EXTRACTA MATHEMATICAE Vol. 14, Ntim. 2, 157161 (1999)

On the Anelastic Evolution of Second-Grade Materials

MARCELO EPSTEIN

Department of Mechanical and Manufacturing Engineering, The University of Calgary,
Calgary, Alberta T2N 1N4, Canada, e-mail: epstein@enme.ucalgary.ca

AMS Subject Class. (1991): 73B40, 73K20, 53C10

1. SECOND-GRADE MATERIAL POINTS

A second-grade material point is characterized by a constitutive equation
which depends upon the value of the 2-jet of the configuration at that point.
In fact, the constitutive behaviour depends on a pair of 2-jets: (i) the spatial
2-jet, from the material body B to its present spatial configuration, and (ii)
the material 2-jet, from the material body to a standard reference R?, which
we designate as a reference crystal. For convenience, the material jet will be
understood as going in the opposite direction, from R? to B, and evaluated at
the origin of R3. If the material jet remains constant throughout an interval
of time, we say that the point does not evolve during that period, and the
material response is elastic (provided, of course, that the constitutive law
depends only on the present value of the spatial jet). If, on the other hand,
the material jet changes with time, we have a case of anelastic evolution, such
as in the theory of plasticity. This is, naturally, a point-wise concept. In other
words, if a deformation of the reference crystal is given by a 2-jet {F?, H& ﬁ},
then there exists a fixed stored energy per unit volume of the reference crystal
given by:

W =W (Fy, Hyp)
With a global chart

ko : B — R

specified in the body, the constitutive equation at a point X € B is given by
the stored energy per unit volume of the chart as:
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(1) WO(FIZaH}JaX):JEI W(F}PCIWH}JPC{PB]_FFIZQéﬂ)

where Jp stands for the determinant of P, and {P!, Q! ﬂ} is the material jet
to the point X.

If, for the different points of the body, the right-hand side of this con-
stitutive law remains the same, except that the material jet {P,Q} depends
on the point, we say that the body is uniform [5, 6]: that is, all points are
modeled after one and the same constitutive law. It is only the way in which
the reference crystal is transplanted into the body, as it were, that changes
from point to point.

2. SECOND-GRADE SYMMETRIES

The reference crystal can be changed by simply specifying a local diffeo-
morphism of R? preserving the origin:

$: R =R {Z29) = $*{Z2°)) A,a=1,2,3
The 2-jet of this diffeomorphism is given by the quantities:
AA — 8¢A A 8¢A
@ 9ze TP T 9ZzB0Z
To any deformation Fz, Hi} g of the second reference crystal, there corres-

ponds a unique deformation F¢, Hiﬂ of the first, which can be obtained by
composition of jets as:

F. = FiAgH!; = HigAJAF + Fi B

a composition law that was already used in Equation (1) above.

A material symmetry, {G, S}, is a change of reference crystal leaving the
constitutive law unaffected, viz.:

W(F'H") = W(F,G.,, H,,GA,Gj + F;,Sgﬁ)

These symmetries form a group, whose group operation is the composition
of 2-jets, whose neutral element is {I,0}, and whose inverse operation is given
by:

{G.8} 1 (G, =85 (GTHEG NG
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3. AN IMPORTANT EXAMPLE

In [2] we have given a classification of second-grade symmetries. Symmet-
ries of the type {G,0}, also called Toupin symmetries, are nothing but or-
dinary first-grade symmetries. An important example of a legitimate second-
grade symmetry is provided by the dependence of the constitutive law on the
spatial gradient of the density. This is formally the second-order counterpart
of fluidity, but it should be remembered that we are not assuming anything
as to the first-grade symmetries. In fact, to make matters simpler and more
focused, we may assume that the material is a triclinic solid as far as the first-
grade behaviour is concerned. A careful calculation [1] shows that a material
whose second-grade behaviour is characterized by a dependence on the spatial
density gradient enjoys the following symmetry:

{{1,5} ] Sq5 = 0}

that is, the set of all traceless third-order symmetric matrices. Such symmet-
ries form a commutative (additive) group.

4. THE ESHELBY TENSORS

With the stored energy function given, one can proceed to calculate the
Piola-Kirchhoff stresses by differentiation in a given chart with respect to the
spatial jet:

oW, oW,

I _ 0 IJ _ 0

W=or T am
1 J

Similarly, by differentiation with respect to the material jet [3] we obtain
the hybrid Eshelby tensors:

po _ W

I — 6Pa] I

If we adopt a reference crystal instantaneously coinciding with the chart,
we obtain the purely configurational Eshelby tensors [4]:

b = bPP! + B Qs = —Wodl + T, F} + 21,7 Hi

bIJK _ b]aﬂP(;IPBI( — TvZJKFIz
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On the other hand, if we adopt a chart whose 2-jet at a point instant-
aneously coincides with a given fixed reference crystal, we obtain the purely
material Eshelby tensors at that point as:
by

e}

— IR0 PR Qi e
boo? = Jpb ! P PP TP

5. EVOLUTION LAWS

We consider possible evolution laws given by first-order differential equa-
tions and driven by the present values of the transplant maps and by the
Eshelby tensors, recognizing that other possible driving forces could be con-
sidered. We have, therefore,

PpL = pr(leabIJKapqu éﬁ) and Q,];U = gpLa(bIJa bIJKa Pclw éﬁ)

where a superimposed dot denotes time derivatives. The functions f and g
cannot be completely arbitrary, but must be subjected to certain restrictions
which we presently determine. The first such restriction emanates from the
fact that a proper evolution law must, in some sense, be independent of the
chart. Choosing, then, a chart that instantaneously coincides with the refer-
ence crystal, namely, one for which {P,Q} = {Py,Qo} = {I,0}, we obtain as
time derivatives the values:

: g : i : :
Bo=P PRl and Qs =P Qi — QpsPla— Qiplyp)

These quantities represent some kind of inhomogeneity velocity gradients at
the reference crystal level. Invoking the above stated invariance, we conclude
that the evolution laws must be given by some function f} and gh, connecting
those gradients to the material Eshelby tensors in the form:

P(fp = fﬁ(boﬁaa boﬁg) and Qgpa = gffa(boﬂaa boﬂg)
Further reductions of the evolution laws can be obtained by considerations
of material symmetry. These reductions are of two kinds. The first repres-

ents the fact that two evolution laws that differ by constant or time-varying
members of the symmetry group of the crystal of reference must be regarded
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as equivalent. This leads to the following principle of actual evolution: for
an evolution law to represent an actual physical evolution, rather than just
a rearrangement within the symmetry group, at least one of the constitutive
functions f or g must have a non-vanishing component lying outside of the
Lie algebra of the symmetry group. In our example, this translates into the
statement that the evolution law must prescribe a non-zero trace for g.

The second kind of restrictions arising from material symmetry, consists
of imposing conditions of invariance under symmetry transformations of the
reference crystal. For our example it appears [1] that the functions f can-
not depend on their first argument, whereas there are no further restrictions
imposed on the functions g. Further restrictions on the evolutions laws may
stem from the application of the thermodynamic dissipation inequality.
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