Some Aspects of $\lambda(\mathbf{P_0}, \mathbb{N})$ -Nuclearity

G.M. Deheri

Department of Mathematics, Sadar patel University, Vallabh Vidyanagar-388 120, Gujarat, India

(Research paper presented by J.C. Díaz)

AMS Subject Class. (2000): 46A12, 46A35

Received September 9, 1999

In the first part of this article we deal with the characterization of $\lambda(P_0; \mathbb{N})$ nuclearity of a sequence space when equipped with other 'natural' (and more general) topologies. Indeed, efforts have been made to explore conditions for the $\lambda(P_0; \mathbb{N})$ -nuclearity of a sequence space when it is endowed with the $\sigma\mu$ topology of Ruckle. In an analogous way, a Grothendieck-Pietsch like criterion is obtained for the $\lambda(P_0; \mathbb{N})$ -nuclearity of the class of the generalized Köthe spaces $\lambda_{\mu}(P)$. For $\mu = \ell^1$, this yields the well-known Grothendieck-Pietsch criterion for the $\lambda(P_0; \mathbb{N})$ -nuclearity of a Köthe space $\lambda(P)$. It is observed that for a Hilbert K-space μ having a monotone normalized Schauder basis, $\lambda(P_0; \mathbb{N})$ -nuclearity of the extended Köthe space $\lambda_{\mu}(P)$ is synonymous with the $\lambda(P_0; \mathbb{N})$ -nuclearity of the Köthe space $\lambda(P)$. It is shown that for a $\lambda(P_0; \mathbb{N})$ nuclear space $(\lambda, \sigma\mu)$ (resp., λ^{μ}), a sequentially complete space having a fully- λ -base (resp., fully- λ^{μ} -base) is $\lambda(P_0; \mathbb{N})$ -nuclear. In addition, there are some results which make it amply clear that the impact of the associated sequence space μ is equally significant so far as the structure of a sequentially complete space possessing a fully- λ -base (or fully- λ^{μ} -base) is concerned.

1. INTRODUCTION

For various terms, definitions and notations unexplained here regarding the nuclearity and sequence space we request to refer [10] and [14] in order to appreciate the subject matter of the discussions.

Throughout this article we assume $P_0 = \{(b_i^k) : k \ge 1\}$ to be a stable, countable nuclear power set of infinite type. For $k \ge 1$, we define the sequence

space

$$\lambda(P_0;k) = \{x \in \omega \colon \sum_{i \ge 1} |x_i| b_i^k < \infty\}.$$

We say an l.c. TVS E is $\lambda(P_0; \mathbb{N})$ -nuclear if it is $\lambda(P_0; k)$ -nuclear for each $k \geq 1$. Equivalently, E is $\lambda(P_0; \mathbb{N})$ -nuclear if and only if for each $k \geq 1$ and $u \in \mathcal{B}_E$, there exists $v \in \mathcal{B}_E$, v < u, with $\{b_i^k \delta_i(v, u)\} \in \ell^{\infty}$ (cf. [3], [6] and [15]). Well-known example of a $\lambda(P_0; \mathbb{N})$ -nuclear space is provided by $\lambda(P_0)$ itself (cf. [12], [15]). At this stage let us recall from [15] (cf. [12]) that $\lambda(P_0)$ is not $\lambda(P_0)$ -nuclear. This tells that there does exists a $\lambda(P_0; \mathbb{N})$ -nuclear space which fails to be $\lambda(P_0)$ -nuclear. The details concerning this aspect of investigations can be had from [3], [6], [12] and [15].

2. CRITERIA FOR $\lambda(P_0; \mathbb{N})$ -NUCLEARITY

Given a Köthe set P and a sequence space μ the generalized Köthe space (or the extended Köthe space) $\lambda_{\mu}(P)$ is defined by

$$\lambda_{\mu}(P) = \{ x \in \omega \colon xa \in \mu, \ \forall a \in P \}.$$

We equip $\lambda_{\mu}(P)$ with its natural locally convex topology, generated by the family $\{p_{a,y}: a \in P, y \in \mu^x\}$ of semi-norms where

$$p_{a,y}(x) = p_y(xa) = \sum_{i \ge 1} |x_i y_i| a_i \quad (x \in \lambda_\mu(P)).$$

Clearly, for $\mu = \ell^1$, $\lambda_{\mu}(P)$ coincides with the Köthe space $\lambda(P)$ set theoretically as well as topologically.

The Grothendieck-Pietsch like criterion for the $\lambda(P_0; \mathbb{N})$ -nuclearity of $\lambda_{\mu}(P)$ is provided by the following

PROPOSITION 2.1. $\lambda_{\mu}(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear iff to each $j \geq 1$, $a \in P$ and $y \in \mu^x$, there correspond $b \in P$ and $z \in \mu^x$ such that the sequence $\{a_n y_n / b_n z_n\}$ can be re-arranged into a member of $\lambda(P_0; j)$.

Proof. Assume that $\lambda_{\mu}(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear and let $j \in \mathbb{N}$, $a \in P$ and $y \in \mu^x$. By [9, p. 32] there exists $k \in \mathbb{N}$ such that $\lambda(P_0; k)$ -nuclearity implies $\lambda(P_0; j)$ -type. By definition, there exist $b \in P$ and $z \in \mu^x$ such that the canonical map

$$\hat{K}^{(b,z)}_{(a,y)}:\hat{\lambda}_{(b,z)}\longrightarrow\hat{\lambda}_{(a,y)}$$

48

is $\lambda(P_0; j)$ -type, where $\hat{\lambda}_{(a,y)}$ is the completion of the quotient space $\lambda_{a,y} = \lambda_{\mu}(P)/\ker p_{a,y}$. The mapping $\psi_{a,y} : \lambda_{a,y} \to \ell_{a,y}$ where $\psi_{a,y}(\hat{x}) = \{a_n x_n y_n\}, \hat{x} \in \lambda_{a,y}$, can be uniquely extended to an isometric isomorphism $\hat{\psi}_{a,y} : \hat{\lambda}_{(a,y)} \to \ell_{a,y}$. Here

$$\ell_a = \{ a \in \ell^1 \colon x_n = 0, \ \forall n \text{ where } a_n = 0 \}.$$

But

$$D_{(a,y)}^{(b,z)} = \hat{\psi}_{a,y} \circ \hat{K}_{(a,y)}^{(b,z)} \circ \hat{\psi}_{b,z}^{-1}$$

is a diagonal transformation determined by the sequence $\{a_n y_n/b_n z_n\}$. So $D_{(a,y)}^{(b,z)}$ is of $\lambda(P_0; j)$ -type. Thus, by [11, p. 158], the decreasing rearrangement of $\{a_n y_n/b_n z_n\}$ belongs to $\lambda(P_0; j)$.

Conversely, if the given condition is satisfied, it follows that $\lambda_{\mu}(P)$ is nuclear such that the canonical maps are of $\lambda(P_0; j)$ -type on Hilbert spaces for each given $j \in \mathbb{N}$. Then $\lambda(P_0; \mathbb{N})$ -nuclearity of $\lambda_{\mu}(P)$ now follows by applying Lemma 3.5(i) of [12] to these canonical mappings.

Remark 2.2. (i) For $\mu = \ell^1$, this reduces to the famous Grothendieck-Pietsch criterion for the $\lambda(P_0; \mathbb{N})$ -nuclearity of the Köthe space $\lambda(P)$ (cf. [15, Proposition 2.2.1]).

(ii) For a $\lambda(P_0; \mathbb{N})$ -nuclear space $(\mu, \eta(\mu, \mu^x)), \lambda_{\mu}(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear.

Following Ruckle [13], we have a generalization of the traditional normal topology, namely, $\sigma\mu$ -topology on a sequence space λ , corresponding to a sequence space μ ; defined by the family $\{p_{y,z}: y \in \lambda^{\mu}, z \in \mu^x\}$ of semi-norms where

$$\lambda^{\mu} = \{ y \in \omega \colon xy \in \mu, \ \forall \, x \in \lambda \}$$

and

$$p_{y,z}(x) = \sum_{i \ge 1} |x_i y_i z_i|, \quad (x \in \lambda).$$

Observe that this μ -dual λ^{μ} includes the well-known duals like α -dual (or cross dual), β -dual and γ -dual (cf. [13], [14]). We say that λ is μ -perfect if $\lambda = \lambda^{\mu\mu} = (\lambda^{\mu})^{\mu}$ where

$$(\lambda^{\mu})^{\mu} = \{ z \in \omega \colon zy \in \mu, \ \forall \ y \in \lambda^{\mu} \}.$$

For $\mu = \lambda^1$, obviously this gives the perfectness of λ . Analogously, the $\sigma^*\mu$ -topology on λ^{μ} is obtained by the collection $\{p_{y,z} : y \in \lambda, z \in \mu^x\}$ of semi-norms where

$$p_{y,z}(x) = \sum_{i \ge 1} |x_i y_i z_i|, \quad (x \in \lambda^{\mu}).$$

The details concerning the above topologies and μ -perfectness with its related aspects can be seen from [1], [2] and [7].

The Grothendieck-Pietsch like criterion for the $\lambda(P_0; \mathbb{N})$ -nuclearity of $(\lambda, \sigma \mu)$ is contained in

THEOREM 2.3. Let λ be a μ -perfect sequence space for a perfect sequence space μ . Then λ is $\lambda(P_0; \mathbb{N})$ -nuclear iff to each $j \geq 1$, $y \in \lambda^{\mu}$ and $z \in \mu^x$, there correspond $u \in \lambda^{\mu}$ and $v \in \mu^x$ such that the sequence $(y_n z_n/u_n v_n)$ can be rearranged into a sequence of $\lambda(P_0; j)$.

Remark 2.4. (i) The above result yields the $\lambda(P_0; \mathbb{N})$ -nuclearity of Köthe space $\lambda(P)$ when $\mu = \ell^1$ (cf. [12], [15]).

(ii) $(\lambda, \sigma\mu)$ is $\lambda(P_0; \mathbb{N})$ -nuclear, for a $\lambda(P_0; \mathbb{N})$ -nuclear space μ , no matter what sequence space is choosen for λ .

Likewise, one obtains

PROPOSITION 2.5. The μ -dual λ^{μ} is $\lambda(P_0; \mathbb{N})$ -nuclear iff for each $j \geq 1$, $y \in \lambda$ and $z \in \mu^x$, there exist $u \in \lambda$ and $v \in \mu^x$ such that $\{y_n z_n/u_n v_n\}$ can be re-arranged into a sequence of $\lambda(P_0; j)$.

Remark 2.6. (i) For $\mu = \ell^1$, the above gives us the criterion for the $\lambda(P_0; \mathbb{N})$ -nuclearity of $(\lambda^x, \eta(\lambda^x, \lambda))$.

(ii) λ^{μ} is $\lambda(P_0; \mathbb{N})$ -nuclear provided μ is $\lambda(P_0; \mathbb{N})$ -nuclear (irrespective of the choice of λ).

In the final result of this section we assert that $\lambda(P_0; \mathbb{N})$ -nuclearity of the generalized Köthe space $\lambda_{\mu}(P)$ is synonymous with the $\lambda(P_0; \mathbb{N})$ -nuclearity of the Köthe space $\lambda(P)$, for a Hilbert space μ having a monotone normalized Schauder basis. Precisely, we have the

THEOREM 2.7. Let μ be a Hilbert K-space with a monotone normalized Schauder basis. Then $\lambda_{\mu}(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear iff $\lambda(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear.

Proof. If $\lambda(P)$ is $\lambda(P_0; \mathbb{N})$ -nuclear then, in view of Proposition 2.1, by [15, Proposition 2.2.1], $\lambda_{\mu}(P)$ will be always $\lambda(P_0; \mathbb{N})$ -nuclear. So we prove the other part.

Let $\lambda_{\mu}(P)$ be $\lambda(P_0; \mathbb{N})$ -nuclear. Suppose $j \in \mathbb{N}$ and $a \in P$ are choosen arbitrarily. By [9, p.32], there exist some $k \in \mathbb{N}$ such that $\lambda(P_0; k)$ -nuclearity implies $\lambda(P_0; j)$ -type. So $\hat{K}_a^b : \hat{\lambda}_{\mu}(P; b) \to \hat{\lambda}_{\mu}(P; a)$ is $\lambda(P_0; j)$ -type. As before one can identify $\lambda_{\mu}(P; a) = \lambda_{\mu}(P)/\ker p_a$ with $\mu_a = \{x \in \mu : x_n = 0 \text{ for } n \text{ where } a_n = 0\}$ via the unique extension $\hat{\psi}_a(x) = \{a_n x_n\}, x \in \lambda_{\mu}(P)$. Then clearly $D_a^b = \hat{\psi}_a \circ \hat{K}_a^b \circ \hat{\psi}_b^{-1}$ is a diagonal map on μ , determined by $\{a_n/b_n\}$. But K_a^b is $\lambda(P_0; j)$ -type and hence D_a^b will be of $\lambda(P_0; j)$ -type. Then by modifying [8, Lemma 3.3] we can conclude that $\{a_n/b_n\}$ can be rearranged into a sequence of $\lambda(P_0; j)$, which is equivalent to the $\lambda(P_0; \mathbb{N})$ -nuclearity of $\lambda(P)$ in view of [15, Proposition 2.2.1].

3. $\lambda(P_0; \mathbb{N})$ -nuclearity of locally convex spaces with generalized bases

We begin this section with the following

DEFINITION 3.1. Let E be a locally convex TVS and λ be a sequence space carrying the $\sigma\mu$ -topology and λ^{μ} be equipped with $\sigma^*\mu$ -topology. Then a Schauder basis $\{x_i, f_i\}$ for E is said to be a semi- λ -basis (resp., semi- λ^{μ} basis) if, for each $p \in \mathcal{B}_E$, $\{f_i(x)p(x_i)\} \in \lambda$ (resp. $\{f_i(x)p(x_i) \in \lambda^{\mu}\}$) and it is called a fully- λ -basis (resp. fully- λ^{μ} -basis) provided for each $p \in \mathcal{B}_E$ the map $\psi_p : E \to \lambda$ (resp. $\psi_p : E \to \lambda^{\mu}$) is continuous where $\psi_p(x) = \{f_i(x)p(x_i)\}$.

The details regarding fully- λ -basis (resp. fully- λ^{μ} -basis) and its application can be had from [1] and [2].

The result to follow, establishes that a sequentially complete space with a fully- λ -basis can be topologically identified with a $\lambda(P_0; \mathbb{N})$ -nuclear sequence space $(\lambda, \sigma \mu)$. Indeed, we have

THEOREM 3.2. Let E be a sequentially complete space having a fully- λ basis $\{x_i, f_i\}$. Let $y \in \lambda^{\mu}$ and $z \in \mu^x$ be such that $y_i \ge \epsilon > 0$ and $z_i \ge l > 0$, $\forall i$, for some epsilon and l. Then E is $\lambda(P_0; \mathbb{N})$ -nuclear if $(\lambda, \sigma \mu)$ is $\lambda(P_0; \mathbb{N})$ nuclear.

Proof. By [1, Theorem 3.1], E can be topologically identified with a Köthe space $\lambda(P_1)$ where

$$P_1 = \{ p(x_i)a_ib_i \colon p \in \mathcal{B}_E, a \in \lambda_+^\mu, b \in \mu_+^x \}.$$

Thus, E is $\lambda(P_0; \mathbb{N})$ -nuclear iff $\lambda(P_1)$ is $\lambda(P_0; \mathbb{N})$ -nuclear. Since $(\lambda, \sigma\mu)$ is $\lambda(P_0; \mathbb{N})$ -nuclear, in view of Theorem 2.3 to each $j \geq 1$, $a \in \lambda_+^{\mu}$ and $b \in \mu_+^x$ there correspond $c \in \lambda_+^{\mu}$, $d \in \mu_+^x$ and a permutation π such that

$$\left\{\frac{a_{\pi(i)}b_{\pi(i)}}{c_{\pi(i)}d_{\pi(i)}}\right\} \in \lambda(P_0;j).$$

G.M. DEHERI

Consequently, E is $\lambda(P_0; \mathbb{N})$ -nuclear by the famous Grothendieck-Pietsch criteria (cf. [15]) because, for any $j \geq 1$, $p \in \mathcal{B}_E$, $a \in \lambda^{\mu}_+$ and $b \in \mu^x_+$, we have

$$\left\{\frac{p(x_{\pi(i)})a_{\pi(i)}b_{\pi(i)}}{p(x_{\pi(i)})c_{\pi(i)}d_{\pi(i)}}\right\} \in \lambda(P_0; j).$$

Note. For $\mu = \ell^1$, this yields that a sequentially complete space with a fully- λ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear, provided $(\lambda, \eta(\lambda, \lambda^x))$ is a $\lambda(P_0; \mathbb{N})$ -nuclear space with k-property. So what we find easily is that a sequentially complete space with a fully- $\lambda(P)$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear provided $\lambda(P)$ is a $\lambda(P_0; \mathbb{N})$ -nuclear G_{∞} -space. Hence a sequentially complete space with a fully- $\lambda(P_0)$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear for $\lambda(P_0; \mathbb{N})$ -nuclear (cf. [15]).

In view of Remark 2.4 (ii), we have the

COROLLARY 3.3. Let E be a sequentially complete space with a fully- λ basis. Suppose that there exist $y \in \lambda^{\mu}$ and $z \in \mu^{x}$ with $y_{i} \geq \epsilon > 0$ and $z_{i} \geq l > 0$, for all i, for some ϵ and l. If $(\mu, \eta(\mu, \mu^{x}))$ is $\lambda(P_{0}; \mathbb{N})$ -nuclear then E is $\lambda(P_{0}; \mathbb{N})$ -nuclear.

A review of the analysis involved in the proof of Theorem 3.2, suggest that the following holds

PROPOSITION 3.4. Let E be a sequentially complete space with a fully- λ basis such that for some $a \in \lambda^{\mu}$ and $b \in \mu^{x}$ we have $a_{i} \geq \epsilon > 0$, $b_{i} \geq l > 0$, $\forall i \geq 1$, for some ϵ and l. Suppose that given $j \geq 1$, $y \in \lambda^{\mu}_{+}$ there exists $z \in \lambda^{\mu}_{+}$ such that $\{y_{i}/z_{i}\}$ can be rearranged into a sequence of $\lambda(P_{0}; j)$. Then E is $\lambda(P_{0}; \mathbb{N})$ -nuclear.

A cursory glance at the proof of Theorem 3.2 also reveals that the following is true

THEOREM 3.5. Let *E* be a sequentially complete space having a fully- λ^{μ} basis $\{x_i, f_i\}$ such that for some $a \in \lambda$ and $b \in \mu^x$, $a_i \ge \epsilon > 0$ and $b_i \ge l > 0$, for all *i*, for some ϵ and *l*. If μ is $\lambda(P_0; \mathbb{N})$ -nuclear then *E* is $\lambda(P_0; \mathbb{N})$ -nuclear.

Proof. Invoking [1, Proposition 3.3], we can identify E topologically with a Köthe space $\lambda(P)$ where

$$P = \{ p(x_i)a_ib_i \colon p \in \mathcal{B}_E, a \in \lambda_+, b \in \mu_+^x \}.$$

The rest of the proof is analogous to the proof of Theorem 3.2; of course, in this case we make use of Proposition 2.5. \blacksquare

COROLLARY 3.6. Let *E* be a sequentially complete space having a fully- λ^{μ} -basis such that for some $a \in \lambda$ and $b \in \mu^x$, $a_i \ge \epsilon > 0$, $b_i \ge l > 0$, for all *i*, for some ϵ and *l*. If μ is $\lambda(P_0; \mathbb{N})$ -nuclear then *E* is $\lambda(P_0; \mathbb{N})$ -nuclear.

Proof. This follows from Theorem 3.5 in view of Remark 2.6 (ii).

Analogous to Proposition 3.4 we have

PROPOSITION 3.7. Let (E, T) be a sequentially complete space possessing a fully- λ^{μ} -basis where for some $a \in \lambda$, $b \in \mu^x$, $a_i \ge \epsilon > 0$ and $b_i \ge l > 0$, for all *i* and for some ϵ and *l*. Suppose that for each $j \ge 1$ and $y \in \lambda_+$ there corresponds $z \in \lambda_+$ such that $\{y_i/z_i\}$ can be rearranged into a sequence of $\lambda(P_0; j)$. Then *E* is $\lambda(P_0; \mathbb{N})$ -nuclear.

Note. For $\mu = \ell^1$, this says that a sequentially complete space with a fully- λ^x -basis is $\lambda(P_0; \mathbb{N})$ -nuclear provided $\{\lambda^x, \eta(\lambda^x, \lambda)\}$ is $\lambda(P_0; \mathbb{N})$ -nuclear and there is some $y \in \lambda$ with $y_i \geq \epsilon > 0$, $\forall i$, for some $\epsilon > 0$. So a sequentially complete space with a fully- $\Lambda_1(\alpha)^x$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear, if $\Lambda_1(\alpha)$ is $\lambda(P_0; \mathbb{N})$ -nuclear.

The following results bear the testimony of the importance of the weak sequential completeness of the dual E^* in obtaining the $\lambda(P_0; \mathbb{N})$ -nuclearity of E from the presence of a semi- λ -basis or a semi- λ^{μ} -basis.

THEOREM 3.8. Suppose E is a sequentially complete space whose dual E^* is weakly sequentially complete. Let $\{x_i, f_i\}$ be an equicontinuous semi- λ -basis for E where λ is μ -perfect for a perfect sequence space μ such that for some $y \in \lambda^{\mu}$ and $z \in \mu^x$, $y_i \ge \epsilon > 0$ and $z_i \ge l > 0$, for all i, for some ϵ and l. If λ is $\lambda(P_0; \mathbb{N})$ -nuclear, then E is $\lambda(P_0; \mathbb{N})$ -nuclear.

Proof. Since $\{x_i, f_i\}$ is a semi- λ -basis, for each $p \in \mathcal{B}_E$, $a \in \lambda^{\mu}$ and $b \in \mu^x$ we have

$$\sum |f_i(x)|p(x_i)|a_ib_i| < \infty.$$
(*)

Now one can identify E with the sequence space $\Delta = \{(f_i(x)) : x \in E\}$. Then modifying the proof of [5, Proposition 2.3], E^* can be identified with

$$\Delta^{\beta} = \{ (\alpha_i) \colon \sum \alpha_i u_i \text{ converges for all } u \in \Delta \}$$

wherein the identification is given by

$$f \in E^* \longleftrightarrow \{f(x_i)\} \in \Delta^{\beta}.$$

Now (*) means that $\{p(x_i)a_ib_i\} \in \Delta^{\beta}$. Thus, what we have proved is, for all $p \in \mathcal{B}_E$, $a \in \lambda^{\mu}$ and $b \in \mu^x$ there exists $f \in E^*$ with $f(x_i) = p(x_i)a_ib_i$. Due to the continuity of f we get some $q \in \mathbb{B}_E$ and k > 0 such that

$$p(x_i)|a_i b_i| \le kq(x_i). \tag{+}$$

Since $(\lambda, \sigma\mu)$ is $\lambda(P_0; \mathbb{N})$ -nuclear, in particular it is nuclear, so for each $a \in \lambda_+^{\mu}$ and $b \in \mu_+^x$, by [15, Proposition 1.1] there correspond $c \in \lambda_+^{\mu}$ and $d \in \mu_+^x$ with $\{a_i b_i/c_i d_i\} \in l^1$. Consequently, by (+) we get some k > 0 and $q \in \mathcal{B}_E$, with

$$p(x_i)|c_id_i| \leq kq(x_i), \quad \forall i$$

Thus, we have the inequality

$$\sum_{i} |f_i(x)| p(x_i) |a_i b_i| \le k \sup\{|f_i(x)| p(x_i)\} \cdot \sum \frac{a_i b_i}{c_i d_i}.$$

From this inequality it follows that $\{x_i, f_i\}$ is a fully- λ -basis for E as the basis is equicontinuous and λ is μ -perfect. Now the desired conclusion follows by applying Theorem 3.2.

Note. This above result tells us in particular that a sequentially complete space with an equicontinuous semi- λ -basis $\{x_i, f_i\}$ is $\lambda(P_0; \mathbb{N})$ -nuclear provided E^* is weakly sequentially complete and $(\lambda, \eta(\lambda, \lambda^x))$ is a $\lambda(P_0; \mathbb{N})$ -nuclear space with k-property. Hence, a sequentially complete space with an equicontinuous semi- $\lambda(\mathbb{R})$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear, provided E^* is weakly sequentially complete and $\lambda(\mathbb{R})$ is a $\lambda(P_0; \mathbb{N})$ -nuclear G_{∞} -space. Thus a sequentially complete space with an equicontinuous semi- $\lambda(P_0)$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear provided E^* is weakly sequentially complete.

Since, for a $\lambda(P_0; \mathbb{N})$ -nuclear space $(\mu, \eta(\mu, \mu^x))$, $(\lambda, \sigma\mu)$ is always $\lambda(P_0; \mathbb{N})$ -nuclear, we obtain

COROLLARY 3.9. Let *E* be a sequentially complete space whose dual E^* is weakly sequentially complete. Suppose $\{x_i, f_i\}$ is an equicontinuous semi- λ -basis for *E* where λ is μ -perfect for a perfect space μ such that for some $y \in \lambda^{\mu}$ and $z \in \mu^x$, $y_i \ge \epsilon > 0$, $z_i \ge l > 0$, for all *i*, for some ϵ and *l*. If $(\mu, \eta(\mu, \mu^x))$ is $\lambda(P_0; \mathbb{N})$ -nuclear [or if for each $j \ge 1$, $y \in \lambda^{\mu}_+$ there exist $z \in \lambda^{\mu}_+$ and a permutation π with $\{y_{\pi(i)}/z_{\pi(i)}\} \in \lambda(P_0; j)$], then *E* is $\lambda(P_0; \mathbb{N})$ -nuclear. An inspection of the proof of Theorem 3.8 suggest that the following is true

THEOREM 3.10. Let E be a sequentially complete space with an equicontinuous semi- λ^{μ} -basis $\{x_i, f_i\}$ such that μ is perfect and for some $a \in \lambda$ and $b \in \mu^x$, $a_i \ge \epsilon > 0$ and $b_i \ge l > 0$, $\forall i$, for some ϵ and l. If λ^{μ} is $\lambda(P_0; \mathbb{N})$ -nuclear then E is $\lambda(P_0; \mathbb{N})$ -nuclear provided E^* is weakly sequentially complete.

Proof. The proof follows, mutatis mutandis on lines similar to that of Theorem 3.8. \blacksquare

Note. From the above result it is clear that a sequentially complete space with an equicontinuous semi- λ^x -basis is $\lambda(P_0; \mathbb{N})$ -nuclear, provided $(\lambda^x, \eta(\lambda^x, \lambda))$ is $\lambda(P_0; \mathbb{N})$ -nuclear and for some $y \in \lambda$, $y_i \geq \epsilon > 0$, $\forall i$, and E^* is weakly sequentially complete. Consequently, a sequentially complete space having an equicontinuous semi- $\Lambda_1^x(\alpha)$ -basis is $\lambda(P_0; \mathbb{N})$ -nuclear provided $\Lambda_1(\alpha)$ is $\lambda(P_0; \mathbb{N})$ -nuclear (cf. [4]).

We know that λ^{μ} is always $\lambda(P_0; \mathbb{N})$ -nuclear for a $\lambda(P_0; \mathbb{N})$ -nuclear space μ . This in turn, implies that

COROLLARY 3.11. Let E be a sequentially complete space with an equicontinuous semi- λ^{μ} -basis $\{x_i, f_i\}$ such that μ is perfect and for some $a \in \lambda$ and $b \in \mu^x$, $a_i \ge \epsilon > 0$ and $b_i \ge l > 0$, $\forall i$, for some ϵ and l. Suppose E^* is weakly sequentially complete and if μ is $\lambda(P_0; \mathbb{N})$ -nuclear [or for each $j \ge 1$, $y \in \lambda$ there correspond $z \in \lambda$ and a permutation π such that $\{y_{\pi(i)/z_{\pi(i)}}\} \in \lambda(P_0; j)$], then E is $\lambda(P_0; \mathbb{N})$ -nuclear.

The present article ends with

PROPOSITION 3.12. Let *E* be a sequentially complete space with a fully- λ^x -basis $\{x_i, f_i\}$. Suppose further that $\{x_i, f_i\}$ is also a fully- μ -basis or $\{e_i, e_i\}$ is a fully- μ -basis for λ^x , where μ is perfect. Then *E* is $\lambda(P_0; \mathbb{N})$ -nuclear provided λ^{μ} is $\lambda(P_0; \mathbb{N})$ -nuclear and for some $a \in \lambda$ and $b \in \mu^x$, $a_i \geq \epsilon > 0$ and $b_i \geq l > 0, \forall i$, for some ϵ and l.

Proof. It follows from Theorem 3.5, as the basis turns out to be a fully- λ^{μ} -basis.

G.M. DEHERI

References

- [1] DEHERI, G.M., On $(\lambda, \sigma\mu)$ -bases, *Riv. Mat. Univ. Parma* 5 (1), (1992), 1-10.
- [2] DEHERI, G.M., Some applications of fully- $(\lambda, \sigma\mu)$ -basis, *Riv. Mat. Univ. Parma* 5 (2), (1993), 205–212.
- [3] DUBINSKY, ED., "The Structure of Nuclear Frechet Spaces", Lect. Notes in Math. 720, Springer Verlag, 1979.
- [4] DUBINSKY, ED., RAMANUJAN, M.S., "On λ -nuclearity", Mem. Amer. Math. Soc. 128, 1972.
- [5] DUBINSKY, ED., RETHERFORD, J.R., Schauder bases and Köthe sequence spaces, Trans. Amer. Math. Soc. 130 (1968), 265–280.
- [6] GARCÍA, J.M.L., $\Lambda_{\mathbb{N}}(P)$ -nuclearity, Math. Nachr. **121** (1985), 7–10.
- [7] GUPTA, M., KAMTHAN, P.K., DEHERI, G.M., σμ-duals and holomorphic (nuclear) mappings, *Collect. Math.* 36 (1985), 33–71.
- [8] JOHN, K., Counterexamples to a conjecture of Grothendieck, Math. Ann. 265 (1983), 169-179.
- [9] NELIMARKKA, E., On operator ideals and locally convex A-spaces with applications to λ-nuclearity, Ph.D. Thesis, Ann. Acad. Sci. Fenn. A. I. Math. Dissertation 13 (1977).
- [10] PIETSCH, A., "Nuclear Locally Convex Spaces", Springer Verlag, 1972.
- [11] PIETSCH, A., "Operator Ideals", North Holland, 1980.
- [12] RAMANUJAN, M.S., ROSENBERGER, B., On $\lambda(\phi; P)$ -nuclearity, Comp. Math. **34** (2) (1977), 113–125.
- [13] RUCKLE, W.H., Topologies on sequence spaces, *Pacific J. Math.* **42** (1972), 235–249.
- [14] RUCKLE, W.H., "Sequence Spaces", Adv. Publ. Prog. Pitman, London, 1981.
- [15] SOFI, M.A, Some criteria for nuclearity, Math. Proc. Camb. Phil. Soc. 100 (1986), 151–159.