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1. INTRODUCTION

The work of E. Cartan in classifying Hermitian symmetric spaces [1] showed
that every n-dimensional non-compact symmetric space B has a compact sym-
metric space ‘dual’ M with B C C* C M. In one dimension, for example,
we have A C C C C where A is the open unit disc and C = C U {oo} is
the Riemann sphere. Other examples of compact symmetric spaces are given
by Grassmann manifolds. Indeed, Loos [6] gave an alternative description of
the compact symmetric spaces using a Grassmann-like construction defined
in terms of a Jordan theoretic quasi-inverse. The Jordan structure involved is
that of a JB*-triple (although Loos phrased his construction in terms of the
more general Jordan pairs). In infinite dimensions, the work of Kaup [4, 5]
shows that JB*-triples precisely characterise the bounded symmetric domains
(the infinite dimensional analogues of the non-compact symmetric spaces) and
that the non-compact/compact duality of finite dimensions is replaced by a
duality between bounded symmetric domains and simply connected symmet-
ric manifolds of compact type. In summary each bounded symmetric domain
B may be realised as the open unit ball of a JB*-triple Z and there is a unique
simply connected symmetric manifold of compact type My associated with Z
so that we have B C Z C Mk.

The quasi-inverse construction mentioned above can be made for an ar-
bitrary JB*-triple Z to give a complex manifold Mg modeled on Z [3, 6]
which we term the quasi-invertible manifold of Z. In this note, we report on
the relationship between the compact type symmetric manifold, Mg, and the
quasi-invertible manifold, Mg, associated to a JB*-triple Z and indicate how
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this relationship may be used to prove facts about both manifolds. Additional
details and proofs will appear in [7].

In [2], it is shown that whenever Z sits densely in M (we say Z has the
density property), the quasi-invertible manifold is a homogeneous manifold. In
fact, the density property has a much stronger consequence, namely that Mg
turns out to be a symmetric manifold of compact type, and so the universal
covering manifold of M is precisely M.

Throughout, we use ‘manifold’ to mean ‘complex Banach manifold’. A
biholomorphic map ¢ on a manifold M carrying a tangent norm is a sym-
metry at the point m € M if g-! = g, m is an isolated fixed point of g
and g is an isometry with respect to the tangent norm on M. A manifold is
called symmetric if there is a symmetry at every point. We refer to [9] for a
comprehensive introduction to symmetric manifolds.

By Kaup [5], every bounded symmetric domain is biholomorphically equi-
valent to the open unit ball of a JB*-triple, and for each JB*-triple there
is a unique simply connected symmetric manifold of compact type, Mk.
A JB*-triple is a complex Banach space Z with a real trilinear mapping
{,'}: Z X Zx Z — Z satisfying

(i) {z,y,2} is complex linear and symmetric in the outer variables z and
z, and is complex anti-linear in y.

(ii) The map z +— {z,z, 2}, denoted zOz, is Hermitian, o(z0Ox) > 0 and
|lz0 z| = ||z||? for all z € Z, where o denotes the operator spectrum.

(iii) The product satisfies the following “triple identity”
{a,b,{z,y,2}} = {{a,b,2},y, 2} — {z,{b,a,y}, 2} + {z,y,{a, b, 2}}.

Important algebraic operators in the theory are z0 y, where z0 y(2) = {z,y, 2z},
the quadratic operator @, given by Q(y) = {z,y, z} and the Bergmann oper-

ator B(z,y) = I—-2z0y+Q;Qy. The Bergmann operators are used in the con-

struction of the quasi-invertible manifold as follows. The pair (z,y) € Z X Z

is said to be quasi-invertible if B(z,y) is an invertible operator in £(Z). If

(z,y) is quasi-invertible, let

¥ = B(z,y) ' (z — Quy)

and call z¥ the quasi-inverse of x with respect to y. On Z x Z define the
equivalence relationship ~ by (z,y) ~ (x1,y1) if, and only if, (z,y — y1) is
quasi-invertible and z; = z¥7¥%. The equivalence class containing (z,y) is
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denoted by (z : y). For each y in Z, let Uy = {(z : y) : * € Z} and define
¢y : U, = Z by ¢py(x :y) = z. Let Mg = Z X Z/, be the set of all equivalence
classes. Then, with respect to the charts {(Uy, ¢y, 2) : y € Z}, Mg has the
structure of a connected complex Banach manifold [6].

2. JB*-TRIPLES WITH THE DENSITY PROPERTY

In this section, we assume that the JB*-triple Z has the density property,
that is, the open subset {(z : 0) : z € Z} of M (identified with Z) is dense
in Mg. Consequently, [2, Theorem 5.3] the translation map t.:2z — 2z + ¢
on Z extends to a biholomorphic map on Mg which we also denote by 2.
The linear operator B(z,—z)% is defined on Z via the functional calculus
(B(z,—z) has strictly positive spectrum [5]) and extends to a biholomorphic
map on Mg via B(z, —z)%(:v cy) = (B(z, —z)%x : B(z,—z)_%y). We may
therefore consider for any z € Z, the biholomorphic map on Mg given by
g. = t,B(z, —z)%fz, where , : Mg — Mg is the biholomorphic ‘quasi-inverse’
map (z:y) — (z:y+ 2).

Let P be the subset {g. : ¢ € Z} of biholomorphic maps on M. Since
(z : y) = gygu(0 : 0) where u = B(y, —y)%x —y, Mg is homogeneous under
the group generated by P and these mappings can be used to endow Mg
with a symmetric structure. We recall that the “Mobius” maps {g. : ¢ € Z}
are used in [5] to construct the compact type symmetric manifold of Z. On
the JB*-triple Z, the surjective linear isometries coincide with the algebraic
isomorphisms [5] and we denote these by Aut (Z). Every element of the group
K := Aut (Z) easily extends to give a biholomorphic map on Mg [6].

PROPOSITION 2.1. Let Z be a JB*-triple with the density property. There
exists a norm <y on the tangent bundle of the quasi-invertible manifold Mg such
that every element of P and every element of K is a y-isometry. Moreover,
the group of all biholomorphic ~y-isometries is precisely G := K P where P is
the group generated by P.

The tangent norm  in Proposition 2.1 is given by

V(2 9),0) = | (9-ug—y)(z : y)ol|
= || B(u, —u) "2 B(u, y) B(y, —y) v

for (z : y) € Mg and v € T(4,y) Mg where u = u(z,y) := B(y, —y)%x —y.
The main obstacle to be overcome in the proof of Proposition 2.1 is that of
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showing ~y is well-defined. This turns out to be a consequence of the following
lemma.

LEMMA 2.2. For a and b in Z with g,(b) € Z, we have
B(ga(b), —ga(b)) = B(a, —a)? B(b,a)~' B(b, —b) B(a, b) "' B(a, —a)?.

Equipped with Proposition 2.1, one can then show that Mg is a symmetric
Banach manifold modeled on Z. Moreover, it follows from Kaup’s classifica-
tion and the fact that the group of all biholomorphic isometries of Mg has
the form G = KP that Mg must be of compact type. Taking the universal
covering manifold of Mg ensures it is simply connected and we have:

COROLLARY 2.3. If the JB*-triple Z has the density property then the
quasi-invertible manifold Mg is a compact type symmetric Banach manifold
and its associated JB*-triple is Z. The unique compact type symmetric man-
ifold of Z is therefore the universal covering manifold of My,.

3. THE GENERAL CASE

Henceforth, we no longer assume that the JB*-triple in question has the
density property. The unique simply connected compact type symmetric man-
ifold Mg of a JB*-triple Z is defined by Kaup [5] to be the universal cover-
ing manifold of a previously constructed symmetric manifold N. By Kaup’s
construction, the group G = K P from above also acts transitively on this
symmetric manifold V. As the definition and construction of Mk and N in
[5] are quite intricate, we do not reproduce them here. Referring therefore to
[5], we show how to embed Mg into N, thereby relating Mg and My.

LEMMA 3.1. Let z,y,z’ and y' be elements of an arbitrary JB*-triple, Z.
Suppose (z : y) = (¢' : ¢') in Mg. Let u = u(z,y) and v’ = u(z’,y’). Then,
in the symmetric manifold N of [5], g,(u) = g, (u').

This lemma allows one to unambiguously define the map J: Mg — N,
J(z : y) = gy(u(z,y)) for z and y in Z. Moreover, one can show that J is
injective, holomorphic and its range is the open subset {g,(b) : a,b € Z} of
N. Also, J ':J(Mg) — Mg is holomorphic and so M is biholomorphic-
ally equivalent to an open submanifold of the symmetric manifold N. This
means that Mg inherits some of the properties of the compact type symmetric
manifold N. For example, the natural tangent norm of N induces a tangent
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norm on any open submanifold, in particular on M. It has been proved that
M (and hence N) has constant positive holomorphic curvature [8] and since
holomorphic curvature is a local property, the inherited norm on Mg must
also have the same property.

COROLLARY 3.2. The quasi-invertible manifold, Mg, carries a tangent

norim.

COROLLARY 3.3. Mg has constant positive holomorphic curvature.
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