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In the first part of this article we deal with the characterization of λ(P0;N)-
nuclearity of a sequence space when equipped with other ‘natural’ (and more
general) topologies. Indeed, efforts have been made to explore conditions for
the λ(P0;N)-nuclearity of a sequence space when it is endowed with the σµ-
topology of Ruckle. In an analogous way, a Grothendieck-Pietsch like criterion
is obtained for the λ(P0;N)-nuclearity of the class of the generalized Köthe
spaces λµ(P ). For µ = `1, this yields the well-known Grothendieck-Pietsch
criterion for the λ(P0;N)-nuclearity of a Köthe space λ(P ). It is observed
that for a Hilbert K-space µ having a monotone normalized Schauder basis,
λ(P0;N)-nuclearity of the extended Köthe space λµ(P ) is synonymous with the
λ(P0;N)-nuclearity of the Köthe space λ(P ). It is shown that for a λ(P0;N)-
nuclear space (λ, σµ) (resp., λµ), a sequentially complete space having a fully-
λ-base (resp., fully-λµ-base) is λ(P0;N)-nuclear. In addition, there are some
results which make it amply clear that the impact of the associated sequence
space µ is equally significant so far as the structure of a sequentially complete
space possessing a fully-λ-base (or fully-λµ-base) is concerned.

1. Introduction

For various terms, definitions and notations unexplained here regarding
the nuclearity and sequence space we request to refer [10] and [14] in order to
appreciate the subject matter of the discussions.

Throughout this article we assume P0 = {(bk
i ) : k ≥ 1} to be a stable,

countable nuclear power set of infinite type. For k ≥ 1, we define the sequence
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space
λ(P0; k) = {x ∈ ω :

∑

i≥1

|xi|bk
i < ∞}.

We say an l.c. TVS E is λ(P0;N)-nuclear if it is λ(P0; k)-nuclear for each
k ≥ 1. Equivalently, E is λ(P0;N)-nuclear if and only if for each k ≥ 1 and
u ∈ BE , there exists v ∈ BE , v < u, with {bk

i δi(v, u)} ∈ `∞ (cf. [3], [6]
and [15]). Well-known example of a λ(P0;N)-nuclear space is provided by
λ(P0) itself (cf. [12], [15]). At this stage let us recall from [15] (cf. [12]) that
λ(P0) is not λ(P0)-nuclear. This tells that there does exists a λ(P0;N)-nuclear
space which fails to be λ(P0)-nuclear. The details concerning this aspect of
investigations can be had from [3], [6], [12] and [15].

2. Criteria for λ(P0;N)-nuclearity

Given a Köthe set P and a sequence space µ the generalized Köthe space
(or the extended Köthe space) λµ(P ) is defined by

λµ(P ) = {x ∈ ω : xa ∈ µ, ∀a ∈ P}.

We equip λµ(P ) with its natural locally convex topology, generated by the
family {pa,y : a ∈ P, y ∈ µx} of semi-norms where

pa,y(x) = py(xa) =
∑

i≥1

|xiyi|ai (x ∈ λµ(P )).

Clearly, for µ = `1, λµ(P ) coincides with the Köthe space λ(P ) set theoreti-
cally as well as topologically.

The Grothendieck-Pietsch like criterion for the λ(P0;N)-nuclearity of λµ(P )
is provided by the following

Proposition 2.1. λµ(P ) is λ(P0;N)-nuclear iff to each j ≥ 1, a ∈ P
and y ∈ µx, there correspond b ∈ P and z ∈ µx such that the sequence
{anyn/bnzn} can be re-arranged into a member of λ(P0; j).

Proof. Assume that λµ(P ) is λ(P0;N)-nuclear and let j ∈ N, a ∈ P and
y ∈ µx. By [9, p. 32] there exists k ∈ N such that λ(P0; k)-nuclearity implies
λ(P0; j)-type. By definition, there exist b ∈ P and z ∈ µx such that the
canonical map

K̂
(b,z)
(a,y) : λ̂(b,z) −→ λ̂(a,y)
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is λ(P0; j)-type, where λ̂(a,y) is the completion of the quotient space λa,y =
λµ(P )/ker pa,y. The mapping ψa,y : λa,y → `a,y where ψa,y(x̂) = {anxnyn},
x̂ ∈ λa,y, can be uniquely extended to an isometric isomorphism ψ̂a,y : λ̂(a,y) →
`a,y. Here

`a = {a ∈ `1 : xn = 0, ∀n where an = 0}.
But

D
(b,z)
(a,y) = ψ̂a,y ◦ K̂

(b,z)
(a,y) ◦ ψ̂−1

b,z

is a diagonal transformation determined by the sequence {anyn/bnzn}. So
D

(b,z)
(a,y) is of λ(P0; j)-type. Thus, by [11, p. 158], the decreasing rearrangement

of {anyn/bnzn} belongs to λ(P0; j).
Conversely, if the given condition is satisfied, it follows that λµ(P ) is nu-

clear such that the canonical maps are of λ(P0; j)-type on Hilbert spaces for
each given j ∈ N. Then λ(P0;N)-nuclearity of λµ(P ) now follows by applying
Lemma 3.5(i) of [12] to these canonical mappings.

Remark 2.2. (i) For µ = `1, this reduces to the famous Grothendieck-
Pietsch criterion for the λ(P0;N)-nuclearity of the Köthe space λ(P ) (cf. [15,
Proposition 2.2.1]).

(ii) For a λ(P0;N)-nuclear space (µ, η(µ, µx)), λµ(P ) is λ(P0;N)-nuclear.

Following Ruckle [13], we have a generalization of the traditional normal
topology, namely, σµ-topology on a sequence space λ, corresponding to a
sequence space µ; defined by the family {py,z : y ∈ λµ, z ∈ µx} of semi-norms
where

λµ = {y ∈ ω : xy ∈ µ, ∀x ∈ λ}
and

py,z(x) =
∑

i≥1

|xiyizi|, (x ∈ λ).

Observe that this µ-dual λµ includes the well-known duals like α-dual (or
cross dual), β-dual and γ-dual (cf. [13], [14]). We say that λ is µ-perfect if
λ = λµµ = (λµ)µ where

(λµ)µ = {z ∈ ω : zy ∈ µ, ∀ y ∈ λµ}.
For µ = λ1, obviously this gives the perfectness of λ. Analogously, the σ∗µ-
topology on λµ is obtained by the collection {py,z : y ∈ λ, z ∈ µx} of semi-
norms where

py,z(x) =
∑

i≥1

|xiyizi|, (x ∈ λµ).
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The details concerning the above topologies and µ-perfectness with its related
aspects can be seen from [1], [2] and [7].

The Grothendieck-Pietsch like criterion for the λ(P0;N)-nuclearity of (λ,
σµ) is contained in

Theorem 2.3. Let λ be a µ-perfect sequence space for a perfect sequence
space µ. Then λ is λ(P0;N)-nuclear iff to each j ≥ 1, y ∈ λµ and z ∈ µx,
there correspond u ∈ λµ and v ∈ µx such that the sequence (ynzn/unvn) can
be rearranged into a sequence of λ(P0; j).

Remark 2.4. (i) The above result yields the λ(P0;N)-nuclearity of Köthe
space λ(P ) when µ = `1 (cf. [12], [15]).

(ii) (λ, σµ) is λ(P0;N)-nuclear, for a λ(P0;N)-nuclear space µ, no matter
what sequence space is choosen for λ.

Likewise, one obtains

Proposition 2.5. The µ-dual λµ is λ(P0;N)-nuclear iff for each j ≥ 1,
y ∈ λ and z ∈ µx, there exist u ∈ λ and v ∈ µx such that {ynzn/unvn} can be
re-arranged into a sequence of λ(P0; j).

Remark 2.6. (i) For µ = `1, the above gives us the criterion for the
λ(P0;N)-nuclearity of (λx, η(λx, λ)).

(ii) λµ is λ(P0;N)-nuclear provided µ is λ(P0;N)-nuclear (irrespective of
the choice of λ).

In the final result of this section we assert that λ(P0;N)-nuclearity of the
generalized Köthe space λµ(P ) is synonymous with the λ(P0;N)-nuclearity of
the Köthe space λ(P ), for a Hilbert space µ having a monotone normalized
Schauder basis. Precisely, we have the

Theorem 2.7. Let µ be a Hilbert K-space with a monotone normalized
Schauder basis. Then λµ(P ) is λ(P0;N)-nuclear iff λ(P ) is λ(P0;N)-nuclear.

Proof. If λ(P ) is λ(P0;N)-nuclear then, in view of Proposition 2.1, by [15,
Proposition 2.2.1], λµ(P ) will be always λ(P0;N)-nuclear. So we prove the
other part.

Let λµ(P ) be λ(P0;N)-nuclear. Suppose j ∈ N and a ∈ P are choosen
arbitrarily. By [9, p.32], there exist some k ∈ N such that λ(P0; k)-nuclearity
implies λ(P0; j)-type. So K̂b

a : λ̂µ(P ; b) → λ̂µ(P ; a) is λ(P0; j)-type. As
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before one can identify λµ(P ; a) = λµ(P )/ker pa with µa = {x ∈ µ : xn =
0 for n where an = 0} via the unique extension ψ̂a(x) = {anxn}, x ∈ λµ(P ).
Then clearly Db

a = ψ̂a ◦ K̂b
a ◦ ψ̂−1

b is a diagonal map on µ, determined by
{an/bn}. But Kb

a is λ(P0; j)-type and hence Db
a will be of λ(P0; j)-type. Then

by modifying [8, Lemma 3.3] we can conclude that {an/bn} can be rearranged
into a sequence of λ(P0; j), which is equivalent to the λ(P0;N)-nuclearity of
λ(P ) in view of [15, Proposition 2.2.1].

3. λ(P0;N)-nuclearity of locally convex spaces
with generalized bases

We begin this section with the following

Definition 3.1. Let E be a locally convex TVS and λ be a sequence
space carrying the σµ-topology and λµ be equipped with σ∗µ-topology. Then
a Schauder basis {xi, fi} for E is said to be a semi-λ-basis (resp., semi-λµ-
basis) if, for each p ∈ BE , {fi(x)p(xi)} ∈ λ (resp. {fi(x)p(xi) ∈ λµ}) and it is
called a fully-λ-basis (resp. fully-λµ-basis) provided for each p ∈ BE the map
ψp : E → λ (resp. ψp : E → λµ) is continuous where ψp(x) = {fi(x)p(xi)}.

The details regarding fully-λ-basis (resp. fully-λµ-basis) and its application
can be had from [1] and [2].

The result to follow, establishes that a sequentially complete space with a
fully-λ-basis can be topologically identified with a λ(P0;N)-nuclear sequence
space (λ, σµ). Indeed, we have

Theorem 3.2. Let E be a sequentially complete space having a fully-λ-
basis {xi, fi}. Let y ∈ λµ and z ∈ µx be such that yi ≥ ε > 0 and zi ≥ l > 0,
∀i, for some epsilon and l. Then E is λ(P0;N)-nuclear if (λ, σµ) is λ(P0;N)-
nuclear.

Proof. By [1, Theorem 3.1], E can be topologically identified with a Köthe
space λ(P1) where

P1 = {p(xi)aibi : p ∈ BE , a ∈ λµ
+, b ∈ µx

+}.
Thus, E is λ(P0;N)-nuclear iff λ(P1) is λ(P0;N)-nuclear. Since (λ, σµ) is
λ(P0;N)-nuclear, in view of Theorem 2.3 to each j ≥ 1, a ∈ λµ

+ and b ∈ µx
+

there correspond c ∈ λµ
+, d ∈ µx

+ and a permutation π such that
{

aπ(i)bπ(i)

cπ(i)dπ(i)

}
∈ λ(P0; j).
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Consequently, E is λ(P0;N)-nuclear by the famous Grothendieck-Pietsch cri-
teria (cf. [15]) because, for any j ≥ 1, p ∈ BE , a ∈ λµ

+ and b ∈ µx
+, we

have {
p(xπ(i))aπ(i)bπ(i)

p(xπ(i))cπ(i)dπ(i)

}
∈ λ(P0; j).

Note. For µ = `1, this yields that a sequentially complete space with a
fully-λ-basis is λ(P0;N)-nuclear, provided (λ, η(λ, λx)) is a λ(P0;N)-nuclear
space with k-property. So what we find easily is that a sequentially complete
space with a fully-λ(P )-basis is λ(P0;N)-nuclear provided λ(P ) is a λ(P0;N)-
nuclear G∞-space. Hence a sequentially complete space with a fully-λ(P0)-
basis is λ(P0;N)-nuclear (cf. [15]).

In view of Remark 2.4 (ii), we have the

Corollary 3.3. Let E be a sequentially complete space with a fully-λ-
basis. Suppose that there exist y ∈ λµ and z ∈ µx with yi ≥ ε > 0 and
zi ≥ l > 0, for all i, for some ε and l. If (µ, η(µ, µx)) is λ(P0;N)-nuclear then
E is λ(P0;N)-nuclear.

A review of the analysis involved in the proof of Theorem 3.2, suggest that
the following holds

Proposition 3.4. Let E be a sequentially complete space with a fully-λ-
basis such that for some a ∈ λµ and b ∈ µx we have ai ≥ ε > 0, bi ≥ l > 0,
∀i ≥ 1, for some ε and l. Suppose that given j ≥ 1, y ∈ λµ

+ there exists z ∈ λµ
+

such that {yi/zi} can be rearranged into a sequence of λ(P0; j). Then E is
λ(P0;N)-nuclear.

A cursory glance at the proof of Theorem 3.2 also reveals that the following
is true

Theorem 3.5. Let E be a sequentially complete space having a fully-λµ-
basis {xi, fi} such that for some a ∈ λ and b ∈ µx, ai ≥ ε > 0 and bi ≥ l > 0,
for all i, for some ε and l. If µ is λ(P0;N)-nuclear then E is λ(P0;N)-nuclear.

Proof. Invoking [1, Proposition 3.3], we can identify E topologically with
a Köthe space λ(P ) where

P = {p(xi)aibi : p ∈ BE , a ∈ λ+, b ∈ µx
+}.

The rest of the proof is analogous to the proof of Theorem 3.2; of course, in
this case we make use of Proposition 2.5.
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Corollary 3.6. Let E be a sequentially complete space having a fully-
λµ-basis such that for some a ∈ λ and b ∈ µx, ai ≥ ε > 0, bi ≥ l > 0, for all i,
for some ε and l. If µ is λ(P0;N)-nuclear then E is λ(P0;N)-nuclear.

Proof. This follows from Theorem 3.5 in view of Remark 2.6 (ii).

Analogous to Proposition 3.4 we have

Proposition 3.7. Let (E, T ) be a sequentially complete space possessing
a fully-λµ-basis where for some a ∈ λ, b ∈ µx, ai ≥ ε > 0 and bi ≥ l > 0,
for all i and for some ε and l. Suppose that for each j ≥ 1 and y ∈ λ+ there
corresponds z ∈ λ+ such that {yi/zi} can be rearranged into a sequence of
λ(P0; j). Then E is λ(P0;N)-nuclear.

Note. For µ = `1, this says that a sequentially complete space with a
fully-λx-basis is λ(P0;N)-nuclear provided {λx, η(λx, λ)} is λ(P0;N)-nuclear
and there is some y ∈ λ with yi ≥ ε > 0, ∀i, for some ε > 0. So a sequen-
tially complete space with a fully-Λ1(α)x-basis is λ(P0;N)-nuclear, if Λ1(α) is
λ(P0;N)-nuclear.

The following results bear the testimony of the importance of the weak
sequential completeness of the dual E∗ in obtaining the λ(P0;N)-nuclearity of
E from the presence of a semi-λ-basis or a semi-λµ-basis.

Theorem 3.8. Suppose E is a sequentially complete space whose dual
E∗ is weakly sequentially complete. Let {xi, fi} be an equicontinuous semi-λ-
basis for E where λ is µ-perfect for a perfect sequence space µ such that for
some y ∈ λµ and z ∈ µx, yi ≥ ε > 0 and zi ≥ l > 0, for all i, for some ε and l.
If λ is λ(P0;N)-nuclear, then E is λ(P0;N)-nuclear.

Proof. Since {xi, fi} is a semi-λ-basis, for each p ∈ BE , a ∈ λµ and b ∈ µx

we have
∑

|fi(x)|p(xi)|aibi| < ∞. (*)

Now one can identify E with the sequence space ∆ = {(fi(x)) : x ∈ E}. Then
modifying the proof of [5, Proposition 2.3], E∗ can be identified with

∆β = {(αi) :
∑

αiui converges for all u ∈ ∆}
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wherein the identification is given by

f ∈ E∗ ←→ {f(xi)} ∈ ∆β.

Now (∗) means that {p(xi)aibi} ∈ ∆β. Thus, what we have proved is, for all
p ∈ BE , a ∈ λµ and b ∈ µx there exists f ∈ E∗ with f(xi) = p(xi)aibi. Due to
the continuity of f we get some q ∈ BE and k > 0 such that

p(xi)|aibi| ≤ kq(xi). (+)

Since (λ, σµ) is λ(P0;N)-nuclear, in particular it is nuclear, so for each a ∈ λµ
+

and b ∈ µx
+, by [15, Proposition 1.1] there correspond c ∈ λµ

+ and d ∈ µx
+ with

{aibi/cidi} ∈ l1. Consequently, by (+) we get some k > 0 and q ∈ BE , with

p(xi)|cidi| ≤ kq(xi), ∀i.
Thus, we have the inequality

∑

i

|fi(x)|p(xi)|aibi| ≤ k sup{|fi(x)|p(xi)} ·
∑ aibi

cidi
.

From this inequality it follows that {xi, fi} is a fully-λ-basis for E as the basis
is equicontinuous and λ is µ-perfect. Now the desired conclusion follows by
applying Theorem 3.2.

Note. This above result tells us in particular that a sequentially complete
space with an equicontinuous semi-λ-basis {xi, fi} is λ(P0;N)-nuclear provided
E∗ is weakly sequentially complete and (λ, η(λ, λx)) is a λ(P0;N)-nuclear space
with k-property. Hence, a sequentially complete space with an equicontinuous
semi-λ(R)-basis is λ(P0;N)-nuclear, provided E∗ is weakly sequentially com-
plete and λ(R) is a λ(P0;N)-nuclear G∞-space. Thus a sequentially complete
space with an equicontinuous semi-λ(P0)-basis is λ(P0;N)-nuclear provided
E∗ is weakly sequentially complete.

Since, for a λ(P0;N)-nuclear space (µ, η(µ, µx)), (λ, σµ) is always λ(P0;N)-
nuclear, we obtain

Corollary 3.9. Let E be a sequentially complete space whose dual E∗

is weakly sequentially complete. Suppose {xi, fi} is an equicontinuous semi-
λ-basis for E where λ is µ-perfect for a perfect space µ such that for some
y ∈ λµ and z ∈ µx, yi ≥ ε > 0, zi ≥ l > 0, for all i, for some ε and l. If
(µ, η(µ, µx)) is λ(P0;N)-nuclear [or if for each j ≥ 1, y ∈ λµ

+ there exist z ∈ λµ
+

and a permutation π with {yπ(i)/zπ(i)} ∈ λ(P0; j)], then E is λ(P0;N)-nuclear.
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An inspection of the proof of Theorem 3.8 suggest that the following is
true

Theorem 3.10. Let E be a sequentially complete space with an equicon-
tinuous semi-λµ-basis {xi, fi} such that µ is perfect and for some a ∈ λ and
b ∈ µx, ai ≥ ε > 0 and bi ≥ l > 0, ∀i, for some ε and l. If λµ is λ(P0;N)-nuclear
then E is λ(P0;N)-nuclear provided E∗ is weakly sequentially complete.

Proof. The proof follows, mutatis mutandis on lines similar to that of
Theorem 3.8.

Note. From the above result it is clear that a sequentially complete space
with an equicontinuous semi-λx-basis is λ(P0;N)-nuclear, provided (λx, η(λx,
λ)) is λ(P0;N)-nuclear and for some y ∈ λ, yi ≥ ε > 0, ∀i, and E∗ is
weakly sequentially complete. Consequently, a sequentially complete space
having an equicontinuous semi-Λx

1(α)-basis is λ(P0;N)-nuclear provided Λ1(α)
is λ(P0;N)-nuclear (cf. [4]).

We know that λµ is always λ(P0;N)-nuclear for a λ(P0;N)-nuclear space
µ. This in turn, implies that

Corollary 3.11. Let E be a sequentially complete space with an equi-
continuous semi-λµ-basis {xi, fi} such that µ is perfect and for some a ∈ λ and
b ∈ µx, ai ≥ ε > 0 and bi ≥ l > 0, ∀i, for some ε and l. Suppose E∗ is weakly
sequentially complete and if µ is λ(P0;N)-nuclear [or for each j ≥ 1, y ∈ λ
there correspond z ∈ λ and a permutation π such that {yπ(i)/zπ(i)

} ∈ λ(P0; j)],
then E is λ(P0;N)-nuclear.

The present article ends with

Proposition 3.12. Let E be a sequentially complete space with a fully-
λx-basis {xi, fi}. Suppose further that {xi, fi} is also a fully-µ-basis or {ei, ei}
is a fully-µ-basis for λx, where µ is perfect. Then E is λ(P0;N)-nuclear pro-
vided λµ is λ(P0;N)-nuclear and for some a ∈ λ and b ∈ µx, ai ≥ ε > 0 and
bi ≥ l > 0, ∀i, for some ε and l.

Proof. It follows from Theorem 3.5, as the basis turns out to be a fully-
λµ-basis.
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