When is any Continuous Function Lipschitzian?

GIUSEPPE MARINO

Dipartimento di Matematica, Universita' della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy, e-mail: gmarino@unical.it

(Research paper presented by F. Montalvo)

AMS Subject Class. (1991): 46A99

Received July 16, 1997

It is well known that every continuous function on a compact metric space X is uniformly continuous on the space. However, this property does not characterize the compactness, but a larger class of spaces usually called UC spaces or Atsuji spaces. The first list of descriptions of these spaces was compiled by Monteiro and Peixoto [9] and a more extensive list of internal descriptions was furnished by Atsuji [1]. Some of such characterizations are these:

- (i) Each open cover of the metric space X has a Lebesgue number [9].
- (ii) If $\{x_n\}$ is a sequence of points in X without accumulation points, then all but finitely many numbers of x_n are isolated and inf $I(x_n)$ for all the isolated points of X is positive, where $I(x) \doteq \sup\{\alpha > 0 : B(x, \alpha) = \{x\}\} > 0$ [1].
- (iii) Whenever $\{A_n\}$ is a decreasing sequence of closed nonempty subsets of X with $\lim_n \beta(A_n) = 0$ then $\cap A_n \neq \emptyset$ (here $\beta(A) = \inf \{d(a, X \setminus \{a\}) : a \in A\}$) [3].

Further several characterization of Atsuji spaces can be found in [1]-[13]. In particular, on this argument, Levine [7] shown the following

THEOREM 1. Let $f_n: X_1 \to X_2$ be continuous for n=1,2,... where X_1 and X_2 are metric spaces with metric d_1 and d_2 respectively. Then, there exist metrics d_1^* and d_2^* for X_1 and X_2 respectively which are equivalent to d_1 and d_2 such that every f_n is uniformly continuous relative to d_1^* and d_2^* .

Actually, the proof of the above theorem yields much more: the functions f_n are lipschitzian relative to d_1^* and d_2^* . So, it seems natural to ask if all

108 G. MARINO

continuous functions from X_1 to X_2 are lipschitzian relative to two suitable equivalent metrics of X_1 and X_2 .

The following example shows that the answer is negative, also under the strong hypothesis of compactness of X_1 and X_2 .

EXAMPLE 2. Consider $X_1 = X_2 = [0, 1]$ and let d_1 and d_2 be two metrics equivalent to euclidean metric on [0, 1]. We go to construct a continuous function

 $f:([0,1],d_1)\to([0,1],d_2)$ not lipschitzian. Let $x_n\in(\frac{1}{n+1},\frac{1}{n})$ such that

$$d_1\left(x_n, \frac{1}{n+1}\right) < \frac{1}{n} - \frac{1}{n+1}.$$

A such x_n certainly exists since $\frac{1}{n+1} + \frac{1}{k}$ approach $\frac{1}{n+1}$ for $k \to \infty$ with respect to the euclidean metric and so with respect to the equivalent metric d_1 also. Now, for any $n \in \mathbb{N}$, let $y_n \in [0,1]$ such that

$$\frac{1}{2}x_n < y_n < x_n, \quad \frac{1}{2}x_n < d_2(y_n, 0) < x_n.$$

A such y_n certainly exists since $\frac{3}{4}x_n + \frac{1}{k} \in (\frac{1}{2}x_n, x_n)$ for sufficiently large k and $\frac{3}{4}x_n + \frac{1}{k}$ approach $\frac{3}{4}x_n$ for $k \to \infty$ with respect to the euclidean metric and so with respect to the equivalent metric d_2 also. We define $f: [0,1] \to [0,1]$ by

$$f(x) \doteq \begin{cases} 0 & \text{if } x = 0 \\ y_n \frac{(n+1)x - 1}{(n+1)x_n - 1} & \text{if } \frac{1}{n+1} \le x \le x_n \\ y_n \frac{nx - 1}{nx_n - 1} & \text{if } x_n \le x \le \frac{1}{n} \end{cases}$$

Of course the function f is continuous relative to d_1 and d_2 on [0,1]. But

$$\frac{d_2\left(f\left(x_n\right), f\left(\frac{1}{n+1}\right)\right)}{d_1\left(x_n, \frac{1}{n+1}\right)} > \frac{d_2\left(y_n, 0\right)}{\frac{1}{n} - \frac{1}{n+1}} > \frac{n\left(n+1\right)}{2}x_n > \frac{n}{2}$$

in such a way that the function f is not lipschitzian.

The behavior explained in the above example is not unexpected. Indeed, now we prove that each metric space X fails to have the property that all real valued (continuous or uniformly continuous) functions on X are lipschitzian, unless X has a finite number of points only.

THEOREM 3. Let (X, d) be a metric space. Are equivalent:

- (a) Each real valued continuous function on X is lipschitzian
- (b) Each real valued uniformly continuous function on X is lipschitzian
- (c) Each real valued function on X is lipschitzian
- (d) X is a finite set.

Proof. We need to prove only (b) \Rightarrow (c) \Rightarrow (d).

Proof of (b) \Rightarrow (c)

STEP 1. The set X' of all accumulation points of X is empty.

Suppose, on the contrary, that there exists an $x_0 \in X'$. Then the function

$$\phi\left(x\right) \doteq \sqrt{d\left(x, x_{0}\right)}$$

is uniformly continuous but not lipschitzian.

STEP 2. Each real valued function on X is uniformly continuous.

Suppose, on the contrary, that there is a function $f: X \to \mathbb{R}$ that is not uniformly continuous. Then we construct a function $g: X \to \mathbb{R}$ that is uniformly continuous but not lipschitzian. Since f is not uniformly continuous, there exist an $\varepsilon_0 > 0$ and two sequences $\{x_n\}$, $\{y_n\}$ in X for which $d(x_n, y_n) < \frac{1}{n}$ and $|f(x_n) - f(y_n)| > \varepsilon_0$ (so $x_n \neq y_n$).

Consider the function $g: X \to \mathbb{R}$ defined by

$$g(x) \doteq \begin{cases} 0 & \text{if } x \neq x_n \\ \sqrt{d(x_n, y_n)} & \text{if } x = x_n \end{cases}$$

Then g is not lipschitzian, of course, but it is uniformly continuous. Indeed, let $\varepsilon>0$ fixed. We choose $n_{\varepsilon}>\frac{1}{\varepsilon^2}$ and $\delta_{\varepsilon}>0$ in such a way that

$$\delta_{\varepsilon} < \min_{1 \le j \le n_{\varepsilon}} I\left(x_{j}\right).$$

A such δ_{ε} certainly exists by STEP 1. One can verify easily that $d(x,y) < \delta_{\varepsilon} \Rightarrow |g(x) - g(y)| < \varepsilon$.

Proof of (c) \Rightarrow (d)

Suppose, on the contrary, that X is an infinite set and let $\{x_n\} \subset X$ be a sequence of distinct elements of X. Then the function $h: X \to \mathbb{R}$ defined by

$$h\left(x\right) \doteq egin{cases} 0 & ext{if} & x
eq x_n \ nd\left(x_n, x_{n+1}\right) & ext{if} & x = x_n \ (n ext{ even}) \ 0 & ext{if} & x = x_n \ (n ext{ odd}) \end{cases}$$

is not lipschitzian, of course.

ACKNOWLEDGEMENTS

The author wishes to thank the referee for the useful comments and suggestions.

REFERENCES

- [1] ATSUJI, M., Uniform continuity of continuous functions of metric spaces, Pacific J. Math., 8 (1958), 11-16.
- [2] BEER, G., Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, *Proc. Amer. Math. Soc.*, **95**,4 (1985), 653–658.
- [3] BEER,G., More about metric spaces on which continuous functions are uniformly continuous, Bull. Austral. Math. Soc., 33 (1986), 397-406.
- [4] CHAVES, M.A., Spaces where all continuity is uniform, Amer. Math. Monthly, 92 (1985), 487-489.
- [5] HUEBER, H., On uniform continuity and compactness in metric spaces, Amer. Math. Monthly, 88 (1981), 204-205.
- [6] LEVINE, N., Uniformly continuous linear sets, Amer. Math. Monthly, 62 (1955), 579-580.
- [7] LEVINE, N., Remarks on uniform continuity in metric spaces, Amer. Math. Monthly, 67 (1960), 153-156.
- [8] LEVINE, N., SAUNDERS, W.J., Uniformly continuous sets in metric spaces, Amer. Math. Monthly, 67 (1957), 153-156.
- [9] MONTEIRO, A.A., PEIXOTO, M.M., Le nombre de Lebesgue et la continuité uniforme, *Portugaliae Math.*, **10,3** (1951), 105–113.
- [10] MROWKA, S.G., On normal metrics, Amer. Math. Monthly, 72 (1965), 998-1001.
- [11] RAINWATER, J., Spaces whose finest uniformity is metric, *Pacific J. Math.*, 9 (1959), 567-570.
- [12] SNIPES, R.F., Is every continuous function uniformly continuous?, Math. Magazine, 57,3 (1984), 169-173.
- [13] WATERHOUSE, W.C., On UC spaces, Amer. Math. Monthly, 72 (1965), 634-635.