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The problem of finding complemented copies of £, in another space is a
classical problem in Functional Analysis and has been studied from different
points of view in the literature. Here we pay attention to complementation
of /, in an n-fold tensor product of £, spaces because we were lead to that
result in the study of Grothendieck’s “Probléme des topologies” as we shall
comment later. It could seem strange to need results on ¢, spaces in order to
get results on Fréchet-Montel spaces since both are different, and important,
classes. Nevertheless, there are many points of relation between Banach and
Fréchet-Montel spaces: if we consider a particular type of projective limit of
£, spaces we can get a Kothe echelon space and, for a suitable Kothe matrix
A, it can be even a Fréchet-Montel space. Another important Fréchet (not
Montel) space constructed by means of projective limits of £, spaces is the so
called £,4 space, which will be used in the final section of this paper. So we
shall use on Banach spaces to give results on Fréchet spaces and applications
to Grothendieck’s problem.

Here we shall be concerned with projective n-fold tensor products and
projective symmetric n-fold tensor products of Fréchet spaces. We are not
recalling here the definition of tensor product and symmetric tensor product
(see [9], [11]) but we explain the notation we use.

Recall that a fundamental system of seminorms for ®,, . E (the completion
of the projective n-tensor product of F) is given by {®,p : p € cs(E)}, where

@p(0) =inf { Y p(ehp(e}) : 0= ol ©--@a} .

In the case of a symmetric projective tensor product we can consider either
the above system of seminorms nor the equivalent system {®,p: p € cs(E)},
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where
7(Ebp(@) = inf{ Zp(mz)n 1 0= Zei ® mi},
* i i

n
®n7 is used as an abbreviation for z ® -+ ® z and ¢; € {—1,1} for all 4 when

FE is a real space and ¢; = 1 for all 4+ when E is a complex space.

Grothendieck posed in 1955 his classical “Probléme des topologies”, which
can be stated as follows: given two Fréchet spaces E and F' and a bounded
subset B C E®,F, are there bounded sets B; C FE and By C F such that
B C T'(B1®,B3) [13], where ['(C) denotes the closed convex hull of the set
C and for a pair of subsets C; C E, Cy C F, C; ® Cy denotes C1 @ Cy =
{r®y :xz € C,y € Cy}. About 30 years later, in 1986, Taskinen [19]
continued the study of that problem and defined the concept of (BB) property:
a couple of locally convex spaces (E, F) has the (BB) property if and only
if Grothendieck’s “probléme des topologies” has an affirmative answer for
that pair. Finally, in 1994 Dineen defined the concept of (BB), property
as an extension of Taskinen’s (BB) property. In this paper we shall denote
by (BB)pn,s property the property called originally (BB), by Dineen (since
it concerns to symmetric tensor products) and reserve the term (BB), for
the analogous property in the non-symmetric case: we say a locally convex
space E has (BB), s property if for every bounded set B C ®,, s -E there is
a bounded set By C E such that B C ®, sB1 = {®,z : ¢ € B1} whereas E
has (BB),, property if for every bounded set B C ®,, E there is a bounded
set By C F such that BC ®,B1 ={11® - Q Ty : T1,...,2Zy € B1}.

There are a few known relations between (BB), (BB), and (BB), . In
particular (BB), s implies (BB),, s for each m < n but it was not known any
example with (BB), s property and without, for instance, (BB),t1,. The
first example of a Fréchet space E with (BB)y s and without (BB)3, was
given in [2], using several results on Banach space theory. In particular, one
of the steps in the construction needs to prove that £, is a complemented
subspace of Ezp+®5m62p+. The idea under the proof of that result is to prove
the result for Banach spaces (i.e. proving the same statement deleting the
signs “+7) and there are several authors who studied that problem. We also
give a different proof of it, using another theorems close to Grothendieck.

The complementation of £, in a full tensor product ®, ¢, or in a symme-
tric tensor product ®n,s,7req has been studied in different times, by different
authors for different reasons. Since it is an old, and interesting, problem we
enunciate here the results proved and the context where they were used. The
following list of theorems is not an exhaustive one, but it can help to unders-
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tand the development of the subject and to give a wide view of the different
techniques used.

Holub in 1970 [15] gave conditions under which ¢; is complemented in
L@, Later he adapted this result to operator theory [16]. He proved the
following

THEOREM 1. ([15], COROLLARY 5.8) Let 1 <m,n < +oc and ;"5 > m.
Then (e; ® €;) in £y, ® Ly, is similar to (e;) in 41.

The first time we found complementation of £, (r # 1) in a tensor product
is in an article of Samuel [18] where he studies the problem of existence of

complemented copies of £, in a 2-fold injective tensor product £,&.4,. It is a
dual result of the result we want. He obtained the following

THEOREM 2. Let 1 < p,q < oo; then ¥, is isomorphic to a subspace of
0,®:4, if and only if r =p, r = q or

if ¢>p or r=o0 if ¢ <p,

being ¢' the conjugate exponent of q.

He also gives the following version for projective tensor products:

COROLLARY 3. If s < 7' the space {,®.¢; has a subspace isomorphic
to 61.

Oja, using Schauder decompositions and duality theory, was able to obtain
the result we are interested in from Samuel’s results in a paper where refle-
xivity of tensor products is studied. The next result is extracted from [17],
Lemma 4. In the original lemma she describes the subspace isomorphic to £,
complemented in E,,@WKT.

LEMMA 4. Let 1 < p,r < oo. Then ¢, is isomorphic to a complemented

subspace of £,&¢,, where ¢ = 1 if p < r' and % = % + % (with é =0) if
p >

Oja also gives a “converse” result:

THEOREM 5. ([17], THEOREM 4) Let 1 < p,q,r < oo. If£,&®¢, contains
a subspace isomorphic to £, thenq=porq=rorq=s, wheres =1ifp <7’
1 _ 1,1 /=3 1 _ ()
and ¢ = - + ¢ (with 53 =0) if p > 1.
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The jump to n-fold tensor products and symmetric tensor products has
been developed during the last decade. The first of the results in this block is
due to Choi and Kim. They study polynomial convergence of sequences in [6]
and, as a consequence, they characterize when /¢ is contained in a symmetric
tensor product of spaces /,, extending Holub’s result. Note that the previous
results we have presented here dealt only with 2-fold full tensor products, not
symmetric.

THEOREM 6. ([6], COROLLARY 3.2) Let 1 < p < o0.
a) For each positive integer m, 1 < m < p, ®m.s »£, contains no copy of ¢;.

b) For each positive integer m, p < m, @y, s ¢, contains a copy of ;.

Dineen also got the same result, using a different technique:

THEOREM 7. ([8]) Let 1 < p < oo andn > p. Then ¢; is a complemented
subspace of ®n’s,7r€p.

He also gives the polynomial version (i.e. the dual version):

COROLLARY 8. Let 1 <p < oc and n > p. Then £y, is a (complemented)
subspace of P("£)).

In 1996 Dineen and Lindstrém [10] obtained other results in a more ge-
neral framework: they give conditions on a Fréchet space E (related to £,)
under which /o is a complemented subspace of P("E). In 1998 the author
gave another generalization of the result we are studying, this time for Kothe
echelon spaces [4]. But it was also in 1996 when Arias and Farmer [3] gave
the theorem concerning complementability of £, in a n-fold projective ten-
sor product of ¢, spaces. They apply that result to several aspects of tensor
product theory. In particular, they study the primarity of projective tensor
products of £, spaces. Since they prove that the main diagonal in a tensor
product is complemented and isomorphic to a £, space, the result is also true
for symmetric tensor products.

THEOREM 9. ([3], THEOREM 1.3) Let X = £, ®z -+ ®xlpy. Then the

main diagonal D = [e, @ --- @ e, : n € N] is I-complemented and satisfies
D ={,, where % = min{l,zij\il pi,}

Now we shall prove that £, is a complemented subspace of ®n,s,7r€np (and,
consequently of using a different technique than Arias and Farmer. One of the
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keys in the proof is a theorem of Grothendieck concerning weakly p-summable
sequences, a concept of Banach space theory. The proof of the complementa-
tion result follow the ideas under Proposition 3.2 in [2].

Let us begin with the well-known definition of weakly p-summable sequence
and an easy lemma.

DEFINITION 10. A sequence (zy)x in a Banach space X is called weakly
p-summable if (z*zy)y € £, for every z* € X*.

LEMMA 11. Let 1 < p < oo and (ej)) be the canonical basis of £y,. Then
(®nek)k C ®n,s,xlnp is weakly p'-summable (where p' is such that %4— I% =1).

Proof. Let ¢ € (®nsrlnp)*. We know ([9], for instance) there is P €
P("yp) such that o(®,z) = P(z) for every x € £y,

We have, for each n € N, that

N o N
>ole(@w)| =X 1PEl <|[(Pe),
k=1 k=1

where the last inequality is obtained using that under the hypotheses in the
lemma (P(e;)), € £_ne_ (see [20], Corollary 2). 1
np—n

plﬂ

Although there are more direct ways to obtain the complementation of ¢,
in a tensor product, since we are interested in one problem posed by Grot-
hendieck, we shall use a result on weakly p-summable sequences due to him,
stated in the next theorem. Its proof can be read in the original Grothen-
dieck’s paper [14] or, in more recent papers of Castillo and Sinchez [5] or
Gonzalo and Jaramillo [12].

THEOREM 12. ([14]) A sequence (x) C X is weakly p-summable if and
only if there is a bounded linear operator T : £, — X such that T'(ey) = z.

With this result in mind we can enunciate, and give a new proof, the
following theorem:

THEOREM 13. Let 1 < p < oco. Then ¢, is a complemented subspace of
®n,s,7r£np-

Proof. By Theorem 12 we know there is a bounded linear operator J, :
£, — Uyp such that J,(ur) = ®nex, where (uy), and (eg); are the canonical
basis of £, and /,, respectively. This is the injection we were looking for.
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Next define the projection II, : ®y, s lnp — £p by Hp( On (xk)k) = (2})k
(and extending it to the whole ®y, 5 +f,y by linearity). The mapping is well
defined and surjective since (zy)y € £y if and only if (z}); € ¢,. Moreover,
I@lly < 1@l = (@ns I~ 1) (©a (2)1), which gives continuity of
this mapping. It only remains to extend it by continuity to the completion
®n,s,7r£np of ®n,s,7r€np-

Finally, it is trivial that II, o J,(8) = 0 for every 6 € £,. 1

Remark 14. In the complex case, the operator J, used in Theorem 13 is
an isometry between /£, and the main diagonal in ®n,3m€np, when we use the
symmetric projective norm in ®n,s’ﬂ£np. Indeed:

m m
S@g” . an<2xj GELJ ej> = sup{ Z:ij(ej)
’ j=1 j=1

but, for every P € P(,,) with ||P|| =1 we have that

m m
> @i Pley) > zje;
j=1 j=1

In [3] it is proved that there is an isometry between ¢, and the main
diagonal in ®, s fnp, using the projective norm (not the symmetric one), so
the main diagonal of ®n,s,7r£np is a subspace where both projective norms
(symmetric and not symmetric) coincide.

The nature of the continuos seminorms of the space £, allow to extend
easily the above theorem for Banach spaces to a particular case of Fréchet
spaces. It has a direct proof in [1].

. P eP(y), | P = 1}

<

o < @)illp-

H(P(ej))j

THEOREM 15. ([1], PROPOSITION 3.2) Suppose 1 < p < oo and n € N.
Then the space £, is isomorphic to a complemented subspace of ®n,3m€np+.

Proof. Consider the following diagram:

by S ® lyg
n,s,m
Tl T
by S @ lnpy -
n,s,m

Having in mind how are defined the continuous seminorms in the above spaces
and Theorem 13 it is easy to finish the proof. i
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As we commented in the introduction, Theorem 15 played an important

role when constructing the first example of a Fréchet space with (BB)2 s pro-
perty but without (BB)3 s property, using several results on £, developed by
Defant and Peris [7]. That example is plenty of connections between Banach
Space Theory and Fréchet Space Theory: in addition to complementation of
£y in ®n,3m€np, results on type and cotype are used.
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