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1. INTRODUCTION

Many evolution processes are characterized by the fact that they are sub-
ject to short-time perturbations implying a sudden change of state. For ex-
ample, when a hammer hits a string, it experiences a rapid change of velocity;
heavy harvesting or epidemics result in a drastic decreasing of a population
density of a species; a pendulum of a clock undergoes a sudden change of
momentum when it crosses its equilibrium position, etc.

Since in the modeling of a process the short-time perturbations are usu-
ally assumed to have the form of instantaneous impulses, differential equations
with impulses provide a natural description of such evolution processes. The
theory of impulsive differential equations is rich enough, and, unlikely to dif-
ferential equations without impulse perturbation, the impulsive differential
equations exhibit several new phenomena and pose a number of specific prob-
lems that cannot be treated with the usual techniques within the standard
framework of ordinary differential equations.
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Though the qualitative theory of impulsive differential equations is of in-
terest in itself, the recent progress in its development has been to great extent
stimulated by numerous applications to problems arising in medicine, biology,
optimal control, economics, etc. We mention here the model of a single species
population with abrupt changes of important biological parameters [2, 13], the
competition model with abrupt harvesting [5], the Kruger-Thiemer model for
drug distribution [7], impulsive stabilization of a state which may not be an
equilibrium point of the system (stabilization of an inverted pendulum) [8],
the model for the vibration of a string with energy dissipation where impulsive
“pumping” occurs at moments when total energy of system falls down to a
preassigned critical level [10], and this list is yet to be completed.

In this paper, we present some new comparison principles for impulsive
differential equations which improve known results. This technique is one of
the basic tools in the qualitative theory of differential equations. We use it to
study the existence of solutions for the first order periodic impulsive problem

u'(t) = f(¢,u(t)), ae. t€J =J\ {t1,t2,..., %},
u(ty) = I(u(ts)), k=12,...,p, (1.1)
u(0) = u(T),

where J = [0,T],0 =1ty <t; < -+ <tp, < tpy1 =T, I;: R = R is continuous
fork=1,2,...,pand f: JxR — R is a Carathéodory function, i.e., f(-,u) is
measurable for every u € R, f(¢,-) is continuous for a.e. t € J, and for every
R > 0 there exits a function hp € L*(J) such that |f(t,u)| < hg(t) for a.e.
t € J and for every u € R with |u| < R.

When f is continuous, this problem has been studied, for instance, in [7]
where the authors introduced the concepts of lower and upper solutions for
(1.1), i.e., functions , B : J — R such that o, 3 € C*(J'), a,B,c’, 8 have
discontinuities of the first order at the moments of impulses, & and @ are left
continuous on J, and

o(t) < ft,e(t), teld,
a(tf) < L(a(t)), k=1,2,...,p,

pt) 2 ft,B@1), tel, (1.2)
B(tE) > L(B(t)), k=1,2,...,p,

a(0) <a(T),  B(0) > B(T).

Then, they proved the validity of the method of upper and lower solutions.
Some existence results are also known for the case when f is a Carathéodory
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function. For example, existence of solution for a problem with nonlinear
boundary conditions that includes (1.1) as a particular case has been proved
in [9].

Following new directions in the development of the qualitative theory of
ordinary differential equations [1, 6], various authors have recently discussed
existence of solutions for (1.1) with more general definitions of lower and upper
solutions. More precise, new concepts of lower and upper solutions that admit
violation of some inequalities in (1.2) have been proposed. The case when the
inequalities at the boundary fail, i.e.

a(0) > a(T) or/and B(0) < B(T),

has been studied in [3, 12].
The case when the impulsive inequalities are violated, i.e. for some j €

{1,2,...,p}
a(t]) > Ij(a(t;)) or/and  B(t]) < Li(B(t))),

has been considered in [12].

We note that the latter case is intrinsic for the impulsive differential equa-
tions, on the contrary to other situations that may be considered for many
types of differential equations.

In this paper, we study the problem (1.1) from this point of view, paying
more attention to the case when the impulsive inequalities are violated. The
results that we present extend and complement those in [1, 3, 4, 6, 11, 12].

2. COMPARISON PRINCIPLES

In order to define the concept of solution of (1.1), we introduce the follow-
ing space

Qi(.]) = {u :J =R U|(te,trs1) € Wl’l(tk,tk+1),
u(tisr) = ultion), k=0,1,...,p, u(0) = u(0%)}.

We note that Q} is a Banach space with the norm

14
lullay =D llukllwes e eusa) »
k=0
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where uy : [tg,tr41] — R is defined by ui () = u(t}) and ui(t) = u(t),
t e (tk,tk+1], k= 0, ey D
We recall that for v € W (¢, tx41), the norm is defined as follows

”v”Wl"(tk,tk+1) = “v”Ll(tkytk-H) + ||vl”Ll(tk1tk+1) .

DEFINITION 2.1. We say that a function u is a solution of (1.1) if u €
(),

i
u(t) = U(t;:) + f(S,U(S))dS, te (tkatk+1] ’ k= 07 1, By 4

ti

'U,(t;:) =Ik(u(tk))1 k= 1,2a°°°apa
and

u(0) = u(T).

The following result is a new version of Theorem 1.4.1 in [7] for the space
Q1(J). It has been already proved in [3] but we include it for the sake of
completeness. _

In what follows, by Y5 and J] we mean, as usualy, > and

s<t;<t s<t;<t {i:s<t; <t}

{i:s<ti<t}

LEMMA 2.1. Leta,b€ L*(J),and ¢, >0, d;, k=1,2,...,p be constants.
Assume that a function v € Q}(J) is such that satisfies the inequalities

v'(t) < b(t)v(t) + a(t), ae teJ, (2.1)
v(tf) < crv(te) + di, k=1,2,...,p.

Then for every t € J the following inequality holds:

t
v(t) < v(0) H CkeB(t)+/ H crePO B q(s)ds

0<tr <t 0 s<tp<t (23)

+ z H CieB(t)—B(t")dk,

O<tr <t trp<t;<t

where B(t) = / bir)dr.
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Proof. From (2.1), we have that
t
v(t) < u(to)eP® + | a(s)ePDBOds, t € [to,t]. (2.4)
to

Hence, the inequality (2.3) holds on [to,t;]. Assume now that (2.3) holds for
t € [to,ts), where n, 1 < n < p, is an integer. Then, it follows from (2.1) and
(2.4) that '

o(t) < v(th)eP®O-Blt) 4 tta(s)eB(t)“B(’)ds, t € [tn, tnyi] -
Now, using (2.2), we conclude that
v(t) < (Cav(tn) + dp)eBO=Bl) 4 tt a(s)ePO-Bl)ds
Therefore,

t
v(t) < dneB(t)—B(tn) + a(s)eB(t)—B(s)ds+ [v(to) H ckeB(t,,) +

tn to<tr<in

tn

to<tp<tn \tx<ti<tn 0 s<ti<tn

which gives the desired result. N

THEOREM 2.1. Let the functions u € Q}(J), a € L*(J), a(t) > 0 for a.e.
t € J, and let di, ¢, € R, ¢, > 0 be constants such that

u'(t) + Mu(t) +a(t) <0, ae teJ,
u(ty) < cpu(ts) + di k=1,2,...,p,
u(0) <0.

Assume that for every k € {1,2,...,p}

tr
dr < ck/ e Mt—9)g(s)ds . (2.5)

te—1

Then u(t) <0 fort € J.
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Proof. Let k = max{k : t, < t,k=0,1,...,p}. By Lemma 2.1, for every
t € J we have that

u(t)eMt < — / I cxe™a(s)ds+ Y. [ ce™*dy

<t <t O0<tp <t ti<ti<t

H cieMt"dk—/ Hc, Msq(s)ds / eMa(s)ds
1 i=k+1 te-1 =k
1 7% k
(eMtrd, —/ cve™a(s)ds) [ cip <0.
th—1

i=k+1

Il
Ma‘l

k

N

<

x~
I

1

This concludes the proof. §

Remark 2.1. If d; < 0 for some j € {1,2,...,p}, then inequality (2.5) is
automatically verified. Let K; = {j € {1,2,...,p} : d; > 0}. Then condition
(2.5) can be written as

tr
di < ck/ e'M(t’“_s)a(s)ds, ke K;.
te—1
For the particular case ¢, = 1, kK = 1,2,...,p, we obtain the following
result which improves Theorem 2.1.

COROLLARY 2.1. Let ¢, = 1, for k = 1,2,...,p, and let the hypothesis
(2.5) be replaced by

[
Z eMt,'dj S / eMsa(S)d,g, fOI' k € Kd . (26)
0

JEKa,t; <tk

Then the conclusion of Theorem 2.1 holds.

Proof. Tt suffices to put ¢; = 1 in the proof of Theorem 2.1. I

Note that we do not impose any restrictions on the sign of M both in
Theorem 2.1 and Corollary 2.1. Hence, the results are valid independently of
the sign of M.

The case when at the last impulsive instant ¢, the constants ¢, and d,
satisfy conditions ¢, = 0 and d, < 0 is very interesting, since it permits us to
give a comparison principle based on an a priori inequality on the boundary
values of the function instead of the inequality on the initial data as in the
results presented above.
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THEOREM 2.2. Let the functions u € Qi(J), a € L'(J), a(t) > 0 ae.
t € J, A € R and let the constants di,c; € R, ¢, >0, k =1,2,...,p be such
that ¢, =0, d, <0, and

u'(t) + Mu(t) +a(t) <0, ae telJ,
u(ty) < cpulty) + d s k=12,...,p,
u(0) < u(T) + .

Assume also that (2.5) holds and

T
/ e~ MT=9q(s)ds > \.
t

P

Then u(t) < 0 for each t € J.

Proof. We show that u(0) < 0. Since u(t}) < d, < 0, by Lemma 2.1, we
have that

u(T) < — /T e~ MT=9)g(s)ds.

tp

Then, by the hypothesis of the theorem

T
w(0) < u(T) + A< — / e MT=5)g(s)ds + A < 0.

tp

Thus, 4(0) < 0, and we can apply Theorem 2.1 to conclude that u < 0 on J.
|

We note that if ¢, = dy = 0, k = 1,2,...,p, Theorem 2.2 reduces to
Corollary 2.2 in [3], and thus it presents the generalization of the latter result.

If d, > 0 it is also possible to show that the function u is non-positive,
but we need to assume that M > O and ¢, = 1, k = 1,2,...,p. We prove
this result for the particular case a(t) = Mr, with r € R, r > 0, in order to
compare it with those known in the literature.

THEOREM 2.3. Let the functionu € Q}(J), and letd;, e R, k=1,2,...,p
andr,M € R, r, M > 0 be constants such that

u'(t) + Mu(t) + Mr <0, ae teJ,

w(th) <u(te) +de, k=1,2,...,p,
u(0) < u(T).
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Assume that

) D N 2.7)

kEKy (1 - e_MT)
Then u(t) <0 fort € J.

Proof. Using again Lemma 2.1, we obtain
t
u(t) < u(0)e~ M —/ e M=) Mrds + Z e~ Mt-t)g, . (2.8)
0 kEK4,ti<t
Fort =T,
T
u(0) < u(T) < u(0)e™T — / e MT=) Mrds + 3 e MT-tg,
0 k€K,
By the latter inequality, we conclude that
T
(1 — e MT)u(0) < e™M7( Z eMt d,, —/ eM* Mrds), (2.9)
kEKy 0
and, substituting (2.9) in (2.8), we have
T
ut) < Y gt,ta)ds— [ g(t,5)Mrds, (210
kEKy 0

where g : J x J — R is the Green’s function for the boundary-value problem

u'(t) + Mu(t) =0, teJ,

u(0) = u(T),
that is,
(ts) = 1 ] e M) if 0<s<t<T,
G 8) =T goMT | e MT+t-5) if 0<t<s<T.

We note that g has the following properties:

e~ MT 1
l_e__MTSg(t,S)S t,sed,

1—eMT’
1

T
t = — .
/Og(,s)ds 7 tedJ

(2.11)
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From (2.7), (2.10) and (2.11), for each ¢t € J, we obtain

ﬁ
INA
o

) < thtkdk—/ g(t,s)Mrds < E — _MT

keKy4 kEKd

The proof is complete. I

Remark 2.2. If we consider an arbitrary positive function from L'(J) in-
stead of a(t) = Mr, we cannot calculate explicitly the integral

T
/0 g(t, s)a(s)ds .

Nevertheless, using (2.11), it is possible to obtain the following estimate

T e~ MT T
— < -
/0 g(t, s)a(s)ds < l—e‘MT/o a(s)ds,

which permits us to establish the result similar to Theorem 2.3 for the general
case.

3. EXISTENCE RESULTS

In this section, we introduce new concepts of upper and lower solutions
for the problem (1.1) and prove the validity of the method of upper and lower
solutions.

DEFINITION 3.1. We say that a € Qi(J) is a lower solution for the prob-
lem (1.1) if

o(t) < fta(t), ae tel,
a(ty) < Ia(t)),  ke{l,2,...,p}\ Ka,
a(0) < o(T),

where K, C {1,2,...,p}, and if for each kK € K, and for some constant
M, € R there exists a constant ci > 0 such that

C /tk e_Ma(tk—S)[f(s7a(s)) —a'(s)]ds > a(t}) — I(a(t)) . (3.1)

te—1
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Analogously, 8 € Q1(J) is an upper solution for (1.1) if
B(t) = ft,B(1), ae tel,
ﬁ(t:) ZIk(:B(tk))’ k € {1’2,"',p}\Kﬂ1
B(0) > B(T),

where Kz C {1,2,...,p}, and if for each k¥ € Kz and for some constant
Mj € R there exists a constant ¢; > 0 such that

& [ I () — (s, BloNlds > LBt ~ B (32)

tr—1

To present the main result of this section, we need the following hypotheses:
(H1) There exists a constant M € R such that
ftu) = f(tv) 2 —M(u—v)

for a.e. t € J and for u,v € R, a(t) <v <u < ().

(H2) The functions I are continuous for k¥ = 1,2,...,p. Moreover, for k ¢
K, U K, I, are nondecreasing, and if ¢, = max{c¥,cs} > 0 then for
k € K, U K and for a(t;) <y <z < [(t;) we have that

Li(y) = Ii(z) < ey —z) -

Remark 3.1. We note that (H2) implies, in partlcular that I is nonde-
creasing, for k =1,2,...,p.

THEOREM 3.1. Let o, 8 € Q}(J) be lower and upper solutions for (1.1)
such that a < 3 on J. Suppose that (H1)-(H2) hold with M = min{M,, Mg}.
Then the problem (1.1) has at least one solution u € [a, (].

Proof. We define the following modified problem

u'(t) = F(t,u(t)) — Mu(t), ae teJ,
u(ti) = Te(@(te)), k¢ KaUKg, (3.3)
u(ty) = Le(a(te)) — cx(@(te) — u(ts)) ke K,UKg,

u(0) =u(T),

where F(t,u(t)) = f(t,u(t)) + Mu(t), u(t) = y(t,u(t)) and v : J x R > R,
(¢, z) = min{B(t), max{z, a(t)}}.
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We will show that there exists at least one solution of (3.3); then we prove
that it satisfies inequalities a(t) < u(t) < B(t) on J. Thus, it is a solution of
(1.1) too. / o

For X € [0,1], we define the following problem

u'(t) + Mu(t) = AF(t,u(t)), ae teJ,
u(th) = Mi(a(ty)) k¢ Ko UKpg, (3.4)
u(ty) — cpulte) = Mk (@(ts)) — c(te)), k€ K, UKg,
u(0) = Mu(T).

Let X = L*(Jo)x LY (Jy) X+ -x L} (J,), Y = WEH(Jo) x WEA(Jy) x- - - x WEE(J,,)
with Jy = [0,t1], J1 = [t1,%2), ..., Jp = [tp, T]. We define the operators

L:Y - X x Ret! and N:X->Y xRet!

by

L(ug, U1, .., Up) = (,Co(uo) Li(u1),..., Lp(up),

_ L (o, 1), - - - Lpl(ttpo1, ), u(0))
Li(u) =u'(:) + Mu(-), k=0,1,...,p
Za(u,0) = v(ts) k¢ KoUKp,
Ly (u,v) = v(ty) — cru(ty), ke K,UKg,

and
N(“Ovula' . 7U’P) = (NO(UO)’NI('U‘I)" .. ’NP(U‘P))//
Ni(o), .., Np(up_1), 5(T))

Ni(u) = F(-,u(-), k=0,1,...,p,
Nk(u) =Ik(ﬂ(tk))a k¢KaUKﬁa
Ni(u) = L (u(ty)) — ceu(t) ke K,UKg.

Then (3.4) is equivalent to the abstract equation
E('LLO,'U,I,...,UP)=ANOC(U0,U1,...,UP), (uo,ul,...,up)EY, (35)

where C': Y — X is the compact embedding of Y onto X.
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The operator £ is one-to-one since the problem

u'(t) + Mu(t) = o4 (t), ae te€Jy, k=0,1,...,p,
u(th) = By, k¢ K,UKg),
u(ty) = cru(ts) + By, k¢ Ko UKp,
u(0) = By,

with o € L*(J}), By € R, k=0,1,...,p, has the unique solution u € Q1(J).
So, we can consider the inverse operator £~*. Then (3.5) is equivalent to

(u,v) = AL o N o C(u,v) = AH(u,v), (u,v) €Y,

where H is a compact operator. Now, since f satisfies the conditions of
Carathéodory and F' is bounded, the set of the solutions of z = AHz is
bounded in Y. By Schaefer’s Theorem (see [14]) there exists at least one
solution of (3.4) for A = 1.

To show that a(t) < u(t) < (t) on J, we define the function v = a — u,
which, by hypotheses and Remark 3.1, satisfies

V() + Mu(t) = (t) - ft,a(t) + f(t, at) + Ma(t) — £(2,u(t) — Mu(t)
<d(t) - f(tat), a.e teJ,

v(ty) = a(ti) —u(tl) < I(e(t) — Lu(@(t)) <0, k¢ Ka,

v(tf) = a(tf) — u(ty)
= a(tf) — L(altr)) + I(a(ts)) — Le(@(te)) 4 cxtilts) — cru(ts)
< erla(te) — u(ty)) + a(tf) — L(a(t:))
= cpv(te) + a(ty) — L(a(ty)), ke K, C K,UKjg,

v(0) = (0) — T(T) < 0.

We apply Theorem 2.1 to show that v < 0 in J. Consequently, o < u in J.
Analogously, we can conclude that v < § in J, which completes the proof. 1

Remark 3.2. We point out the tight relation between the functions f and
I,. We note also that it is easier to find the upper or lower solution if the
constant M is small and the constants c; are large. From this point of view
it is useful to have the possibility to consider constants M with negative sign.
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We note that, in certain sense, this result is more general that Theorem 5.3
in [12], since the constants M, and M in our Theorem 3.1 can be non-positive
and the hypotheses on the functions I} are less restrictive.

In order to give a result for the case when M, > 0 and M3 > 0, we
introduce the following new definitions of lower and upper solutions.

DEFINITION 3.2. We say that o € Q{(J) is a lower solution for (1.1) if
there exists a constant M, > 0 such that

o' (t) < f(t, a(t) — Mura, ae telJ',
a(tf) < L(a(t)), ke{l,2,...,p}\ Ka,
a(0) < o(T),
where K, C {1,2,...,p} and the following inequality holds:
) a(tf) — L(a(t)) <

(1—eMaT) =72 (3.6)

kEK o

An upper solution is defined similarly by reversing the inequalities with
(3.6) changed for

> I (B(t) — B(t)

(1 — e~MsT) STa-

kEKp

THEOREM 3.2. Let a, B € Q}(J) be lower and upper solutions for (1.1)
in the sense of Definition 3.2 such that « < 8 on J. Suppose that (H1) holds
with M = min{M,, M}, and the functions I}(z) = I;(z) — z, z € R are
non-decreasing for k =1,2,...,p.

Then the problem (1.1) has at least one solution in [a, 5].

Proof. The only difference with the proof of Theorem 3.1 concerns the
definition of the modified problem which is set up as follows:

u'(t) = F(t,u(t)) — Mu(t), ae teJ,
w(th) = L(u(te)) — w(te) + u(ts), k=1,2,....,p, (3.7)
u(0) —u(T) =0.

Futhermore, in order to show that the solution of this problem is between «
and 3, we use Theorem 2.3. 1

Since we do not assume the functions I} to be bounded for k¥ € K, U K,
Theorem 3.2 provides existence of solution with definition of upper and lower
solutions equivalent to that used in Theorem 5.3 of [12].
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