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1. INTRODUCTION

Equations with several brackets arose originally in the works of Brockett
(2], [3] (for ordinary differential equations) and Felipe [5] (for partial differen-
tial equations) of double bracket equations of Lax type.

The purpose of this note is to study triple bracket equations of the form
) O (L1, P

We deal with some algebraic properties of these equations, in particular
we show that, as in the classical case, they are related to the presence of
an infinite sequence of first integrals. Also we exhibit some new integrable
systems.

2. NOTATIONS AND PRELIMINARY RESULTS

A pseudodifferential operator is a formal series of the form

(2) R= Xn:ri(z)ai, n €N

As usual, 0 denotes 58;. The coefficients 7;(z) are supposed to lie in some
differential algebra over C, of smooth functions of z, for example C[[z]]. To
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multiply two such operators, we need to know how to move 97! across a

function r(z):
[ee)

o lp. = Z(—l)jr(j)a“(j“)

j=0

where () = g—i’}. It is easy to check that this makes the set of all pseudodif-
ferential operators an associative algebra, which we denote by Psd.

If R = Y r;0 is a pseudodifferential operator, we shall write R, for the
differential operator part, Ry = 3 ,507:0" and R_ = 3,  1:0".

Thus R = R, + R_. An element R € Psd has order n if

R=Xn:’r,’8i

and r,, # 0, we denote ord (R) = n. If ord (R) =n and r, = 1, R is called a
monic operator. Let E(™ be the set of all elements in Psd of order at most 7.
Then we have formally a direct sum decomposition

Psd = Do E(V

where D is the set of all differential operator (R = R, if R € D). Psd is a Lie
algebra with the bracket defined as usual, [R;, Ry] = R1 Ry — Ry R;.
We call a first order monic operator in Psd of the form

L=04+u_10 +u 02+

a Lax operator (u_, = u_n(z,t)).

We recall that, if R =Y r;0' € Psd , then && = ¥~ 29",

Let L be a Lax operator. A triple bracket equation formed from L is an
equation of the form

3) & (1L, (5, P

where P € D. The possible operators P are determined by the requirement
that [L,[L,[L, P]]] € E¢Y. The pair (P,L), where P € D and L is a Lax
operator, is called admissible if the triple bracket [L,[L,[L, P]]] belongs to
EY,

Let L be a Lax operator. Then, as in the classical case, for every n € N,
((L™)4, L) is an admissible pair. In fact ((L™), L)is a Brockettt pair (see [5]),
ie. [L,[L,(L™)]] is in ECY. Hence [L,[L,[L,(L")]]] € ECY. This shows
that ((L")+, L) is an admissible pair.
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LEMMA 1. Let L be a Lax operator and (P, L) an admissible pair such that
[L,P] € E-Y. Then P is a linear combination of (L™)'.s with coefficients in
C.

Proof. This lemma follows directly from the lemma 3.1 of [7].

It should be noted that the condition [L,P] € E¢Y for P € D implies
that the top order coefficient of P is a constant. On the other hand, if (P, L)
is an admissible pair, then the top order coefficient of P is a polynomial of
the form (az? + bz + c), where a,b and c are complex numbers.

LEMMA 2. Let L be a Lax operator, and (P, L) be an admissible pair such
that the top order coefficient (az® + bz + c) of P is not constant. Then, if
ord (P) = n, P can be written in the following form

n—1

(4) P = (ag® + bz + ¢)(L™) 4 + »_ ri(L¥)4

where 1y, € C [[z]] for every k.

Proof. Suppose the lemma is true for all admissible P € D of order less
than n, such that the top order coefficient is not constant. Let us take an
admissible pair (P, L), such that, ord (P) = n and with the same property.
Let (az? + bz + c) be the top order coefficient of P. We define

n—1
Liope) = (az® + bz + ¢)(L™)4 + Z a:(L¥)+
k=0

where the coefficients g, are formal power series that are obtained by im-
posing the condition: ((P — L{,,.),L) is an admissible pair. To elimi-
nate the coefficient of 9"~ in [L,[L,[L,(P — L{,, ,)]l] we can take g, ; =
Pn_1 + (dz? + ex + f), where p,_; is the coefficient of " ! in P (because
[0,[0,0, (dz? + ex + f)0™1]]] = 0). Notice that we may assume that d # 0
or e # 0. Now, the equation equivalent to the annihilation of §* for k =
0,1,---,n—2 in [L’ [La [L7 (P - L?a,b,c))]]]’ Only contains ks Qk+15" " 5qn-1 and
their derivatives, and it is of the form q, = Qk(qr41, " »qn—1), Where Qy is a
differential polynomial in gx41,-- - ,gn—1 With coefficients in C[[z]]. This fact
allows us to calculate ¢,_s,¢n_3," - ,qo recursively.
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Since, ord (P — L{, , ,) < and the top order coefficient of P — L, , ., is
not constant, we have

n—2
P - L?a,b,c) = (d$2 +ex + f)(Ln*1)+ + Z tk(Lk)+
k=0

where t;, € C [[z]]. Therefore P can be represented as a C[[z]]-linear combi-
nation of (L*),’s. 1

Let L be a Lax operator, the following system of infinitely many triple
bracket equations is called the triple bracket hierarchy

0L
We assume that the coeficients of L in (5) are functions dependent on some
additionals variables ¢, ty,t3, -+ ,tn, --. We remark that, L = 9 is a trivial

solution of (5).

In many cases it is convenient to represent the Lax operator L in a formal
dressing form, L = ¢9¢~1, where ¢ is determined up to multiplication on the
right by a series in 8~ with constant coefficients starting with 1. In terms of
¢, the equations of the triple bracket hierarchy are

(6) ot = (L, [2, (L)1

In fact, let ¢ be a solution of (6), where L = ¢0¢~'. Then L is a Lax
operator that satisfies (5). To see this, notice that from (6) we immediately
obtain the equation

6¢—1 —_ -1 n
(7) 6tn - _¢ [L’ [L’ (L )—]]
Now,
oL 8¢, _ 0¢~"1
(8) e 55&15 '+ ¢80 oL

If we replace %% and %%1 in (8) by the right parts of (6) and (7), respec-
tively, we have

o = (L (£, (E) 11909 = 4047 L, (£, (£)-]

= —[L, [L, [L, (L")-]]]
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3. INVARIANT POLYNOMIAL FUNCTIONALS

In this section we will work with pseudodifferential operators (1) whose
coefficients r;(z) are periodic real valued C* functions on R of period 1. A
conservation law is an identity

OH 08J

ot oz
that follows formally from (3). The conserved density H and flux J are
differential polinomials in u_;,u_s,u_3,--- and its z-derivatives u(k) An

invariant polynomial functional for (3) is a functlonal of the form

/Hda:

where H is a conserved density. Notice that if F' is an invariant polynomial
functional, then 2£ a =0.
For R € Psd we define the residue

resR=r_;

Next, we shall also use the Adler functional
1
TrR= / res Rdx
0

This functional has the following property, T [R;, R;] = 0, for every
R,, R, € Psd (see the proof of theorem 4).

LEMMA 3. For any k > 2, by virtue of the equations (5),

O = AL, (5, (5741
holds.
Proof. Let k = 2, then
oL> 8L oL, 1 oL

B,  ot, t.,
= [L, [L, [L, (L")+]IIL + L[L, [L, [L, (L") +]]]
= (LIL, [L, (L™)4]] = [L, [L, (L™)+])L) L
+ L(L[L, [L, (L") 4+]] = [L, [L, (L™)+]]L)
= L*[L,[L, (L™)+]) - [L, [L, (L")4 ] L2
= [Lz’ (L, (L, (L™)+]1)-
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Now, suppose the lemma is true for k =r, i.e.%f—: = [L",[L,[L, (L") ]]]-
We have
oL™ 9L oL
B~ oL L+ L’—a—t;
= (L7, [L, [Ly (L") 4 ]|L + L7(L, [L, [L (L) 4]])
= (L7[L, [L, (L™)4]) = [L, [L, (L) 4 )IL7) L
+ L7(LIL, [L, (L") 4]) = [L, [L, (L) 4]10)
= L™ L, [L, (L™)4]] = [L, [L, (L™) 1L
= [LH-l’ (L, [L, (L") +]]]- [ ]

THEOREM 4. The polynomial functionals
1
Fy = Tr L* =/ resl*dz  k=1,2,3, -
0

are invariant polynomial functionals.

Proof. 1t is well known that res[R;, R;] = Oh, where h is a differential
polynomial in the coefficients of R, and R,, here R;, R, € Psd. Hence

0 L*
g;(res L*) = res o, — e (5,10, 1L, (L)1)
_ o
© Oz
where J; are differential polynomials in u_,, n = 1,2,3,--- and it is z-
derivates u(_l)n, ,n=123--. 1

4. ZAKHAROV-SHABAT TYPE EQUATIONS AND SOME NEW INTEGRABLE
SYSTEMS

The purpose of this section is to indicate how the system (5) generates new
integrable equations. As we will see, they have the form of zero-curvature type
equations. ‘

THEOREM 5. Let By = (L*),, s > 1. Equations (5) imply

) o = S = (L L, B, Bl
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Remark. Every equation given by (9) is equivalent to a closed system of
partial differential equations.
Proof. 1t is easy to see that if s > 1, then
(10) [L*, [L, [L, (L") )]] = [L, [L, [L°5 (L)1)
From (10), and écéording to lemma 3
0B, 0B, " rrm m rrn
—Tay = [La [L) [L a(L )+]]]+ - [L’ [La [L a(L )+]]]+
Ot ot,
= [L,[L,[L", Bm] — [L™, Ball]+

= L, L, [Ba, Ballls = [L, [L, [(Z™) -, (L™)-]))+
= L, [L,[Bs, Bulll+- .

Next we consider the case n = 3 and m = 2. It is well known that

Bz = 82 + 2U._1
and
B3 = 63 + 3u_13 + 3(U_2 + u'_l),

where the prime denotes derivative with respect to z. On the other hand

(11) [B3, Bz] = —3(2U,_.2 + 'U:Iil)a + 6U_1Ul_1 - 3U'_12 and ’U,/_ul.

Then by virtue of (11) we can see that for n = 3 and m = 2, equation (9)
is equivalent to the equations

Ou_ ,
(12) Btzl = —(2u, +ulj)
and
9 Bu_
(13) Bgg (wr +uly) = 2’;:3—1 +6(uyuly)" — 3uly — U,

From (12) and (13) we get
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(14)

(15)
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0%u_ 4 0u_ 1 m
—6’:% L —(§ ;tsl +4(u_yul )" + §u'i'{') .

It is clear that this equation can be written in the form

8%u_, _ (4 Ou_,

s —4(U ul )II_ luIIIII)I”
a2 3 Ot; SRR Rt

The equation (14) might be called the (K P)*-equation.
If u_; does not depend on t,, then (14) reduces to

é a’U,_.l
3 Ots

1
=4(u_yu’ ;)" + gu'_"{' + h(z),

where h(z) is a polynomial of degree 2 in z. In the case h(z) = 0, this equation
might be called the (KdV)3-equation.

[1]

2]
[3]

[4]
[5]
[6]
[7]

REFERENCES

BorLcH, A.M., BROCKETT, R.W., RATIU, T., A new formulation of the
generalized Toda lattice and their fixed point analysis via the momentum
map, Bull. Amer. Math. Soc., 23 (1990), 477 —485.

BROCKETT, R.W., Least squares matching problems, Linear Algebra and its
Applications, 122 (1989), 761-777.

BROCKETT, R.W., Dynamical system that sort lists, diagonalize matrices and
solve linear programming problems, Linear Algebra and its Applications, 146
(1991), 79-91.

DickEY, L.A., Soliton Equations and Hamiltonians system, Advances Series
in Mathematical Physics, 12 (1991).

FEIbIPE, R., Algebraic aspects of Brockett type equations, submitted to Physica

MANIN, YU I., Algebraic aspects of nonlinear differential equations, J. Sow.
Math., 11 (1979), 1-122.

MULASE, M., Cohomological structure in soliton equations and Jacobians va-
rieties, J. Diff. Geom., 19 (1984), 403-430.



