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1. Introduction

In a frequentist setting, given a statistical experiment (Ω,A,P) (i.e., P is
a family of probability measures on the measurable space (Ω,A)) invariant
under the action of a group of transformations, the principle of invariance
reduces the original experiment to (Ω,AI ,P|AI

), where AI denotes the σ-
field of all invariant events and P|AI

is the family of restrictions to AI of the
probability measures of the family P. The set-theoretical character of the
definition of invariance could make more appropriate the concept of almost-
invariance, especially from a Bayesian point of view; we will write AA for the
σ-field of all almost-invariant events. This make interesting the question of
whether invariance and almost-invariance are equivalent.

Other results to be presented below are concerned in some manner with
the study of the relationship between sufficiency and invariance. The first
publication on this subject is [4]. For a sufficient σ-field AS , the main theorem
of this paper yields two sufficient conditions, noted A(i) and A(ii), in order
that the intersection AS ∩ AI be sufficient for AI . A(i) is the stability of
the sufficient σ-field AS , which appears there as a natural condition for the
statement of the problem. However, the condition A(ii) (i.e., the equivalence of
the σ-fields AS ∩AA and AS ∩AI) becomes a rather strange condition needed
to obtain the desired conclusion. We also are interested in the question of
whether this condition could be replaced by the equivalence of AA and AI .
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Some classical analogue results can be found in [5], [1], [2] and [7].
Let us recall some useful concepts from probability theory. Let P ∈ P.

An event A ∈ A is said to be P -null if P (A) = 0; it is said to be null (or
P-null) if it is P -null for all P ∈ P. Two events A,B ∈ A are said to be
P -equivalent (resp., P-equivalent) if A4B is a P -null (resp., P-null) event;
we write A ∼P B (resp., A ∼ B). Given two sub-σ-fields B, C of A we will
say that B is P -contained (resp., P-contained) in C, and we will write B⊂∼ P

C
(resp., B⊂∼C) if for every B ∈ B there exists C ∈ C such that B ∼P C (resp.,
B ∼ C); B and C will be said to be P -equivalent (resp., P-equivalent or,
simply, equivalent), and we will write B ∼P C (resp., B ∼ C) if B⊂∼ P

C and
C ⊂∼ P

B (resp., B⊂∼C and C ⊂∼B). Equivalence to the trivial σ-field {∅,Ω} will
be named P-triviality.

For a fixed probability space (Ω,A, P ) and a sub-σ-field B of A, we will
denote by B the completed σ-field of B, i.e., the least σ-field containing B
and the P -null sets. We refer to [3] for the definitions of other concepts
to be used later such as conditional independence (we write B⊥⊥PC | D for
the conditional independence of the σ-fields B and C given the σ-field D) or
measurable separation (we write B ‖P C | D for the measurable separation of
B and C given D).

A Bayesian experiment is a probability space E = (Ω×Θ,A×T , Π), where
(Ω,A) is the sample space, (Θ, T ) is the parameter space and Π is a probability
measure whose restriction to (Θ, T ) (resp., (Ω,A)) is the prior probability
(resp., the predictive probability); the sampling and posterior probabilities
are the conditional distributions (if they exist) of one of the coordinate maps
given the other one.

A Bayesian experiment is usually obtained from a statistical experiment
(Ω,A,P) = (Ω,A, {Pθ : θ ∈ Θ}), where the parameter space Θ is supposed
equipped with a σ-field T and a prior probability Q, and supposing that
Pθ(A) is a measurable function of θ for every fixed A ∈ A (i.e., Pθ(A) is a
Markov kernel or a transition probability on Θ× A); with these ingredients,
a generalized product measure theorem yields an unique probability Π on the
product space (Ω × Θ,A × T ) such that Π(A × T ) =

∫
T Pθ(A) dQ(θ), for all

A ∈ A and T ∈ T . We will say that Π is the composition of Q and the Markov
kernel Pθ(A).

The paper [8] introduces a weak notion of equivalence that we briefly recall:
let B and C sub-σ-fields of A; we will say that B is weakly Π-contained in C,
and we will write B w⊂∼C, if B ⊂ C × T ; we will say that B and C are weakly

Π-equivalent, and we will write B w∼ C, if each one is weakly Π-contained in
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the other one; a sub-σ-field of A is said to be weakly Π-trivial if it is weakly
Π-equivalent to the trivial σ-field {∅, Ω×Θ}.

In the next, AS will denote a sufficient sub-σ-field of A, i.e., a σ-field such
that A⊥⊥T | AS . A transformation in a measurable space is a bimeasurable
bijection from it onto itself. Let Φ be a group of transformations on the
Bayesian experiment E = (Ω × Θ,A × T , Π). A σ-field M ⊂ A × T is said
to be Φ-stable if φ−1(M) = M for every φ ∈ Φ. We will say that Φ leaves
invariant M, and we write Φ IM, if E(m ◦ φ) = E(m) for every m ∈ [M]+

and every φ ∈ Φ. Given two sub-σ-fields M1 and M2 of A × T , we will say
that Φ leaves invariant M1 conditionally on M2 if Φ I (M2 ∩{∅,Ω×Θ}) and
E(m1 ◦φ|φ−1(M2)) = E(m1|M2) ◦φ for every m1 ∈ [M1]+ and every φ ∈ Φ.
The Bayesian experiment E is said to be sampling Φ-invariant if Φ IA | T . An
event A ∈ A is said to be Φ-invariant (almost-invariant) if φ(A) = A (resp.,
φ(A) ∼ A) for every φ ∈ Φ. We will write AI (resp., AA) for the σ-field of all
invariant (resp., almost-invariant) events A ∈ A.

In this paper, we will frequently use the next proposition

(P) AA⊥⊥AS | (AS ∩ AA)× T .

[6] and [9] contain a more detailed study on this proposition in the classical
and Bayesian cases; (P) should be considered as the Bayesian analogue of
the classical conditional independence of AS and AA given its intersection,
condition that appear in a natural way in the literature on sufficiency and
invariance (see, for example, [4] and [1]). It is for this reason that (P) is
referred to as sampling conditional independence ofAS andAA givenAS∩AA.
Analogously, AS⊥⊥AA | T is named sampling independence of AS and AA.

2. Invariance and almost-invariance

First, we comment two results that are particular cases of the theorems
8.2.20 and 8.2.38 of [3], respectively.

In the first one the group Φ is supposed countable and reads as follows: “If
A (resp., AS) is Φ-stable and Φ IA∩ {∅,Ω×Θ} (resp., Φ IAS ∩ {∅, Ω×Θ}),
then AA ∼ AI (resp., AS ∩ AA ∼ AS ∩ AI).” In particular, in a Bayesian
experiment sampling invariant under the action of a countable group Φ, the
invariant and almost-invariant σ-fields are equivalent.

The second one is the Bayesian analogue of [5, Th. 6.5.4] and consider the
group Φ endowed with a σ-field F and a probability measure µ satisfying the
following conditions: (i) The maps (φ, φ′) ∈ (Φ×Φ,F×F) −→ φ◦φ′ ∈ (Φ,F)
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and (φ, ω, θ) ∈ (Φ×Ω×Θ,F×A) −→ φ(ω, θ) ∈ (Ω×Θ,A) are measurable. (ii)
If F ∈ F and µ(F ) = 0, then µ(F ◦ φ) = 0, for each φ ∈ Φ. (iii) A is Φ-stable
and Φ IA∩{∅, Ω×Θ} (resp., AS is Φ-stable and Φ IAS ∩{∅, Ω×Θ}). Under
these conditions, the result states that AA ∼ AI (resp., AS ∩AA ∼ AS ∩AI).

The next proposition yields a similar conclusion in a different context.

Proposition 1. If AA⊂∼AS ∨ AI and AS⊥⊥AA, then AI ∼ AA.

Let us give an example showing that the conclusion of the proposition
above does not hold if the independence AS⊥⊥AA is replaced by the sampling
independence AS⊥⊥AA | T .

Example 1. Let Ω = [0, 4] × [0, 4] and A be the least σ-field containing
the sets [0, 2]×[0, 2], [2, 4]×[2, 4], [1, 3]×[1, 3] and the Lebesgue-null Borel-sets.
Let P = {P1, P2}, where P1 is the restriction to A of the uniform distribution
on [1, 2] × [1, 2] and P2 is the restriction to A of the uniform distribution on
[2, 3]× [2, 3]. The parameter space Θ = {1, 2} is supposed endowed with the
σ-field P(Θ) of all subsets of Θ. Let Q be the probability measure Q({1}) =
Q({2}) = 1

2 . On the measurable rectangles, the composition Π of Q and the
probability measures Pθ is given by Π(A×T ) = [IT (1)P1(A)+ IT (2)P2(A)]/2,
for A ∈ A and T ∈ T . We write G for the group of all transformations on
(Ω,A) that move, at most, a finite number of points of Ω and leave invariant
the set [1, 3]× [1, 3]. Let Φ = {(g, i) : g ∈ G}. For the group Φ, we have that
AI = σ({[1, 3]× [1, 3]}) and AA = A.

The Bayesian factorization criterion (see [3]) shows that the least σ-field
AS containing the events [0, 2]× [0, 2] and [2, 4]× [2, 4] is sufficient.

It can also be proved that AA⊥⊥AS | T (this is the sampling indepen-
dence of AA and AS , the Bayesian analogue of the classical concept of P-
independence). Nevertheless, the proposition AA ∼ AI does not hold, since
the event [2, 3]× [2, 3] is in AA = A and is not Π-equivalent to any event in
AI . Since AS ∩ AA ∼ AS , AS ∩ AA is not equivalent to the trivial σ-field.
Moreover, AS ∩AI ∼ AI and AI is equivalent to the trivial σ-field. Thus, the
equivalence AS ∩ AA ∼ AS ∩ AI does not hold. Last, it follows easily from
the definition of AI and AS that A ∼ AI ∨ AS .

The equivalence of AS ∩AA and AS ∩AI is automatically obtained when
AS∩AA is equivalent to the trivial σ-field; this holds when AA y AS are inde-
pendent with respect to a privileged dominating probability (i.e., a countable
convex combination of probability measures in the family P dominating this
family) in a frequentist and dominated setting, or independent in the Bayesian
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case. Since independence implies measurable separation, the first part of the
next result becomes an amelioration of the last assertion. The second part
completes the first one showing a sufficient condition to obtain AA ‖ AS .

Proposition 2. The following propositions are satisfied:

(i) If AA ‖ AS then AI ‖ AS and AS ∩ AI ∼ AS ∩ AA.

(ii) If AA ‖ AS | T and AA ‖ T , then AA ‖ AS .

Next, we study the relationship between the equivalence of invariance and
almost-invariance and the condition A(ii) of [4, Th. 3.1]. The study is mo-
tivated by the possibility of replacing the strange condition A(ii) by a more
natural one, such as the equivalence of the σ-fields AA and AI . The results
to be obtained are the Bayesian analogues of some results of [1] and [2]. In
these results, we work with the σ-fields ASA := AS ∩AA and ASI := AS ∩AI

instead of AS ∩AA and AS ∩AI . In fact, we are proposing the change of AS

by its completion AS ∩ A; this change is needed, for example, to obtain the
next proposition, and should be justified by the wish of avoiding changes in
the result when the sufficient σ-field AS is replaced by an equivalent one. In
the next, the proposition (P) reads AA⊥⊥AS |(ASA × T ).

Proposition 3. AI ∼ AA =⇒ ASI ∼ ASA.

The reciproque of the previous proposition is, in general, false, as is shown
in the next example.

Example 2. Let Ω = [0, 4]× [0, 4] and A be the σ-field generated by the
sets [0, 2] × [0, 2], [2, 4] × [2, 4], [1, 3] × [1, 3] and the Lebesgue-null Borel sets
of Ω. Let P1 and P2 be the restrictions to A of the uniform distributions on
[1, 2]× [0, 2] and [2, 3]× [2, 4], resp. Let G be the group of all transformations
on Ω moving at most a finite number of points and leave invariant the sets
[0, 2] × [0, 2] and [2, 4] × [2, 4]. Let Φ = {(g, i) : g ∈ G}. Then AI is the
least σ-field containing these two sets. The parameter space Θ = {1, 2} is
supposed endowed with the σ-field T and the prior distribution Q defined
by Q({1}) = Q({2}) = 1/2. The σ-field AS := AI is sufficient. Moreover,
AA = A. Hence ASA = AS ∼ ASI = AI . Nevertheless, AA is not equivalent
to AI since the almost-invariant event [1, 3] × [1, 3] is not equivalent to any
event in AI .

The next proposition yields sufficient conditions under which the reciproque
is true.
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Proposition 4. Let us suppose that AA⊂∼AS ∨AI , that AI is sufficient
for AA and that proposition (P) holds. Then ASI ∼ ASA =⇒ AI ∼ AA.

Corollary 5. Let E be a sampling invariant Bayesian experiment. If
AA⊂∼AS ∨ AI and the proposition (P) holds, then

ASI ∼ ASA =⇒ AI ∼ AA.

Next, we replace equivalence by weak equivalence to obtain analogous
results to the given above. They should be considered as Bayesian versions of
similar results of [2] in a frequentist framework.

Proposition 6. Let us suppose that AA
w⊂∼AS ∨ AI and that (P) holds.

Then ASA
w∼ ASI =⇒ AA

w∼ AI . Moreover, if E is sampling invariant, then
ASI ∼ ASA =⇒ AI ∼ AA.
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