The Quasi-Invertible Manifold of a JB^* -Triple †

M. MACKEY AND P. MELLON

Dept. of Mathematics, University College Dublin, Ireland.

(Research announcement presented by A. Rodríguez Palacios)

AMS Subject Class. (1991): 17C36, 46G20

Received December 12, 1998

1. Introduction

The work of E. Cartan in classifying Hermitian symmetric spaces [1] showed that every n-dimensional non-compact symmetric space B has a compact symmetric space 'dual' M with $B \subset \mathbb{C}^n \subset M$. In one dimension, for example, we have $\Delta \subset \mathbb{C} \subset \mathbb{C}$ where Δ is the open unit disc and $\mathbb{C} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere. Other examples of compact symmetric spaces are given by Grassmann manifolds. Indeed, Loos [6] gave an alternative description of the compact symmetric spaces using a Grassmann-like construction defined in terms of a Jordan theoretic quasi-inverse. The Jordan structure involved is that of a JB*-triple (although Loos phrased his construction in terms of the more general Jordan pairs). In infinite dimensions, the work of Kaup [4, 5] shows that JB^* -triples precisely characterise the bounded symmetric domains (the infinite dimensional analogues of the non-compact symmetric spaces) and that the non-compact/compact duality of finite dimensions is replaced by a duality between bounded symmetric domains and simply connected symmetric manifolds of compact type. In summary each bounded symmetric domain B may be realised as the open unit ball of a JB^* -triple Z and there is a unique simply connected symmetric manifold of compact type M_K associated with Zso that we have $B \subset Z \subset M_K$.

The quasi-inverse construction mentioned above can be made for an arbitrary JB^* -triple Z to give a complex manifold M_Q modeled on Z [3, 6] which we term the quasi-invertible manifold of Z. In this note, we report on the relationship between the compact type symmetric manifold, M_K , and the quasi-invertible manifold, M_Q , associated to a JB^* -triple Z and indicate how

 $^{^\}dagger {\rm The~first~author~was~supported}$ by Forbairt basic research grants ${\rm SC}/95/405$ and ${\rm SC}/97/614$

this relationship may be used to prove facts about both manifolds. Additional details and proofs will appear in [7].

In [2], it is shown that whenever Z sits densely in M_Q (we say Z has the density property), the quasi-invertible manifold is a homogeneous manifold. In fact, the density property has a much stronger consequence, namely that M_Q turns out to be a symmetric manifold of compact type, and so the universal covering manifold of M_Q is precisely M_K .

Throughout, we use 'manifold' to mean 'complex Banach manifold'. A biholomorphic map g on a manifold M carrying a tangent norm is a symmetry at the point $m \in M$ if $g^{-1} = g$, m is an isolated fixed point of g and g is an isometry with respect to the tangent norm on M. A manifold is called symmetric if there is a symmetry at every point. We refer to [9] for a comprehensive introduction to symmetric manifolds.

By Kaup [5], every bounded symmetric domain is biholomorphically equivalent to the open unit ball of a JB^* -triple, and for each JB^* -triple there is a unique simply connected symmetric manifold of compact type, M_K . A JB^* -triple is a complex Banach space Z with a real trilinear mapping $\{\cdot,\cdot,\cdot\}:Z\times Z\times Z\to Z$ satisfying

- (i) $\{x, y, z\}$ is complex linear and symmetric in the outer variables x and z, and is complex anti-linear in y.
- (ii) The map $x \mapsto \{x, x, z\}$, denoted $x \square x$, is Hermitian, $\sigma(x \square x) \ge 0$ and $||x \square x|| = ||x||^2$ for all $x \in Z$, where σ denotes the operator spectrum.
- (iii) The product satisfies the following "triple identity"

$${a,b,\{x,y,z\}} = {\{a,b,x\},y,z\} - \{x,\{b,a,y\},z\} + \{x,y,\{a,b,z\}\}.$$

Important algebraic operators in the theory are $x \square y$, where $x \square y(z) = \{x, y, z\}$, the quadratic operator Q_x given by $Q_x(y) = \{x, y, x\}$ and the Bergmann operator $B(x, y) = I - 2x \square y + Q_x Q_y$. The Bergmann operators are used in the construction of the quasi-invertible manifold as follows. The pair $(x, y) \in Z \times Z$ is said to be quasi-invertible if B(x, y) is an invertible operator in $\mathcal{L}(Z)$. If (x, y) is quasi-invertible, let

$$x^y = B(x, y)^{-1}(x - Q_x y)$$

and call x^y the quasi-inverse of x with respect to y. On $Z \times Z$ define the equivalence relationship \sim by $(x,y) \sim (x_1,y_1)$ if, and only if, $(x,y-y_1)$ is quasi-invertible and $x_1 = x^{y-y_1}$. The equivalence class containing (x,y) is

denoted by (x:y). For each y in Z, let $U_y = \{(x:y): x \in Z\}$ and define $\phi_y: U_y \to Z$ by $\phi_y(x:y) = x$. Let $M_Q = Z \times Z/_{\sim}$ be the set of all equivalence classes. Then, with respect to the charts $\{(U_y, \phi_y, Z): y \in Z\}$, M_Q has the structure of a connected complex Banach manifold [6].

2. JB^* -Triples with the density property

In this section, we assume that the JB^* -triple Z has the density property, that is, the open subset $\{(x:0):x\in Z\}$ of M_Q (identified with Z) is dense in M_Q . Consequently, [2, Theorem 5.3] the translation map $t_c\colon z\mapsto z+c$ on Z extends to a biholomorphic map on M_Q which we also denote by t_c . The linear operator $B(z,-z)^{\frac{1}{2}}$ is defined on Z via the functional calculus (B(z,-z) has strictly positive spectrum [5]) and extends to a biholomorphic map on M_Q via $B(z,-z)^{\frac{1}{2}}(x:y)=(B(z,-z)^{\frac{1}{2}}x:B(z,-z)^{-\frac{1}{2}}y)$. We may therefore consider for any $z\in Z$, the biholomorphic map on M_Q given by $g_z=t_zB(z,-z)^{\frac{1}{2}}\tilde{t}_z$, where $\tilde{t}_z:M_Q\to M_Q$ is the biholomorphic 'quasi-inverse' map $(x:y)\mapsto (x:y+z)$.

Let P be the subset $\{g_c : c \in Z\}$ of biholomorphic maps on M_Q . Since $(x : y) = g_y g_u(0 : 0)$ where $u = B(y, -y)^{\frac{1}{2}}x - y$, M_Q is homogeneous under the group generated by P and these mappings can be used to endow M_Q with a symmetric structure. We recall that the "Möbius" maps $\{g_c : c \in Z\}$ are used in [5] to construct the compact type symmetric manifold of Z. On the JB^* -triple Z, the surjective linear isometries coincide with the algebraic isomorphisms [5] and we denote these by Aut(Z). Every element of the group K := Aut(Z) easily extends to give a biholomorphic map on M_Q [6].

PROPOSITION 2.1. Let Z be a JB^* -triple with the density property. There exists a norm γ on the tangent bundle of the quasi-invertible manifold M_Q such that every element of P and every element of K is a γ -isometry. Moreover, the group of all biholomorphic γ -isometries is precisely $G := K\hat{P}$ where \hat{P} is the group generated by P.

The tangent norm γ in Proposition 2.1 is given by

$$\gamma((x:y),v) := \|(g_{-u}g_{-y})'(x:y)v\|$$
$$= \|B(u,-u)^{-\frac{1}{2}}B(u,y)B(y,-y)^{-\frac{1}{2}}v\|$$

for $(x:y) \in M_Q$ and $v \in T_{(x:y)}M_Q$ where $u = \mathbf{u}(x,y) := B(y,-y)^{\frac{1}{2}}x - y$. The main obstacle to be overcome in the proof of Proposition 2.1 is that of

showing γ is well-defined. This turns out to be a consequence of the following lemma.

LEMMA 2.2. For a and b in Z with $g_a(b) \in Z$, we have

$$B(g_a(b), -g_a(b)) = B(a, -a)^{\frac{1}{2}}B(b, a)^{-1}B(b, -b)B(a, b)^{-1}B(a, -a)^{\frac{1}{2}}.$$

Equipped with Proposition 2.1, one can then show that M_Q is a symmetric Banach manifold modeled on Z. Moreover, it follows from Kaup's classification and the fact that the group of all biholomorphic isometries of M_Q has the form $G = K\hat{P}$ that M_Q must be of compact type. Taking the universal covering manifold of M_Q ensures it is simply connected and we have:

COROLLARY 2.3. If the JB^* -triple Z has the density property then the quasi-invertible manifold M_Q is a compact type symmetric Banach manifold and its associated JB^* -triple is Z. The unique compact type symmetric manifold of Z is therefore the universal covering manifold of M_Q .

3. The general case

Henceforth, we no longer assume that the JB^* -triple in question has the density property. The unique simply connected compact type symmetric manifold M_K of a JB^* -triple Z is defined by Kaup [5] to be the universal covering manifold of a previously constructed symmetric manifold N. By Kaup's construction, the group $G = K\hat{P}$ from above also acts transitively on this symmetric manifold N. As the definition and construction of M_K and N in [5] are quite intricate, we do not reproduce them here. Referring therefore to [5], we show how to embed M_Q into N, thereby relating M_Q and M_K .

LEMMA 3.1. Let x, y, x' and y' be elements of an arbitrary JB^* -triple, Z. Suppose (x : y) = (x' : y') in M_Q . Let $u = \mathbf{u}(x, y)$ and $u' = \mathbf{u}(x', y')$. Then, in the symmetric manifold N of [5], $g_y(u) = g_{y'}(u')$.

This lemma allows one to unambiguously define the map $J: M_Q \to N$, $J(x:y) = g_y(\mathbf{u}(x,y))$ for x and y in Z. Moreover, one can show that J is injective, holomorphic and its range is the open subset $\{g_a(b): a, b \in Z\}$ of N. Also, $J^{-1}: J(M_Q) \to M_Q$ is holomorphic and so M_Q is biholomorphically equivalent to an open submanifold of the symmetric manifold N. This means that M_Q inherits some of the properties of the compact type symmetric manifold N. For example, the natural tangent norm of N induces a tangent

norm on any open submanifold, in particular on M_Q . It has been proved that M_K (and hence N) has constant positive holomorphic curvature [8] and since holomorphic curvature is a local property, the inherited norm on M_Q must also have the same property.

COROLLARY 3.2. The quasi-invertible manifold, M_Q , carries a tangent norm.

Corollary 3.3. M_Q has constant positive holomorphic curvature.

References

- [1] Cartan, E., Sur les domaines bornés homogènes de l'espace de n variables complexes, Abh. Math. Semin. Univ. Hamburg, 11 (1935), 116-162.
- [2] DINEEN, S., MACKEY, M., MELLON, P., The density property for JB^* -triples, preprint.
- [3] DORFMEISTER, J., Algebraic systems in differential geometry, in "Jordan Algebras", edited by W. Kaup, K. McCrimmon and H. P. Petersson, Oberwolfach, Germany, Walter de Gruyter, 1982, 9-33.
- [4] KAUP, W., Algebraic characterization of symmetric complex Banach manifolds, *Math. Ann.*, **228** (1977), 39-64.
- [5] KAUP, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, *Math. Z.*, **138** (1983), 503-529.
- [6] LOOS, O., "Bounded Symmetric Domains and Jordan Pairs", University of California at Irvine, Lecture Notes, 1977.
- [7] MACKEY, M., "JB*-Triples and Associated Manifolds", Ph.D. thesis, University College, Dublin, in preparation.
- [8] Mellon, P., Holomorphic curvature of infinite dimensional symmetric complex Banach manifolds of compact type, Ann. Acad. Sci. Fenn. Math., 18A (1) (1993), 299-306.
- [9] UPMEIER, H., "Symmetric Banach Manifolds and Jordan C*-Algebras", North-Holland, Amsterdam, 1985.