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1. INTRODUCTION

Reaction-diffusion equations have been extensively used by applied scient-
ists to model and analyze the population dynamics for interacting species. To
model interactions among three species, consider the system

up — diAu = ufl ($, t,u,v, w)
vy — doAv = v fo(x, t,u, v, w) in Q x (0, 00)
wy — dsAw = w f3(z, t,u, v, w)
u=v=w=0 on 9N x (0, 00)
In (1), 2 is a bounded domain in R with sufficiently smooth boundary,

and u(z,t), v(z,t), w(z,t) represent the population density of species A, B,
C, respectively at location z € Q and time ¢ > 0. The Laplace operator

0? 0? 0?
A:a—x%—i_a—m%_ka—mg

arises because of the random motion of the species within 2, with diffusion
coefficients d; > 0 for i = 1,2,3 and f;(z,t,u,v,w) is the per capita growth
rate for species i at location x, time ¢ and densities u(z,t), v(z,t) and w(zx,t).
The boundary conditions biologically mean that boundary is lethal for the 3
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species. In order to allow seasonal variation or day-night cycles, we assume
that

(2) fi(ﬁb,'—FT,U,’U,W) :fi(x,-,u,v,w)

for all ¢ and some T > 0, ¢ = 1,2,3. System (1) can model a variety of
interactions involving three species: a) competition, b) one predator-two prey,
¢) two predators with one prey, d) food chain, e) mutualism loop. In this
article, we are concerned with modeling a food chain. To do so, we assume
the following conditions on the growth laws f;(z,t, u, v, w):

df1 df1
— < — <
8’0_0’ aw_o
0fs df2
—= > — =<K
3) 8u_0’ aw_o
0f3 df3
— > — >
8u_0’ 8'0_0

We investigate the asymptotic behavior of system (1) with conditions (2) and
(3). In this vein, recently Feng [2] studied system (1) with Lotka-Volterra
type of interaction with no periodicity. There was shown the existence of a
global attractor under certain conditions on the eigenvalues of a related elliptic
problem via a monotone iteration process of the elliptic associated system.
We give a sufficient condition to ensure the existence of a positive global
attractor for our model, given in terms of the spectra of linear differential op-
erators associated with the original reaction-diffusion equations. In so doing,
we connect asymptotic coexistence in such a system to the underlying biolo-
gical assumptions about the model which are expressed in the parameters and
coefficients of these operators. The organization of this paper is as follows: in
Section 2 we set up our system and give some preliminary results. We first
state a threshold type theorem for a general scalar periodic parabolic equation
which comes from Avila-Vales [1], and then a theorem comparing the prin-
cipal eigenvalue theorem coming from Hess [3]. In Section 3 we construct our
positive global attractor via an iteration process starting with some solutions
to subsystems with one or two species present. We state and prove our main
result and also we give some results for extinction. Finally in Section 4, we
illustrate our main result. We consider a Lotka-Volterra type of system (1)
with periodic coefficients. Since the conditions of our main result are stated
in terms of the principal eigenvalue of the scalar periodic-parabolic problem,
we can get the conditions using the estimates given in Hess [3, Section I1.17].
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2. PRELIMINARIES

Consider the equation

ou .
4) E—dAu—i—uf(m,t,u) in Q x (0, 00)
u=20 on 99 x (0, 00)

such that f is T-periodic in ¢ and satisfies

L1 f is continuous in all of its arguments. Also, f(z,t,u) € Cﬁ’g(ﬁ X
[0,7]), where 0 < 8 < 1 uniformly for v in bounded subsets of R.
Furthermore, we assume that the partial derivatives of f exist and are
Holder continuous, in Q x [0,7] x R.

L2 1) f(z,t,v) > f(z,t,u) if 0 < v < u.
ii) f(z,t,0) > 0 for some z € Q and t € (0,T).

L3 f(z,t,u) <0if u > K for some K > 0 for all z, t.

In [5] it is shown that under (L1) the linear eigenvalue problem

%—dAv—vf(x,t,O):/w in QxR

(5) v=20 on 0f) X R

v T-periodic in ¢

admits a unique y € R having associated eigenfunction v € C**# ,1+§(§ X
[0,7]) with v(z,t) > 0 for z € Q and ¢ € R. (p is called the principal
eigenvalue. See also [3], [4].) We have the following result.

LEMMA 1. ([1, Theorem 4.2]) Consider equation (4) and suppose that f is
T-periodic in t and satisfies (L1)-(L3). Then (4) admits a positive T-periodic
solution u(x,t) if and only if u in (5) is negative. Additionally:

i) If p < 0, u is the only such solution. Moreover, if w(z) € C*(Q) with
wz0 and Uy, denotes the solution of (4) with Uy (z,0) = w(z), and if e > 0 is
given, there is to = to(w) so that |u(z,t) — Uu(z,t)l|c1(q) < € for all t > o
(i.e., u is globally asymptotically stable with respect to nonnegative initial
data).

ii) If p > 0, 0 is globally asymptotically stable with respect to nonnegative
initial data.
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LEMMA 2. ([3, Lemma 15.5]) Let my,ms € C%3 (Q,R) be T-periodic in t
and suppose that my < mo. Let p; the principal eigenvalues of

ou;
ot

Then pg < py.

—dAui—mZ-uz-:,uiui, u; >0 1 =1,2.

3. MAIN RESULT

Consider system (1) and assumptions (2) and (3). We also assume:

H1) fi e C*22(Q x R x R3) for i = 1,2,3, where a € (0,1).
af1 dfs Ofs
H2) — <0, =— <0, =— <0
) bl a bl a
H3) fz(:vz,tz,O 0,0) > 0 for some z; € Q and t; € (0,T), for i = 1,2, 3.
H4) There exist k1, ko, k3 > 0 so that
fi(z, t,u,0,0) <0 if u>k
fo(z,t,0,v,0) <0 if v >k
Fa(@,1,0,0,w) <0 if w> ks
for any x € Q and t € [0, T
H5)
f1( t O,U,’ll)) > 0
fg( ),0,0,w) > 0
fg(x(Q),t(3),u,v,0) > 0
where (1, 22 2" 2(3) belong to Q, ¢/, t@&), ¢, t3) belong to R and w,
v, w are non-negative.
H6)

filz, tyu, v w*) <0 if u> K,
for some K, > 0, (z,t) € Q x (0,00), w* is defined below.

f2($7ta ¢17Ua0) <0 if v> K,
for some K, > 0, (z,t) € Q x (0,00), ¢1 is defined below.

fo(z,t,0,v,w*) <0 if v> K/,
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for some K', > 0, (z,t) € Q x (0,00), w* is defined below.
fa(z, t,u,v,w) <0 if w> Ky,
for some K, > 0, (z,t) € Q x (0,00),v* is defined below.

In order to define our first step in the iteration process, we restrict system (1)
to the cases when v = w =0 and u = v = 0. Then we get

(6) up —dy Au = ufi(z,t,u,0,0) in Q x (0,00)

u=20 on 99 x (0, 00).
and
) wy — dg Aw = wf3(z,t,0,0,w) in Q x (0,00)
w=0 on 09 x (0,00).
respectively.

According to Lemma 1, each of the previous equations possesses a unique
globally attracting positive T-periodic solution ¢ and ¢3, respectively if the
principal eigenvalues of

% —di Av—vfi(2,t,0,0,0) = p1(1,0,0,0)v in Q x (0, 00)
v=0 on 90 x (0, 00)
and
%—l: —dz3 Aw —wf3(x,t,0,0,0) = pu3,0,00)W in 2 x (0,00)
w=70 on 9N x (0, 00)

are both negative.
Similarly denote by v*, w*, us, v, the unique globally attracting positive-
periodic solutions to

®) vy —do Av =vfo(x,t, $1,v,0) in Q x (0,00)
v=0 on 99 x (0, 00)
wy —ds Aw = wfs(z,t, d1,0",w) in Q x (0, 00)

©) w=0 on 99 x (0, 00)
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up —dy Au=ufi(z,t,u, 0", w") in Q x (0,00)

10
(10 u=70 on 99 x (0, 00),

vy —do Av =vfo(x,t,0,0,w") in Q x (0,00)

(11) v=>0 on Q x (0,00).

Lemma 1 implies that these solutions exist if

1(2,61,00) < 05 B(3,61,0%,0) <0

1000w <0, and p2,0,0,0+) <0,

where these numbers denote the principal eigenvalues for the equations

0
S AS = hlt61,0.0f = pog 00
0 *
( ) a_‘i _d3Ag_f3(xat7¢1alu 70)g:/~L(3,¢1,’U*,0)g
12
oh * *
E — d1 Ah - fl(fE,t, O,U , W )h = /L(l,(],v*,w*)h
OF X
E — d2 AF — f2($,t,0, O,U) )F = /J(Q,U,O,w*)F

inQx(0,00)and f=0, g=0, h=0, F=0 on 92x(0,00), respectively.
We construct now via the following monotone iteration process a “rectangle”
which encloses the positive global attractor. We start this process with

(U(O),V(O),W(O)) — (p1,0",w") and (Q(O),K(O),MO)) = (s, Vs, b3) -

Then we solve for the positive T—periodic solutions for the following bound-
ary value problems:

7 _a,ar® =T,
f2
W‘Ek) _ dgAW(k) _ W(k)fg (x’t’ﬁ(kfl)’v(kfl)’W(k))

m,t,U(k) V(k—1)’m(k—1)>

(s 70y
(

9, (8,0, 79, re-1)

Vi — a a7 = 7
(13) _
U — a,au® = u® gy (a,1,00, 7
Vi — d,av® = v 0 py (2,0, 000, v, W

Egk) _ ds AW R = m(k)fB (x,t,Q(k_l),K(k_l),E(k))
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in 2 x (0,00) and

TW —7® _® g g® — y® — w® on 90

for K =1,2,.... It is easy to see that v < U(U), ©) < V(O) and W© <

W(O), which we denote by

(Q(U),K(U),E(O)) < (U(O),V(O),W(O)>,

<

using a comparison theorem for parabolic equations (Theorem 5.1 in [2] and
Theorem 10.1 in [7]) and the food chain conditions.

We need to prove that ﬁ(l), V(l), W(l), Q(l), K(l), and E(l) exist. First
of all, observe that

W(l) _ W(O) and UM =y®,
Let us prove that ﬁ(l) exists. According to Lemma 1, this is true if in

U, —di AY — fy (ZB, 1,0, vy, ¢3)\Il = M(1’07U*7¢3)\II

we have that the eigenvalue p1 04, ¢,) <0.
The food chain conditions imply that fi(z,t,0, v, ¢3) > f1(z,t,0,0*, w*).
Therefore,
N(1a07v*7¢3) < M(170’v*7w*).

We assumed that
H(1,0,0% w*) <0
to have the existence of Q(O). Hence U(l) exists. Similarly, we prove that V(l),
K(l) and E(l) exist since
Mo 00w @) <0

for both V(l) and V() and 1(3,0,0,0) < 0 for WM. Now we want to establish
the monotonicity relation
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Using the comparison theorem as above and food chain conditions, we
prove that

7O < 7O and 7O < 7O

as well as
VO <v® and wO <w®,

In order to prove the inequality in the middle, let us prove now that

v <y,

We have seen that

79 > u® and w© <« W,

Then
f2 (xataﬁ(o)av(l)am(())) > f2 (xatag(o)av(l)aW(O))

hence
v _g,avt s vy, (w,t, g<0>,v<”,W<°>) .

Therefore, again by the comparison theorem we have

v <7,

Similarly, we prove that w < W(l) and UM < U(l).
Inductively we can prove that

(Q(kq)’z(kq)’w(kfl)) < (g(k)’z(k)’m(k)) < (ﬁ(k),V(k),W(k)>
< (U(k—l) ’ L7a%a) ’ W(k—l))

in Q, for £ =1,2,.... This relation guarantees the existence of
(U,V,W) = lim (ﬁk)’ 7, W(’“))
k—o0
UV W) = Tim (U®, v, w®).
k—o00

Now we can state the main theorem of this paper.
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THEOREM 1. Consider the reaction-diffusion system (1), (2), (3), along
with conditions H1-H6. Also assume that
i) H(1,0,0,0) < 0 and p3,0,0,0) < 0 where these numbers denote the principle

eigenvalues of the linearized problems

% —di1Av —vfi(2,t,0,0,0) = 1(1,0,0,0)v in Q x (0,00)
v=0 on 99 x (0,00)
and
ow .
5 d3Aw — wf3(z,t,0,0,0) = i(3,0,0,0)w in Q x (0,00)
on 99 x (0,00)

w=20

1) £(2,61,00 < 05 BEg070) < 05 B0 we) < 05 f(200w) < 0 where
these numbers denote the principal eigenvalues for the equations

0
LA f ol t,1.0,0)f = jign 000 f

ot
9y .
d3Ag - f3($7ta ¢1alu 70)9 = H(3,41,0%,0)9

ot

ah * *

Frie dy Ah— fi(z,t,0,0", w*)h = M(l,o,u*,w*)h
oF "

E — dQ AF — fQ(fE,t, 0,0,’[1) )F = M(2’070’w*)F

in 2 x (0,00) and
f=0, g=0, h=0, F=0 on 99 x (0,00)
respectively. Then the reaction-diffusion system (1) possesses a positive

global attractor, namely,
S=[U,U]x[V,V] x [W,W].

Proof. We prove first that if (u,v,w) is a solution to (1), then there exists

gg > 0 such that

(I+eo)pr(z,t) > wu(z,t) > us(z,t) + &g
v*(z,t) > vz, t) > vz, 1)
w*(xat) Z w(x,t) Z ¢3($7t) + €0,
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For t large enough and z € €.
Let u be a solution to (6) such that
u(z,0) = u(zx,0).
We have that
w —dy Au=uf(z,t,u,0,0) > ufi(z,t,u,v,w) in Qx (0,00).

Therefore, u(z,t) > u(z,t) in Q x (0,00) by the comparison theorem.
Lemma 1 tells us that

Tim (161 8) = i, Ol ey = 0.
Therefore, given € > 0 there exists Ty(g) > 0 such that when ¢ > Ty(e),
0 <u(z,t) <u(z,t) < (1+¢e)pi(z,t), z € Q.

In order to prove that v*(x,t) > v(x,t), we need to consider the following
equation

P, — do AD = @fz(ib,t, (1 + 6)¢1, @,0)

Pick €9 > 0 such that the eigenvalue p (o (14¢)¢,,0,0) < 0, which is true since
111[(1]/1(2’(1+8)¢1’0’0) = li(2,4,,0,0) Dy lemma 15.7 in [3]. Then, there exists a
E—

T-periodic positive globally attracting solution V7 of
Dy — do AD = D fy(x,t, (1 +e0)p1,P,0).
Condition 3 implies that
(VZ), — AV = Vi fo(a,t, (1 + €)1, Veg, 0) > V7 fol, t,u, Vi, w)

Therefore V7 (z,t) > v(z,t) in Q x (Tp,00), if g — 0 then VI — v*,
so v*(z,t) > v(z,t) in Q and ¢ big enough. To take care of the inequality
w*(z,t) > w(z,t) we use our previous inequalities along with condition 3 to
have that

fa(z,t, (L +e)d1,v",w) > fa(x,t,u,v,w) in ©Q and ¢ big enough

As before pick g9 such that (3 (14c9)¢, 07,00 < 0 then there exists w*,,
solution to
q)t — dg(p = <I)f3(x, t, (1 + 6)¢1, ’U*, @)
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then w*.((z,t) > w(z,t) in (Tp, 00), moreover if ¢g — 0 then w? — w* then
w* > win Q x (T, 00).

Next, we prove that u(z,t) > u.(z,t), x € Q and ¢ big enough. Let u be
a solution to (10) such that u(z,0) = u(xz,0). We have that

ug — diAu > ufi(z, t,u, 0", w") in Q x (T, 00)

Therefore u(z,t) > u(z,t) in Q x (Th,00) again by comparison theorem.
Lemma 1 says that for g > 0 exists T3 such that [ju.(-,t) = u(-,?)llc1(q) < €0
then u(z,t) > u.(z,t) + o for t > max{Ty, T1}.

Now to prove v(z,t) > v, (z,t) in Q x (Ty,00) we have that

(v*)t — davy = U*fg(.’L‘,t, O,U*,w*) < U*fQ(.'L',t,U,’U*,UJ)

then v, (z,t) < wv(x,t) in Q x (Tp, 00).
Finally, let @ solution to (7) such that w(z,0) = @w(z,0) then

Wy — dzAw = /lbf3($7ta anallb) < ’lI)fg(ﬁE,t,u,’U,’lZ))

then w(z,t) < w(z,t) in Q x (0,00) by comparison. Then for ¢ there exists
T3 > 0 such that w(z,t) > ¢3(x,t) + € in Q x (T3, 00).
Now we want to establish that for £k =1,2,...,

TH (1) > uz,t) > UB (1)
(14) V@ t) > v t) > VE (1)
T @t) > wiat)> WP (1),

for £ € 2 and ¢ big enough.

Assume that the above inequality is true for k—1. We prove that g (z,t) >
u(z,t). N
To do this, let U be a solution to (13) (first equation) such that

u(z,0) = Uz, 0).
By hypothesis of induction, we have that
v(z,t) > VED(g,1) and w(z,t) > WED(z,¢)
so Uy — diAU = Ufy (m,t, ﬁ,K(kfl),ﬂ(kfl)) > Ufy (m,t, ﬁ,v,w). Then
w(z,t) < U(z,t) for z € Q and ¢ big enough.
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Lemma 1 implies that for ¢ > 0, there exists a ¢ big enough such that
~ —(k
10¢,6) =T Dl < e
Therefore,
w(z,t) < Uz, t) < o (z,t) forz € Q and ¢ big enough.

In a similar fashion, we get that

AR (z,t) > v(z,t) and w) (z,t) > w(z,t) for z € Q and ¢ big enough.
Now we prove w(z,t) > W) (z,t). We know that
w(z,t) > U* D (z,¢) and v(z,t) > VED(z,1)
then
wi = dyAw = wy(z.t,u,0,w) 2wy (2,604, 5D, w)
hence w(z,t) > WW®. Therefore, w(z,t) > W®¥(z,¢) for z € Q and

t big enough.
Similarly we prove the remaining inequalities, so we have

Vv
=
8
=
\Y
S
=
®
=

7™ (2, 1)
v® (z,t) > >V
W@t > wlat)> Wk (1),

Vv
=
8
=
Vv
<
=
®
=

for £ € 2 and ¢ big enough.
Letting £ tend to oo, we get

(U, V. W) > (u,0,w) > (U,V,W) in C'(Q).
Therefore, S is a global attractor of system (1). 1

Now we have some extinction results, which we state in the following.

THEOREM 2. Consider system (1) with conditions (2) and (3).
i) Assume conditions (H1)-(H6) and p(1,0,0,0) > 0, 4(2,0,0,0) > 0, 14(3,0,0,0) >

0, then every nonnegative solution to (1) converges to (0,0,0) in C(f2) as
t — oc.
ii) Suppose that p(1,0,0,0) > 0, #1(2,0,00) > 0 and pi(30,0,0) < 0, then every

nonnegative solution to (1) converges to (0,0, ¢3) in C(2) as t — oo.
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Proof. i) Let (u(z,t),v(z,t),w(x,t)) be a solution to (1) and u(z,t) a
solution to (6) such that u(z,0) = u(z,0). Again the comparison theorem
implies that u(z,t) < u(z,t).

Lemma 1 implies that u(z,t) — 0 uniformly in Q as ¢ — oo. Then
u(z,t) — 0 uniformly in Q as ¢ — oo. Similarly, we get that both v(x,t) and
w(z,t) converge to 0 uniformly in  as ¢t — oco. Therefore, (u(z,t),v(z,1),
w(z,t)) — (0,0,0) uniformly in Q as ¢t — oo.

ii) Let (u(z,t),v(x,t),w(z,t)) be a solution to (1). Arguing as in i) we
have that
u(z,t) — 0 and v(z,t) — 0 uniformly in . Now since pz00,0) < 0, we
have that W exists. Then, arguing as in Theorem 1, we get that w(z,t)
converges uniformly to ¢3 in 2. |

4. APPLICATIONS

In this final section we give an example to illustrate Theorem 1. Consider
the following reaction-diffusion system

up — diAu = u (a1 (z,t) — b1 (z,t)v — bia(z, t) — bis(z, t)w)
vy — doAv = v (ag(z,t) + bar(z, t)u — boa(x, t)v — bog(z, t)w) in Q x (0, 00)
wy — dsAw = w (az(z,t) + bs1(z,t)u + bsa(x, t)v — bss(x, t)w)
u=v=w=0 on 90 x (0, 00)

The functions a; and b;; are smooth non-negative periodic in ¢ functions
and 2 is a bounded smooth domain in R". As we mentioned in the Introduc-
tion, Feng [2] considered this system with non-negative constants a; and b;;.
In order to apply Theorem 1 to this system, we need to consider the following
eigenvalue problems associated when two species are absent,

pr — d1Ap — a1(z,t)p = fia, 0 in 2 x (0, 00)
=0 on 99 x (0, 00)

and

Py — d3Atp — ag(ﬂi,t)’(/) = a3 in €2 X (Oa OO)
Y=0 on 99 x (0, 00).



280 E.J. AVILA-VALES

In the case of one specie absent,

fo=d A f = (@r(z,1) = bia(a, OV (2, 8) = bW (1)) f
= Ma1—b12V(0)—b13W(0)'f

—(0
gt —do Ag— (ag(m,t) + 621(x,t)V( )(m,t)) 9=ty

=7(0
hy —da Ah — (a2($at) - b23(m7t)W( )(ZE,t)> h = Ma2_623w(0)h

By~ dy AF ~ (as(a, ) + by (3,07 () + bV (w,8)) F

V(O)‘g

= — —oF
Nlls +b31 U(O)ers:) V(O)

in 2 x (0,00) and
f=0, g=0, h=0, F=0 on 0% x (0,00)

Assuming the previous principal eigenvalues to be negative as well as condi-
tions H1I-H6, we get a global attractor for our system.

Remark. For the various estimates of the principal eigenvalue of periodic-
parabolic problems we refer to [4]. We have formulated the existence of a
global attractor in terms of the eigenvalue sign of some periodic-parabolic ei-
genvalue problem, raising the question of how temporal periodicity and spatial
heterogeneity interact to mediate coexistence. Thinking about such problems,
we are led immediately to analyze the relative contributions of space and time
to eigenvalues of the form pg(, 1), where g : Q x R — R is T-periodic in time.
Once again we refer to [4] for a valuable initial investigation of this topic, but
there remains much to be done in this direction in order for us to be able to
find answers regarding the interplay between temporal and spatial effects.
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