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1. INTRODUCTION

Let L be an ample line bundle on a complex connected projective smooth
surface X and let c(J1(L)) stand for the degree of the second Chern class of
the first jet bundle J;(L) of L. In the classical case when L is very ample,
ca(J1(L)) is the class m of X (embedded via L), i.e. the degree of the dual
variety of X. Still in the very ample case, if (X, L) is not a scroll the classifica-
tion of such pairs is known for m < 25 (Marchionna and Gallarati [5, p. 195]
and [12, Proposition 3.2]). Moreover the only pairs (X, L) with class m < 29
are polarized ruled surfaces and if m < 11 we only have (P?, Op:(e)),e = 1,2
(apart from scrolls).

In this paper L is only assumed to be ample, and, in section 4, we classify
pairs (X, L) for small values of ¢;(J1(L)) (Theorem 4.1). The situation is very
different from the classical case since even for c,(J;(L)) = 5 we find a non
ruled surface. This classification result is gotten by studying the difference
¢c2(J1(L)) — L? in line with the classical papers by Marchionna and Gallarati.

Some of the non ruled surfaces which appear in the classification are more
closely described in section 5.

During the preparation of this paper the authors were partially supported
by the M. E. C. and the M.U.R.S.T. in the framework of the Italian-Spanish
project 100-B.

2. NOTATION AND BACKGROUND MATERIAL

2.1.  Throughout the whole paper X will be a complex connected projec-
tive smooth surface and L will stand for an ample line bundle on X.
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2.2. NOTATION. The Chern classes of a complex vector bundle E on X
will be denoted by c¢;(E) and c;(X) will represent the second Chern class of
the holomorphic tangent bundle of X. We shall also write ¢, (E) for its degree.
The canonical line bundle of X will be denoted by Kx, the irregularity of X by
g = g(X), its geometric genus by p, = p,(X), the Kodaira dimension of X by
%(X), the intersection index of two line bundles (or two divisors) A and B on
X simply by AB and we shall write A> = AA. By Ajc we mean the line bundle
A restricted to a curve C on X. We shall not distinguish between line bundles,
invertible sheaves and divisors and thus we shall use additive notation even for
line bundles; in particular A = B will mean that two divisors corresponding to
A and B respectively are numerically equivalent. If V' is a vector subspace of
H°(X,L), |V| will stand for the linear system corresponding to the elements
of V; we shall write |L| instead of |H°(X, L)|. Furthermore

L>+ LKy

(1) g=9(L)=1+—F

will stand for the arithmetic genus of the ample line bundle L.

By Bp,,..p.(X) we shall denote X blown up at a finite set Py,.., P, of
possibly infinitely near points of X.

For a polarized pair (X,L), in case X = Bp,, p (X) with X minimal,
n : X — X will always denote the birational morphism onto the minimal
model; note that the line bundle I on X defined by L = *L is ample. The
polarized pair (X, L) will be called a minimal pair of (X, L).

2.3. THE FIRST JET BUNDLE J;(L) oF L. By J;(L) we will denote the
first jet bundle of L. Its detailed construction can be found in [6, Ch. 1] and
also [2, 1.6.3]. Locally near a point z € X, a section of J;(L) is given by a
pair (s, ds), where s is a local section of L and ds is the differential of s with
respect to local coordinates around z. The map sending (s,ds) to s defines a
bundle homomorphism J; (L) — L giving rise to the following exact sequence

([2, p.28))
(2) 0-Tx®L— Ji(L)>L—0,
where Ty stands for the cotangent bundle of X.

The exact sequence (2) immediately gives c;(J; (L)) = cp(X)+2Kx L+3L?
and so
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(3) ca(Ji (L)) = L? = co(X) + 2(Kx L + L?) = co(X) +4(g — 1).

In the particular case when L is a very ample line bundle identify X with
its image in PV, N 4+ 1 =dimH°(X, L), via the embedding associated with L
and think of the linear system |L| corresponding to the elements of H°(X, L)
as the hyperplane linear system of X. Consider also the dual variety D(X) of
X, i.e., the set of points of |L| corresponding to the tangent hyperplanes and
assume that (X, L) # (P?, Opz(1)). It is known that cy(Jy(L)) is the degree
of D(X), i.e., the class m of X ([2, Remark 1.6.11] see also [10, (0.4)]). This
is the reason why, in the general case when L is only assumed to be ample,
co(J1(L)) will be called the generalized class of (X, L).

2.4. SPECIAL SURFACES. A pair (X, L) is said a scroll if X has a P'-
bundle structure and for any fibre f we have Lj; = Op:1(1); a conic bundle
(X, L) is a IP'-bundle, possibly blown up at a finite set of distinct points, such
that L)y = Op:(2) for the general fibre f; the pair (X, L) is said to be a Del
Pezzo pair if L = —Kx. (

A minimal model # P? of a ruled surface will be denoted by X,.. It is
a P'-bundle p : X, — C over a nonsingular curve C of genus ¢ = h'(Ox)
and X, = P(F) for a rank-2 locally free sheaf F' on C. We can choose F
in such a way that there exists a section Cj of p of minimal self intersection
CZ = —e =degF for which Num(X,) = Z[Cy] ® Z[f], f being a fibre of p.
We shall write L = aCj + bf to mean that any divisor on X, corresponding
to the line bundle L is numerically equivalent to aCy + bf. Recall that ([4,
Propositions 2.18, 2.21]) the ampleness of L is equivalent to

(4) a>0andb>aeif620,a>0andb>%ife<0.

Remark. By recalling the topological Euler characteristic of the minimal
models of the surfaces, we immediately get:

e if K(X) = —oo and the minimal model is P?, then czv(X) >3;
e if K(X) = —oo and the minimal model is not P2, then c,(X) > 4(1 — q);

e if kK(X) = 0 and the minimal model is a K3 surface, then c,(X) > 24;
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e if K(X) = 0 and the minimal model is an Enriques surface, then c,(X) >
12;

e if K(X) = 0 and the minimal model is either bielliptic or abelian, then
c2(X) > 0;

o if kK(X) =1, then c(X) > 12x(Ox) with x(Ox) > 0.

3. PRELIMINARY RESULTS

In the classical case when L is very ample Marchionna proved the inequal-
ity m — L? > —1 for the class m of X and the cases m — L? = —1,0 were
characterized by Marchionna himself and by Gallarati ([5, p. 195]). In view of
what we said in 2.3 the following known facts generalize those clasical results
in the wider context of ample divisors.

THEOREM 3.1. ([9, Proposition A.1]) Let things be as in 2.1. Then c,(J; (L))
> L? — 1. Moreover '

1) ea(Ji(L)) = L2 — 1 if and only if (X, L) = (P, Opz(e)), e = 1,2;
2) ¢y(J1(L)) = L? if and only if (X, L) is a scroll.

More recently the first author pointed out the following facts ([10, Propo-
sition 1.4 and Theorem 1.6])

PROPOSITION 3.2. Let things be as in 2.1 and assume that c,(J;(L)) —
L?> >0 and g > 2. Then c;(J1(L)) — L* > 2g equality holding if and only if
either '

a) X = X_, is a minimal ruled surface of invariante = —1,q=1,g = 2
and L = 3C, — f;

b) X = X, is a minimal ruled surface of invariante, —q < e < 0,9 =2¢ >0
and L=2C, + (e+1)f;

¢) X is a minimal surface endowed with an elliptic fibration X — P!, q =1,
p, =0, g =2, L? =1 (more details on the multiple fibres can be found
in [1, Theorem 1.5]);

d) X is the Jacobian of a smooth curve C of genus 2,L is numerically
equivalent to C embedded in X, g =2, L? =2, h%(L) = 1;



ON POLARIZED SURFACES 375

e) X is the product of two elliptic curves, L is numerically equivalent to
the sum of the factors, g = 2, L? = 2, h°(L) = 1; or

f) X is a minimal hyperelliptic surface; if § stands for the reduced compo-
nent of the curve of maximal multiplicity of the rational pencil of elliptic
curves and if C is a fibre of the Albanese map, then nL is numerically
equivalent to rC + sf, r,s integers, rs = n = 1,2,3, g = 2, L? = 2,
h°(L) = 1.

In the sequel when classifying pairs (X, L) with small values of the differ-
ence cy(Jy (L)) — L? , we shall need the following

PROPOSITION 3.3. Let things be as in 2.1 and g < 1, then the pair (X, L)
is as in the following table:

Lea(L(L) — L | (X,L) | ¢ | I |

-1 (P%, Opz2(e)),e = 1,2 0 1,4

0 scroll q=0,1

1,2 do not exist

3 (P%, Op2(3)) 1 9

4 (Xo,—Kx,) withg=10 1 8

X = Bp,.rnP),L =

S+ Ky, r=1,...,8 Lo ]9=r

Proof. By recalling the structure of pairs (X, L) with g < 1 ([8, Corollaries
2.3 and 2.3]), the result immediately follows from Theorem 3.1. |

4. POLARIZED PAIRS WITH GENERALIZED CLASS c3(J1(L)) <9

Let things be as in 2.1. In the classical case when L is very ample the
pairs (X, L) with class m = ¢(J1(L)) < 29 are all polarized ruled surfaces
and if m = ¢;(J;(L)) < 11 we only have scrolls or (P2, Opz(e)), e = 1,2 ([12,
Proposition 3.2 and Theorem 3.4]). The situation becomes far richer when L
is only assumed to be ample, as shown by the following theorem which is the
main result of the paper.
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THEOREM 4.1. Let things be as in 2.1 and assume that (X, L) is not a
scroll. If ¢y (J;1 (L)) < 9, then the pair (X, L) is as in the following table:

| e2(4i(L)) | _ (X,L) | g |

0 : (P2, Op=(1)) 0

3 (P2, Op=(2)) 0

5 asin 3.2 ¢) 2

6 asin 3.2d), 3.2 ), 3.2 f), orvthe minimal palr is as in 9
3.2d), 3.2 1) and X = Bp(X)

6 the minimval pairis X = X_;,¢=1,L =5C, — f and 9
X = Bp(X)

6 the minimal pair is X = Xo,¢g =1,L = 5Cp + f and 9
X = Bp(X)

. as in 3.2 a), or the minimal pair is as in 3.2 a) and 9
X =Bp,.p(X),s=1,2

7 the minimal pair is X = Xo,¢ =1,L =3C, + f and 9
X = Bp(X)

7 the minimal pair is X = X,,e = -1,0,q = 1,L = 9
3Cy + (e+1)f and X = Bp,p,(X)

8 as in 3.2 b) with q=1, or the minima:1 pair is as in 3.2 9
b) withg=1and X =Bp, p(X),s=12,3

9 Xminimal elliptic surface,x(Ox) =0,L* =1 3

In order to get this result we start studying the difference cy(J1(L)) —
L? in line with the classical papers by Marchionna and Gallarati and their
generalizations quoted above. In view of the ampleness of L, Theorem 4.1 will
be immediately proved once we have classified the pairs with ¢,(J; (L)) — L* <
8.

The study of the difference cy(J1(L)) — L? is contained in the following
two theorems, where we deal separatedly with the non ruled and the ruled
cases. More detailed information on the cases not completely described in the
following tables will be given in section 5.

THEOREM 4.2. Let things be as in 2.1 with g > 2 and ¢5(J;(L)) — L? < 8.
If k(X)) # —oo, then the pair (X, L) is as in the following table:
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[e(LW(T) — L7 ] (X, L) lg] L* |
0,1,2,3 do not exist
4 32¢),3.24d),32e),32f) 211,2,2,2
the minimal pair of (X, L) is as in 3.2
5 d), 3.2 f) (withr =1andn = 2,3) |2 1,1
and X = Bp(X)
6,7 do not exist
8 X minimal abelian or bielliptic surface | 3 4
8 X minimal elliptic surface, x(Ox) =0 | 3| 1,2,3

Proof. Let A = ¢y(J;(L)) — L?. As k(X) # —oo, by Theorem 3.1 we have
A > 1, so by Proposition 3.2 we stick to considering the cases g = 2,3,4. We
proceed according to the values of the Kodaira dimension x(X) of X, having
noted that x(X) < 2 by [10, Proposition 2.1.].

Step 1. Let k(X) = 1. By Remark and (3) we have A > 4(g — 1) and
x(Ox) = 0, therefore either g = 2 or g = 3. In the latter case A = 8,¢,(X) =0
and so X is minimal; moreover, a multiple of Kx being effective, 1 < KxL =
4 — L?, and so we are in the last case of the table. If g = 2, [1, Theorem 1.5]
and the fact that x(Ox) = 0 say that X is as in 3.2 ¢).

Step 2. Let x(X) = 0. By Remark and (3) we have A > 4(¢g—1), g =2,3
and the minimal model of X is either bielliptic or abelian. If g = 3, then
A =8, ¢;(X) = 0 and so X is minimal; since Kx is numerically trivial , we
have L? = 4 and so we fall into the case listed at the last but one line in the
table. If g = 2, [1, Theorem 2.7] says that we can only have cases 3.2 d),
3.2 e) and 3.2 f) and the blow up of 3.2 d) or 3.2 f) at a single point. Since
A = cy(X) + 4, we get A = 4,5, according to whether X is minimal or not.

|

THEOREM 4.3. Let things be as in 2.1 with g > 2 and c,(J; (L)) — L? < 8.
If K(X) = —oo then the pair (X, L) is as in the following table:
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L e(h(L) - L | (X, L) |l ¢ | 2
0 scroll q>2
1,2,3 do not exist
4 asin 3.2 a), 3.2 b) withg=1 2 3,4
_ the minimal pair of (X, L) is as in 3.2
4+s,5=1,2 a) and X = Bp,__ p.(X) ) 2 2,1
_ the minimal pair of (X, L) is as in 3.2
Arss=123 1 ) Githg=1 andX(=B2>h“,p,(X) 2 1321
the minimal pair of (X,L) is X =
5 X 1,9 =1,L = 5C, — f and X = 2 1
Bp(X)
the minimal pair of (X,L) is X =
5 Xo,q =1L =3C,+fand X = 2 2
Bp(X)
the minimal pair of (X,L) is X =
5 Xo,q=1,L =5C,+fand X = 2 1
Bp(X)
the minimal pair of (X,L) is X =
6 X.,e=-1,0,g=1,L = 3Cy+(e+1)f 2 1,1
and X = Bp,p,(X)
8 X = X, withe =0,1,2, ¢ = 0 and 9 12
L=2C+(3+e)f
8 X =X, withe=-1,0,1,¢g = 1 and 3 8
L=2Cy+(2+e)f
8 X=X, withg=1and L=3C,+ f 3 6
8 X =X_, withg=1and L =5C,—-2f 3 5
8 as in 3.2 b) with ¢ =2 4 4

Proof. Let A = c¢y(J1(L)) — L. Notice first that X is not P? otherwise
L = Op2(n) and by (3) one gets 3 +4(g — 1) < 8, which implies g < 2, and so
g = 2, a contradiction. Hence X dominates a ruled surface X,. By Remark
and (3) we have A > 4(1—¢q)+4(9—1) =4(9 — q) and so g < 2+ ¢q. We now
recall that, since (X, L) is not a scroll and X is a ruled surface # P? , then
9 > 2q ([10, Lemma 1.3]) and so we get 2¢ < g < g+ 2 which says ¢ =0,1,2.
If g = 2, then g = 4,A = 8 = 2g, so that Proposition 3.2 leads to the last
case in the table. If ¢ = 1, then either g = 2 or g = 3. In case (q,9) = (1,2),
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the corresponding cases in the table come from [1, Theorem 3.3]. In case
(g,9) = (1,3), condition A < 8, by (3), gives A = 8 and ¢, = 0. Hence X is
a minimal elliptic ruled surface X.. Letting L = aCy + bf, the genus formula
gives 4 = (a —2)(b—ae) +a(b—e); the ampleness conditions (4) are enough to
conclude. It only remains to consider the case (g, g) = (0,2). Condition A < 8,
by (3), gives A = 8 and ¢, = 4. Hence X is a rational ruled surface X,. Letting
again L = aCj + bf, the genus formula gives 2 = (¢ —2)(b—ae) +a(b—2 —e);
the ampleness conditions are enough to conclude also in this case. I

5. SPECIAL CASES AND REMARKS ON THE GENERALIZED CLASS

In this section we describe some polarized pairs met in the previous section.

5.1. ABELIAN SURFACES. Let X = C?/A, for a lattice A, be a two di-
mensional complex torus. As is known [7, Ch. 2] to any line bundle L on X
one can associate a Z—linear alternating 2-form E on A; moreover there exists
a basis of A such that F is represented by

0 D\ . d 0 .
<—D 0) with D = (01 d2>,d1,d220, dlldg, Zfd1>0

and the pair d;, d, is uniquely determined by L. Finally we recall that L? =
2d,d, and, by Riemann-Roch, x(L) = did,. In case L ample, L is called a
polarization of type (dy,ds). All this immediately gives that, for a minimal
abelian surface X, (X, L) is as in Theorem 4.2 if and only if L is a polarization
of type (1,2). Notice that if a (not necessarily ample) line bundle L defines
the pair (d;,d;) = (1,2), then, by Riemann-Roch and Serre duality, either L
or —L is effective, hence one can always define a polarization of type (1,2).
Moreover ([7, Ch. 10]) either

i) (X,L) = (B, X Ez,p1*L; ® py*L,), with E; an elliptic curve polarized
by the bundle L; of type i(: = 1,2), or

ii) |L| has no fixed component and exactly four base points, its general
member is smooth and the number of the singular curves in that pencil
is Cz(Jl (L)) =12.

5.2. BIELLIPTIC SURFACES. As is known, any bielliptic surface X is iso-
morphic to (A x B)/G, where A and B are elliptic curves, G is finite group
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acting componentwise on A x B. There are seven types of bielliptic surfaces,
as pointed out by Bagnera-De Franchis; some information is given in the fol-
lowing table ([11]).

[type| G | basis (4, B’) of Num(X) |

1 Z, (4/2, B)
2 | Zy x Zy (A2, B/2)
3 Zy (4/4,B)
4 | Z,x2Z, “(4/4,B/2)
5 Zs (4/3,B)
6 | Z; x Zs (A/3,B/3)
7 Zs (A/6, B)

Let L be any divisor on X numerically equivalent to mA’' + nB’, with
m,n € Z and where (A’, B') denotes the basis as above. By intersecting L
with A and B and by using the Nakai-Moishezon criterion, one sees that L is
ample if and only if mm > 0,n > 0. Moreover, since AB = ord G, the above
table shows that A’B’ = 1 for any type and so L?> = 2mn. Therefore, for any
minimal bielliptic surface X, (X, L) is as in Theorem 4.2 if and only if L is
numerically equivalent either to A’ + 2B’ or to 24" + B'.

5.3. ELLIPTIC SURFACES. As is known, any minimal elliptic surface X
with x(Ox) = 0 admits an elliptic fibration onto a smooth curve, whose
singular fibers are multiple fibers. For any surface X like that, (X, L) is as in
Theorem 4.2 if and only if L is an ample line bundle with Kx L < 3. By using
the canonical bundle formula one can work out the possible multiplicities of
the multiple fibers and the genus of the base curve. This has already been
done in cases KxL = 1,2 in [3].

In Theorem 4.1 some values of cy(J;(L)) are common to certain pairs
(X, L) and their minimal pairs (X, L). This is a general fact stemming from

Remark. Let 0 : X — X; be the morphism contracting down an excep-
tional curve E and L, the ample line bundle on X; defined by L = o*(L;)—rE.
Recalling (3) we get
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ca(Ji (D)) = co(X) + 2Kx L + 3L*
= co(X1) + 1+ 2(Kx, Ly +7) +3(L,% — r?)?
ca(Jy(Ly)) + 14 2r — 372

I

which, for r = 1, gives ¢;(J; (L)) = ca(J1(L1)).
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