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1. INTRODUCTION

M.R.F. Smyth proved in [9, Theorem 3.2] that the socle of a semiprimitive
associative Banach complex algebra coincides with the largest algebraic ideal.
Later M. Benslimane, A. Kaidi and O. Jaa showed [3] the equality between the
socle and the largest spectrum finite ideal in semiprimitive alternative Banach
complex algebras. In fact, they showed that every spectrum finite one-sided
ideal of a semiprimitive alternative Banach complex algebras is contained in
the socle.

In this note it is given a new proof of this last result by using the notion of
local algebra attached to an element of an (associative, alternative or Jordan)
algebra. Only the associative case will be considered here since there is no
essential difference between the associative and alternative cases.

This local approach is inspired by the method followed by O. Loos [7]
to solve the corresponding problem for Jordan Banach pairs, although this
author deals with the more general notion of subquotient.

2. PRELIMINARIES

Throughout this section and unless otherwise stated, A will denote an
associative algebra (not necessarily with a unit element) over an arbitrary
ring of scalars ®. ‘

'This work is supported by the “Convenio Marco de Cooperacién Hispano-Marroqui”.
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Every associative algebra A gives rise to a quadratic Jordan algebra A*
over the same linear structure as A and with quadratic operations z — z*
and z — U,, where U,y = zyz is the usual Jordan operator. This allows us to
apply techniques of the theory of Jordan algebras to the study of associative al-
gebras, which proves to be very useful when dealing with symmetrical notions,
that is, notions which remain invariant under passing to the opposite algebra,
and therefore can be stated in Jordan terms. Invertibility, semiprimeness,
primeness, von Neumann regularity and the Jacobson radical are examples of
symmetrical notions, as well as the notion of socle of a semiprime associative
algebra.

For a € A, the a-homotope of A, denoted by A(®), is the associative algebra
over the same linear structure as A with the new product z -, y = zay.

It is well known that the Jacobson radical, Rad(A), of an associative alge-
bra A consists precisely of the properly quasi-invertible (p.q.i.) elements, those
z € A for which all az (equivalently all za) are quasi-invertible (q.i.) in the
sense that 1 — az is invertible in the unital hull A’ of A, obtained by adjoining
a unit element to A if A is not unital. McCrimmon proved [8, Proposition 1]
the following result whose proof is here included for completeness.

LEMMA. The element az (za) is q.i. In the associative algebra A if and
only if z is q.i. in the homotope A®. Thus z is p.q.i. if and only if it is q.i in
all homotopes A(®),

Proof. First we note (see [4, Proposition 6, p.16]) that az is q.i. if and only
if so is za. Now, if z is q.i. in A(®), there exists v € A such that z+v = zav =
vaz. Multiply these equalities on the left by a to obtain az + av = (az)(av) =
(av)(az), which proves that az is q.i. in A. Suppose now that za and therefore
az as well are q.i. in A. Then the left multiplication operator L;_,, : A' — A’
and the right multiplication operator R;_,, : A’ — A’ are invertible. Since
A is a two-sided ideal of A’, their restrictions to A are also invertible. In
particular, there exist v and w in A such that L;_,,v = v — zav = —z and
Ri_,,w=w—waz = —z. Hence v = w and z is q.i. in A®. |J '

Recall that for a semiprime associative algebra A, the left socle of A coin-
cides with the right socle. This ideal is simply called the socle of A and will
be denoted by Soc(A). Looking at the Jordan structure of A, a ®-submodule
I of A is said to be an inner ideal of A if zA'z C I for every z € I. By [5,
2.6(1)], Soc(A) is the sum of all minimal inner ideals of A, where minimal is
taken with respect to the set of all nonzero inner ideals of A. It is easily seen.
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(1) If I is a minimal inner ideal of A and z € A, then either zIz = 0 or
zlz is a minimal inner ideal of A.

3. THE LOCAL ALGEBRAS OF AN ASSOCIATIVE ALGEBRA

Let A be an associative algebra and a and element of A. It is readily
seen that the set Ker(a) = Ker(U,), where U,: A — A is the linear operator
defined by = + aza, is an ideal of the a-homotope A(®), so we can consider
the quotient algebra A(¥/Ker(a), called the local algebra of A at a, and which
will be denoted by A,. We will write T € A, to denote the coset of an element
z €A :

An associative algebra A is called semiprimitive if the Jacobson radical
Rad(A) =0

PROPOSITION 1. Given a € A, the mapping = + aza from A® to A
induces a monomorphism of ®-modules ¢ : A, — A such that:

(i) p(Rad(A,)) = Rad(A) NaAa. Hence, if A is semiprimitive, then all its
local algebras are also semiprimitive.

(ii) The mapping I — o(I) is an isomorphism from the lattice of inner ideals
of A, onto the lattice of inner ideals of A contained in aAa.

Proof. (i) By the lemma, we just need to show that T is q.i. in (4,)¥ if
and only if aza is q.i. in AW, for all y € A; but this follows from the following
of equivalence:

T T wZ=T+Z=Z,T T <> (aza)y(aza) = axa + aza = (aza)y(aza)
where z € A.

(ii) Inner ideals of A, are of the form I for an inner ideal I of A(® such
that I O Ker(a), and clearly, for z € I,

(aza)A(aza) = a(zadaz)a = a(UY AD)a C ala,

where U(*) denotes the U,-operator in the a-homotope A(®. This proves that

ala = p(I) is an inner ideal of A, clearly contained in aAa.

Conversely, let K be an inner ideal of A contained in aAa. Then the set
I ={z € A:aza € K} is an inner ideal of A(® containing Ker(a). Indeed,
a(UWA®)a = a(zadaz)a = (aza)A(aza) C K because K is an inner ideal

of A, which completes the proof. N
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Remark. Note that if A is semiprime the converse of (i) is also true: If all
the local algebras of A are semiprimitive, then A is semiprimitive.

Recall that a € A is said to be von Neumann regular if a = aba for some
b € A. Note that if a is von Neumann regular with a = aba, then the mapping
z + aza defines an homomorphism of A(® into A® whose kernel is precisely
Ker(a), so this mapping induces an isomorphism of A, onto aAa regarded
as a subalgebra of A®). In particular, if e = e? is an idempotent, then A, is
isomorphic to ede. (Note that eAe is a subalgebra of A as well as of A(®).

PROPOSITION 2. Let A be an associative algebra and let a € A be von
Neumann regular with a = aba. Then b is a unit element of A,.

If A is semiprime, the converse is also true: If A, is unital with a unit
element b, then a = aba.

Proof. Suppose first a = aba. Then, for every z € A, we have a(zab—z)a =
az(aba)—aza = aza—aza = 0,50 T-,b = T for any T € A,. Similarly, b-,T = T,
which proves that A, is unital with a unit element &.

Assume now that A is semiprime and that A, is unital, and let b € A be
such that b is a unit element of A,. We claim that a = aba. Indeed, for any
z € A, we have

(a — aba)z(a — aba) = a(z — baz)(a — aba) = a(z — baz — zab + bazab)a =0

since b is a unit element of A,. Now (a — aba)A(a — aba) = 0 implies a = aba
by semiprimeness of A. |

The following result is a local characterization of the elements of the socle.

PROPOSITION 3. Let A be a semiprime associative algebra. Then all the
local algebras A, of A are also semiprime. Moreover, a € A is in the socle if
and only if A, is semisimple in the classical sense, equivalently, A, is unital
and coincides with its socle.

Proof. IfZ-,A,-.Z = 0 then (aza)A(aza) = a(zaAaz)a = 0, which implies
aza = 0 by semiprimeness of A, so Z = 0 which proves that A, is semiprime.

Suppose now that A, is semisimple, equivalently, A, is unital and coincides
with its socle. If b is a unit element of A,, then b = Z; + ... + Z,, where, for
each 1 < i < n, T; € I; with I; a minimal inner ideal of A,. Then, by
Proposition 2,

a=aba=aza+...+azma € p(l))+...+o(,),
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where for each 1 <4 < n, ¢(I;) is a minimal inner ideal of A by Proposition
1(ii). Thus, a € Soc(A).

To the converse, let a € Soc(A). By using the fact that every element
in the socle generates a principal right ideal determined by an idempotent
[2, F.1.7], it is easily seen that every element in the socle is von Neumann
regular. Hence a = aba, where without loss of generality, we may assume that
b € Soc(A). Then we can write a = aba = az1a + ... + az,a, where z; € I;
for some minimal inner ideal I; of A. Hence, by Proposition 1(ii) and (1),
b=7% +...+%, € Soc(4,), but by Proposition 2, b is a unit element of
A,. Therefore, A, is unital and coincides with its socle, equivalently, A, is
semisimple, as required. [}

4. THE LARGEST SPECTRUM FINITE IDEAL IN BANACH ALGEBRAS

Let A be an associative algebra over a field F'. The spectrum of an element
a € A is the set Sp(a, A) C F defined as follows:

Sp(a, A) U {0} = {\ € F*: \7'a is not q.i} U {0}

with 0 ¢ Sp(a, A) if and only if A is unital and a is invertible in A.
A direct consequence of the lemma is the following result concerning the
spectrum.

(2) Sp(z, A) U {0} = Sp(za, A) U {0} = Sp(az, A) U {0}.

By a normed algebra we will mean a (real or complex) associative algebra
A endowed with a norm making continuous the product of A. If this norm is
complete, then we will say that A is a Banach algebra.

PROPOSITION 4. Let A be a normed (Banach) algebra. Then every local
algebra A, of A is also a normed (Banach) algebra.

Proof. Tt is clear that the homotope A(®), with the same norm as A4, is a
normed (Banach) algebra. Moreover, Ker(a) is a closed ideal of A(®. Hence,
for the quotient norm, the local algebra A, is also a normed (Banach) algebra.

In the case of a normed algebra, it is possible to refine the characteriza-
tion of socle elements given in Proposition 3. This is a well known result
in the complex case (see, for instance, [9, 3.1(i)]), which is here included for
completeness.
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PROPOSITION 5. Let A be a semiprime normed algebra. Then z € A is in
the socle if and only if Az is finite dimensional.

Proof. By Proposition 3, z € Soc(A) if and only if A, is classically semisim-
ple, but A, is a normed algebra (Proposition 4), and a normed algebra is classi-
cally semisimple if and only if it is finite dimensional (apply Wedderburn-Artin
theorem [6, p.203] together with the structure of normed division algebras [4,
14. Theorems 2 and 7]). Finally, by Proposition 1, zAz is finite dimensional
if and only if so is A;. I :

As a direct consequence of the above proposition, we have that the socle of
a semiprime normed algebra A is algebraic in the sense that, for every a € A,
there exists a nonzero polynomial p(z) such that p(a) = 0. Hence Soc(A) has
finite spectrum [4, Prop. 5, p. 21].

THEOREM. Let A be a semiprimitive (complex) Banach algebra and let L
be a left ideal of A whose elements have finite spectrum. Then L is contained
in the socle of A.

Proof. Given a € L, it follows from (2) that Sp(z, A(®) is finite for every
z € A, and hence it is clear that each element of A, has also finite spectrum,
but A, is a semiprimitive Banach algebra (Propositions 1(i) and 4). Then,
by [1, 5.4.2], A, has finite dimension and hence aAa is finite dimensional by
Proposition 1. Therefore, a € Soc(A) by Proposition 5. |
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