary II.3 shows in the notation used there that ‖V ‖ ≤ 2
and ‖V −1|Im(V )‖ ≤ 4. It follows that there is a subspace X of c0 such that

dBM

(
c0((Yn)), X

) ≤ 8.

Since c0((Yn)) trivially has the M.A.P., the existence of the sequence (Rn)
with (ii), (iii) and sup ‖Rn‖ ≤ 8 follows.
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The proof of Theorem VI.1 shows in particular that if a subspace of c0 has
the M.A.P. then its dual has the M.A.P. as well. Hence it suffices to show
that the space X∗ fails A.P.; this follows from the

Fact VI.4. The space Y ∗ is isomorphic to a complemented subspace of
c((Yn))∗.

Indeed, L∗ : Y ∗ → c((Yn))∗ is an isomorphic embedding, and it suffices to
find P : c((Yn))∗ → Y ∗ such that PL∗ = IdY ∗ .

For all n ≥ 1, let jn : Yn → c((Yn)) be defined as follows: if jn(y) = z then

zk =

{
0 if k < n

y if k ≥ n.

Pick any f ∈ c((Yn))∗, and let fn = j∗n(f). Clearly, ‖fn‖ ≤ ‖f‖. Let fn ∈ Y ∗

be an extension of fn to Y with ‖fn‖ = ‖fn‖. Fix a free ultrafilter U on N.
It is easily seen that w∗-limn→U (fn) does not depend upon the choice of the
extension fn; we can therefore set

P (f) = w∗- lim
n→U

fn.

Finally, PL∗(y∗) = y∗ for every y∗ ∈ Y ∗. Indeed, if (gn) ⊆ Y ∗ is any sequence
such that ‖gn‖ ≤ ‖y∗‖ and gn = y∗ on Yn, then (gn) is w∗-convergent to y∗.

To conclude the proof of Theorem VI.3, we observe that since Y fails A.P.,
the space Y ∗ fails A.P. as well (see [32, Th. I.e.7]). Hence c((Yn))∗ fails A.P.
since it contains a complemented subspace which fails it.

Note that it follows from Theorem VI.1 that the space X, which has the
B.A.P., is such that dBM (X,Y ) ≥ 2 for all spaces Y which have the M.A.P.
It is a well-known and important open problem [32, Pb. I.e.21] whether every
Banach space which has the B.A.P. is isomorphic to a Banach space with the
M.A.P.; or equivalently by [6], if every Banach space with the B.A.P. has this
property with commuting operators. The space X of Theorem VI.3 is, by its
construction, isomorphic to a space which has M.A.P.

VII. Open problems

§ II. As indicated in Remark II.4, Sobczyk’s theorem fails in the non-
separable case. However, the separable complementation property shows that
c0 is complemented in every W.C.G. space X containing it. This extend to
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c0(Γ) spaces if dens(X) < ℵω0 , but not further [1]. We refer to [9, Th. II.8.3]
for a link between extensions of G-smooth norms and the existence of linear
projections. Let us mention that the relevant Problem II.2 from [9, p. 90] on
extensions of Fréchet smooth norms is still open.

§ III. Proximality of finite codimensional subspaces can be understood
as an n-dimensional version of Bishop–Phelps theorem (see Prop. III.4). It
is not known whether every Banach space contains a proximinal subspace of
codimension 2. It is also an open problem to know if every dual space contains
a 2-dimensional subspace consisting of norm-attaining functionals.

§ IV. The gist of this section is that c0 is minimal among non superreflexive
Ck smooth spaces, with k > 1. A related open problem is whether every
continuous convex function f on c0 has points of “Lipschitz smoothness” (see
[11]); that is, let f : c0 → R be a convex continuous function. Does there
exists a point x0 of Fréchet smoothness of f such that

f(x0 + h) = f(x0) + f ′(x0)h + O(‖h‖2) ?

Note that Fréchet smoothness means that the remainder is o(‖h‖).
It follows from the existence of a C∞ smooth bump function on c0 that

every continuous function g : c0 → R is uniformly approximable by C∞

smooth functions (see [9, Th. VIII.3.2]). If g is assumed to be uniformly
continuous, it is uniformly approximable by real-analytic functions ([7], [14]).
It is not known if this conclusion still holds for continuous functions. It would
be interesting to link this topic with Gowers’ stability theorem ([27]; see [3,
Th. 13.18]).

§V. The results from [20] (see [3, Th. 10.17]) show that c0 is somehow a
“rigid” space. We refer again to [27] (see [3, Th. 13.18]) for an independent
and deep result of non-linear rigidity of c0. It is not known whether a Banach
space which is uniformly homeomorphic to c0 is isomorphic to c0, although it
can be shown that such a space is an isomorphic predual of `1 which shares
many features of c0 [21]. Corollary V.2 is one of the characterizations of c0

among preduals of `1. It is not known whether c0 is the only isomorphic
predual of `1 which has Pelczynski’s property (u) (see [23, Th. 7.7] for a
partial result).

§VI. No effort was made in the proof of Theorem VI.3 to tighten the
constant and it is unlikely that 8 is the critical value. A natural guess is 2.
No example is known of a subspace of c0 having A.P. but failing B.A.P. It is
not known whether the assumption of commutativity (iii) can be removed in
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Theorem VI.1; in other words, if a subspace of c0 with λ-B.A.P. for λ < 2 has
the M.A.P. Note that [26, Ex. 4.7] shows that the proof of Theorem VI.1 fails
to provide a positive answer. By [22, Prop. 3.2], a subspace X of c0 with the
metric approximation property whose dual embeds into L1 is isomorphic to a
quotient of c0; it is not known whether one can dispense with assuming the
metric approximation property.
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