Smith's Counterexample about Uniform Rotundity in Every Direction

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain e-mail: ghierro@unex.es, ipalacio@unex.es

AMS Subject Class. (1991): 46B20

It is an open question when a direct sum of normed spaces inherits uniform rotundity in every direction from the factor spaces. M. Smith [4] showed that, in general, the answer is negative. The purpose of this paper is carry out a complete study of Smith's counterexample.

Let X be a normed space. Its unit ball and unit sphere will be termed B and S, respectively. The space X is rotund if S has not linear segments.

The notion of normed space uniformly rotund in every direction was defined by A.L. Garkavi [3] to characterize those normed spaces in which every bounded subset has at most one Chebyshev center, that is, a point which is center of a minimum-radius ball that contains the bounded subset.

The space X is said to be uniformly rotund in a direction $z \neq 0$ (UR $\rightarrow z$ for short), if the directional rotundity modulus

$$\delta(\to z, \epsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in B, \ x - y = \lambda z, \ \|x - y\| \ge \epsilon \right\}$$

is strictly positive for every $0 < \epsilon \le 2$. The spaces uniformly rotund in every non-null direction will be named URED spaces.

The space X is said to be uniformly rotund (UR for short), when the modulus of rotundity

$$\delta_X(\epsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in B, \|x-y\| \ge \epsilon \right\}$$

is strictly positive for $0 < \epsilon \le 2$.

Let $(X_i, \|\cdot\|_i)$, $i \in \mathbb{N}$, be a sequence of normed spaces and let $(E, \|\cdot\|_E)$ be a normed space of real number sequences that satisfy $(\alpha_i) \in E$ and $\|(\alpha_i)\|_E \le$

 $\|(\beta_i)\|_E$, whenever $|\alpha_i| \leq |\beta_i|$ for every $i \in \mathbb{N}$, and $(\beta_i) \in E$. The direct sum space is defined by

$$E(X_i) = \{(x_i) : x_i \in X_i, (\|x_i\|_i) \in E\}$$

and it is normed by $||(x_i)|| = ||(||x_i||_i)||_E$. In Day's terminology, such a space is called a full function space [1, p. 35].

As the singleton characteristic function $\chi_{\{i\}}$ belongs to E if and only if there exists $\alpha \in E$ with $\alpha_i \neq 0$, we may and do assume that $\chi_{\{i\}} \in E$ for all $i \in I$. We note $c_i = \|\chi_{\{i\}}\|_E$. The order interval with ends $\alpha, \beta \in E$ is the set $[\alpha, \beta] = \{\gamma \in E : \alpha_i \leq \gamma_i \leq \beta_i, i \in I\}$.

It is easy to check that E and every X_i URED imply $E(X_i)$ URED. When E is either uniformly rotund in every direction and has compact order intervals, or weakly uniformly rotund respect to its evaluation functionals, M. Smith [4] and M.M. Day [1] have proved respectively that $E(X_i)$ is URED if and only if so are all the X_i .

However M. Smith [4] showed that, in general, E and all the X_i URED do not imply $E(X_i)$ URED. For a large family of full function spaces that include the one used by Smith, we establish an equivalent condition for $E(X_i)$ to be URED.

W_0 uso	the note	tion summa	rized in	tho	shart '	holow
vve use	тие пога	J.IOH SHIIIII	arizea in	1. He (mart	neiow

Space	Elements	Norm	Modulus	Unit Sphere	Unit Ball
X_i	x_i, y_i, z_i	$\left\ \cdot \right\ _i$	$\delta_i(\to\cdot,\cdot)$	S_{i}	B_i
E	$\alpha = (\alpha_i), \beta = (\beta_i), \gamma = (\gamma_i)$	$\left\ \cdot \right\ _E$	$\delta_E(o\cdot,\cdot)$	S_E	B_E
$E(X_i)$	$x = (x_i), y = (y_i), z = (z_i)$	$\ \cdot\ $	$\delta (\rightarrow \cdot, \cdot)$	S	B
X	x, y, z	$\left\ \cdot \right\ _X$	$\delta_X(\to\cdot,\cdot)$	S_X	B_X

1. Previous results

We will use the following results that appear in [2].

THEOREM 1. Let $z \in S$. If for every $0 < \epsilon \le 2$,

$$\Delta_{z,\epsilon} = \inf \left\{ \delta_E(\to \theta, \, \epsilon \|\theta\|_E) : \, \theta = (\theta_i), \right.$$
$$\frac{\|z_i\|_i}{4} \, \delta_i(\to z_i, \, \epsilon c_i \|z_i\|_i) \le \theta_i \le \|z_i\|_i \right\} > 0,$$

then $E(X_i)$ is $UR \rightarrow z$.

THEOREM 2. If $z \in S_{\ell_{\infty}(X_i)}$, then

$$\delta(\to z, \epsilon) = \inf\{\delta_i(\to z_i, \epsilon ||z_i||_i) : i \in I\}, \qquad 0 \le \epsilon \le 2$$

If $(X_i, \|\cdot\|_i) = \mathbb{R}$ for every $i \in I$, then $\ell_{\infty}(X_i) = \ell_{\infty}$. From

$$\delta_{\mathbb{R}}(\to \zeta_i, \, \epsilon |\zeta_i|) = \delta_{\mathbb{R}}(\epsilon |\zeta_i|) = \frac{\epsilon}{2} |\zeta_i|,$$

it follows that

$$\delta_{\ell_{\infty}}(\to \zeta, \, \epsilon) = \frac{\epsilon}{2} \inf\{|\zeta_i| : i \in I\},$$

where $\|\zeta\|_{\ell_{\infty}} = 1$.

THEOREM 3. Let $\zeta \in S_{\ell_1}$. Then

$$\delta_{\ell_1}(\to \zeta, \, \epsilon) = \frac{\epsilon}{2} \inf \left\{ \left| \sum_I \alpha_i \zeta_i \right| : \, |\alpha_i| = 1, \, i \in I \right\}, \qquad 0 \le \epsilon \le 2.$$

MIXED NORMS. Let $\{\|\cdot\|_i\}_{i\in I}$ be a family of norms defined on X. The mixed norm of this family, with respect to the full function space $(E, \|\cdot\|_E)$, is defined to be

$$||x||_X = ||(||x||_i)||_E, \quad x \in X.$$

Let $(X_i, \|\cdot\|_i) = (X, \|\cdot\|_i)$. The application $J \colon x \in X \to Jx \in E(X_i)$, $(Jx)_i = x$ for every $i \in I$, enables one to identify isometrically X to JX. By means of this identification we may discuss whether $(X, \|\cdot\|_X)$ inherits uniform rotundity in a direction.

The aforementioned remark implies that

$$\delta_X(\to z, \epsilon) = \delta_{JX}(\to Jz, \epsilon) \ge \delta (\to Jz, \epsilon)$$
.

Then one easily obtains a mixed norm version of Theorem 1.

THEOREM 4. Let $z \in S_X$. If for every $0 < \epsilon \le 2$

$$\Delta_{z,\epsilon} = \inf \Big\{ \delta_E(\to \theta, \, \epsilon \|\theta\|_E) : \, \theta = (\theta_i),$$

$$\frac{\|z\|_i}{4} \delta_i(\to z, \epsilon c_i \|z\|_i) \le \theta_i \le \|z\|_i \right\} > 0,$$

then X is $UR \rightarrow z$.

As a consequence of Theorem 4 we obtain the following result.

THEOREM 5. Let E be UR. If $(X, \|\cdot\|_j)$ is URED for some $j \in I$, then $(X, \|\cdot\|_X)$ is URED.

2. Smith's Counterexample

For the class of full function spaces defined bellow, we establish a necessary and sufficient condition for $E(X_i)$ to be URED. A particular E in this class was used by M.A. Smith [4] to show that, in general, E and every X_i URED do not imply $E(X_i)$ URED.

THE FULL FUNCTION SPACE. Let E be the linear space of real bounded sequences. Let $\|\cdot\|_{**}$ be an uniformly rotund norm in E, and $|\cdot|$ a rotund norm in \mathbb{R}^2 such that |(1,0)| = |(0,1)| = 1. Define

$$\begin{split} &\|\alpha\|_{\infty} = \sup_{i \in \mathbb{N}} |\alpha_i|, \quad \alpha \in E, \\ &\|\alpha\|_{*} = \|(|\alpha_1| + |\alpha_2|, |\alpha_1| + |\alpha_3|, \ldots)\|_{**}, \quad \alpha \in E, \\ &\|\alpha\|_{E} = |(\|\alpha\|_{\infty}, \|\alpha\|_{*})|, \quad \alpha \in E. \end{split}$$

Set
$$\ell_{\infty} = (E, \|\cdot\|_{\infty}), \ \ell_{**} = (E, \|\cdot\|_{**}), \ \ell_{*} = (E, \|\cdot\|_{*}), \ \text{and} \ E = (E, \|\cdot\|_{E}).$$

CLAIM. The space E is URED.

Proof. Let $\zeta \in S_E$. Since $\|\cdot\|_E$ is a mixed norm of $\|\cdot\|_{\infty}$ and $\|\cdot\|_*$, we use Theorem 5 to prove that E is URED. If $\inf_{i \in \mathbb{N}} |\zeta_i| > 0$, then

$$\delta_{\ell_{\infty}}(\to \zeta, \ \epsilon \|\zeta\|_{\infty}) = \frac{\epsilon}{2} \inf_{i \in \mathbb{N}} |\zeta_i| > 0, \quad 0 < \epsilon \le 2.$$

If $\inf_{i\in\mathbb{N}} |\zeta_i| = 0$, then

$$\delta_{\ell_*}(\to \zeta, \epsilon \|\zeta\|_*) > 0, \quad 0 < \epsilon \le 2.$$

This last implication is a consequence of the following claim, which describes the uniform rotundity directions of ℓ_* .

CLAIM. The space ℓ_* is UR $\rightarrow \zeta$ if and only if there exists some $j \geq 2$ such that $|\zeta_1| \neq |\zeta_j|$.

Proof. Assume $|\zeta_1| = |\zeta_i|$, $i = 2, 3, \dots$ Set $\xi_1 = -\zeta_1$, $\xi_i = 0$, $i = 2, 3, \dots$ Then $\|\xi\|_* = \|\xi + \zeta\|_* = \|\xi + (1/2)\zeta\|_*$.

Assume the contrary. Then there exists $j \geq 2$ such that

$$(|\zeta_1| + |\zeta_j|) \min\{|\zeta_1 - \zeta_j|, |\zeta_1 + \zeta_j|\} > 0.$$

The space ℓ_* can be linearly isometrically identified with the linear space of sequences $J\alpha = ((\alpha_1, \alpha_2), (\alpha_1, \alpha_3), \ldots)$, which is a subspace of $\ell_{**}(X_i)$, where X_i , $i = 2, 3, \ldots$ is the linear space \mathbb{R}^2 endowed with the sum norm $\|(r, s)\|_S = |r| + |s|$.

We may suppose that $\|\zeta\|_* = 1$. Theorems 1 and 3 with some manipulations yield

$$\delta_{\ell_*}(\to \zeta, \, \epsilon) \ge \delta_{\ell_{**}(X_i)}(\to J\zeta, \, \epsilon) \ge$$

$$\Delta_{J\zeta,\epsilon} = \delta_{\ell_{**}} \left(\frac{\epsilon^2}{8} \left\| \left(a_i \left(|\zeta_1| + |\zeta_i| \right) \min\{ |\zeta_1 - \zeta_i|, |\zeta_1 + \zeta_i| \right) \right)_{i \ge 2} \right\|_{**} \right) > 0, \tag{1}$$

where $a_i = ||\chi_{\{i\}}||_{**}, i = 2, 3, \dots$

Note that E has non-compact order intervals, since $\|\cdot\|_E$ is equivalent to $\|\cdot\|_{\infty}$.

THE SUM DIRECT SPACE. Suppose $\lim_{i\to\infty} a_i = 0$ and let $(X_i, \|\cdot\|_i), i \geq 1$, be a sequence of normed spaces.

CLAIM. $E(X_i)$ is URED if and only if so are all the X_i and

$$z \in S$$
, $\inf_{i \in \mathbb{N}} \{ \|z_i\|_i \} > 0 \quad \Rightarrow \quad \inf_{i \in \mathbb{N}} \{ \delta_i(\to z_i, \epsilon) \} > 0, \quad 0 < \epsilon \le 2.$ (2)

Proof. The trick of the proof is to look at the norm in $E(X_i)$ as the mixed norm $||x|| = |(||x||_{\ell_{\infty}(X_i)}, ||x||_{\ell_{*}(X_i)})|$. Suppose X_i URED for every $i \geq 1$ and (2). Let $z \in S$. From Theorem 2, if $\inf_{i \in \mathbb{N}} ||z_i||_i > 0$, then

$$\delta_{\ell_{\infty}(X_i)}\Big(\to z,\,\epsilon\,\|z\|_{\ell_{\infty}(X_i)}\Big) = \inf_{i\in I}\Big\{\delta_i(\to z_i,\,\epsilon\|z_i\|_i)\,\Big\} > 0,\quad 0<\epsilon\leq 2.$$

Using Theorem 5 yields $E(X_i)$ UR $\to z$. If $\inf_{i\in\mathbb{N}} \|z_i\|_i = 0$, then we must prove $\delta_{\ell_*(X_i)} \Big(\to z, \ \epsilon \|z\|_{\ell_*(X_i)} \Big) > 0, \ 0 < \epsilon \le 2$. From inequality (1) we obtain

$$\begin{split} \delta_{\ell_*(X_i)} \left(\to z, \; \epsilon \, \|z\|_{\ell_*(X_i)} \right) &\geq \Delta_{z,\hat{\epsilon}} \\ &= \inf \left\{ \delta_{\ell_*}(\to \theta, \; \hat{\epsilon} \, \|\theta\|_*) : \; \gamma_i \leq \theta_i \, \|z\|_{\ell_*(X_i)} \leq \|z_i\|_i \,, \; i \geq 1 \right\} \\ &\geq \inf \left\{ \delta_{\ell_{**}} \left(\; \left\| \left(\frac{\hat{\epsilon}^2}{8} a_i(\theta_1 + \theta_i) \min(\theta_1 + \theta_i, |\theta_1 - \theta_i|) \right)_{i \geq 2} \right\|_{**} \right) \\ &: \; \gamma_i \leq \theta_i \, \|z\|_{\ell_*(X_i)} \leq \|z_i\|_i \,, \; i \geq 1 \right\}, \end{split}$$

where $\hat{\epsilon} = \epsilon \|z\|_{\ell_*(X_i)}$, $\gamma_i = (1/4) \|z_i\|_i \delta_i(\to z_i, \epsilon a_i \|z_i\|_i)$ and $a_1 = \|\chi_{\{1\}}\|_*$. Let $\gamma_i \le \theta_i \|z\|_{\ell_*(X_i)} \le \|z_i\|_i$, $i \ge 1$. If $z_1 = 0$, then

$$||z||_{\ell_*(X_i)}^2(\theta_1 + \theta_i) \min\{\theta_1 + \theta_i, |\theta_1 - \theta_i|\} = ||z||_{\ell_*(X_i)}^2 \theta_i^2 \ge \gamma_i^2, \quad i \ge 2.$$

There exists $j \geq 2$ such that $\gamma_j > 0$. Therefore

$$\delta_{\ell_{*}(X_{i})}(\to z, \epsilon \|z\|_{\ell_{*}(X_{i})}) \geq \delta_{**} \left(\frac{\epsilon^{2} \|z\|_{\ell_{*}(X_{i})}^{2}}{8} \|\left(\frac{a_{i}\gamma_{i}^{2}}{\|z\|_{\ell_{*}(X_{i})}^{2}}\right)_{i \geq 2} \|_{**}\right)$$

$$= \delta_{**} \left(\frac{\epsilon^{2}}{8} \|\left(a_{i}\gamma_{i}^{2}\right)_{i \geq 2} \|_{**}\right)$$

$$\geq \delta_{**} \left(\frac{\epsilon^{2}}{8} \|\left(a_{j}\gamma_{j}^{2}\chi_{\{j\}}(i)\right)_{i \geq 2} \|_{**}\right)$$

$$= \delta_{**} \left(\frac{\epsilon^{2}}{8} a_{j}^{2}\gamma_{j}^{2}\right) > 0.$$

If $z_1 \neq 0$, take $j \geq 2$ such that $||z_j||_i < (\gamma_1/2)$. Hence

$$||z||_{\ell_*(X_i)}^2(\theta_1 + \theta_j) \min(\theta_1 + \theta_j, |\theta_1 - \theta_j|)$$

$$\geq \theta_1(\theta_1 - \theta_j) ||z||_{\ell_*(X_i)}^2 \geq (\theta_1^2/2) ||z||_{\ell_*(X_i)}^2 \geq (\gamma_1^2/2) > 0.$$

Again

$$\delta_{\ell_*(X_i)} \Big(\to z, \ \epsilon \|z\|_{\ell_*(X_i)} \Big) \ge \delta_{\ell_{**}} \left(\frac{\epsilon^2}{8} \left\| a_j \frac{\gamma_1^2}{2} (\chi_{\{j\}}(i))_{i \ge 2} \right\|_{**} \right)$$

$$= \delta_{\ell_{**}} \left(\frac{\epsilon^2}{8} a_j^2 \frac{\gamma_1^2}{2} \right) > 0.$$

To prove the reverse, suppose that $E(X_i)$ is URED and that there exists $z \in S$ such that $\inf_{i \in \mathbb{N}} \|z_i\|_i > 0$ and $\inf_{i \in \mathbb{N}} \delta_i(\to z_i, \epsilon) = 0$ for some $0 < \epsilon \le 1$. Taking a sub-sequence if necessary, we may suppose $\lim_{i \to \infty} \delta_i(\to z_i, \epsilon) = 0$. Thus there exists $(v_i)_{i \ge 1}$ such that $v_i, v_i + \epsilon z_i / \|z_i\|_i \in S_i$ and

$$\lim_{i \to \infty} \left\| v_i + \frac{\epsilon z_i}{2 \left\| z_i \right\|_i} \right\|_i = 1.$$

Define

$$x_{i}^{n} = \begin{cases} -\frac{\epsilon z_{1}}{\|z_{1}\|_{1}}, & \text{if } i = 1, \\ v_{n}, & \text{if } i = n, \\ 0, & \text{if } i \neq 1, n. \end{cases}$$

From $\lim_{n\to\infty} a_n = 0$, some manipulations yield

$$\lim_{n \to \infty} \|x^n\| = \lim_{n \to \infty} \left\| \left(x^n + \epsilon \left(\frac{z_i}{\|z_i\|_i} \right) \right) \right\|$$

$$= \lim_{n \to \infty} \left\| \left(x^n + \frac{\epsilon}{2} \left(\frac{z_i}{\|z_i\|_i} \right) \right) \right\| = \left| \left(1, \|(\epsilon, \epsilon, \epsilon, \ldots)\|_{**} \right) \right|.$$

from which it follows that $E(X_i)$ is non-URED.

When $\|\alpha\|_{**} = \left(\sum_{i\geq 2} a_i^2 \alpha_i^2\right)^{1/2}$, $\alpha = (\alpha_2, \alpha_3, \ldots)$, $|(r,s)| = (r^2 + s^2)^{1/2}$, $(r,s) \in \mathbb{R}^2$ and $(X_i, \|\cdot\|_i)$ is \mathbb{R}^2 endowed with $\|(r,s)\|_{i+1} = (|r|^{i+1} + |s|^{i+1})^{1/(i+1)}$, $i = 1, 2, 3, \ldots$, we have Smith's counterexample.

REFERENCES

- [1] DAY, M.M., "Normed Linear Spaces", Third Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [2] FERNÁNDEZ, M., PALACIOS, I., Directions of uniform rotundity in direct sums of normed spaces, Arch. Math., 73 (1999), 366-372.
- [3] GARKAVI, A.L., The best possible net and the best possible cross-section of a set in a normed space, *Izv. Akad. Nauk SSSR Ser. Mat.* **26** (1962), 87–106; *Amer. Math. Soc. Transl.*, Ser. 2, **39** (1964), 111–132.
- [4] SMITH, M.A., Products of Banach spaces that are uniformly rotund in every direction, *Pacific J. Math.* **73** (1) (1977), 215-219.