Asymptotics for Quasilinear Equations with Nearly Critical Growth

MARHRANI EL-MILOUDI AND BRILLARD ALAIN

Université Hassan II Mohammedia. Faculté des Sciences Ben M'sik. B.P., 7955, Casablanca, Maroc

Université de Haute Alsace, Faculté des Sciences et Techniques, 4 Rue des frères Lumière, 68093, Mulhouse Cedex, France

(Research paper presented by W. Okrasiński)

AMS Subject Class. (1991): 35B05, 35J25

Received September 2, 1996

1. Introduction

Let Ω be a smooth, open, bounded and starshaped domain in \mathbb{R}^N , with $N \geq 3$; and 1 . We consider the following problem

$$(P_{\lambda \varepsilon}) \begin{cases} -div(|\nabla u|^{p-2}\nabla u) - \lambda u^{p-1} = u^{p^*-1-\varepsilon} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $p^* = \frac{Np}{N-p}$ is the critical Sobolev exponent, in the sense that the embedding of $W_0^{1,p}(\Omega)$ into $L^q(\Omega)$ is compact for $q < p^*$ and only continuous for $q = p^*$; λ and ε are nonnegative reals.

Let λ_1 be the first eigenvalue of the problem

$$(P) \quad \left\{ egin{array}{ll} -div(|
abla u|^{p-2}
abla u) = & \lambda |u|^{p-2}u & ext{ in } \Omega, \ u = & 0 & ext{ on } \partial\Omega. \end{array}
ight.$$

The eigenvalue λ_1 exists, it is simple and isolated (see for instance [1]).

It is well known that the problem $(P_{\lambda 0})$ has a solution only in the two following cases (see for instance [7] and [8]):

- i) $1 < p^2 \le N$ and $0 < \lambda < \lambda_1$,
- ii) $p^2 > N$ and $\lambda_* < \lambda < \lambda_1$, where λ_* is some positive constant.

In the case p=2, the asymptotic behavior of the solutions of $(P_{\lambda\varepsilon})$ has been intensively studied in the last years. In this paper, we will be concerned with the behavior of the solutions when ε goes to 0 or λ goes to λ_1 in the case 1 .

This paper is organized in the following way: in section 2 we will recall some existence and nonexistence results for $(P_{\lambda\varepsilon})$ and we will establish some a priori bounds. In section 3, we will study the epi-limits of the functionals associated to $(P_{\lambda\varepsilon})$ and in section 4, we describe the behavior of the solutions when λ goes to λ_1 or ε goes to 0.

2. Existence and nonexistence results

Let us first recall the following result (see for instance [7] and [8]).

THEOREM 2.1. (Pohozaev identity) Let $u \in W_0^{1,p}(\Omega)$ be such that

$$-div(|\nabla u|^{p-2}\nabla u) = f(u), \quad (u \in \Omega),$$

where f is some real function. Then for every $x_0 \in \Omega$ we have

$$N\int_{\Omega}F(u)dx-rac{N-p}{p}\int_{\Omega}uf(u)dx=rac{p-1}{p}\int_{\partial\Omega}(x-x_0,
u)\left(rac{\partial u}{\partial
u}
ight)^pd\sigma,$$

where $F(x) = \int_0^x f(t)dt$ and ν is the outward normal on $\partial\Omega$.

Let $I_{\lambda\varepsilon}$ be the functional defined on $W_0^{1,p}(\Omega)$ by

$$I_{\lambda arepsilon}(u) = \left\{ egin{array}{ll} \int_{\Omega} |
abla u|^p dx - \lambda \int_{\Omega} |u|^p dx & ext{ if } \int_{\Omega} |u|^{p^{ullet} - arepsilon} dx = 1, \ + \infty & ext{ otherwise} \,. \end{array}
ight.$$

PROPOSITION 2.2. i) Assume that $\varepsilon > 0$. Then, for all $\lambda < \lambda_1$, $I_{\lambda\varepsilon}$ has a positive minimizer $\bar{u}_{\lambda\varepsilon}$.

- ii) If $\varepsilon = 0$, there exists a nonnegative constant λ_* such that $I_{\lambda 0}$ has a positive minimizer $\bar{u}_{\lambda 0}$ if and only if $\lambda \in]\lambda_*, \lambda_1[$.
- iii) For all $\varepsilon \geq 0$, we have $-div(|\nabla \bar{u}_{\lambda\varepsilon}|^{p-2}\nabla \bar{u}_{\lambda\varepsilon}) \lambda \bar{u}_{\lambda\varepsilon}^{p-1} = I_{\lambda\varepsilon}(\bar{u}_{\lambda\varepsilon})\bar{u}_{\lambda\varepsilon}^{p^*-1-\varepsilon}$.
- iv) The function $u_{\lambda\varepsilon}$ defined by $u_{\lambda\varepsilon} = (I_{\lambda\varepsilon}(\bar{u}_{\lambda\varepsilon}))^{\frac{1}{p^*-p-\varepsilon}}\bar{u}_{\lambda\varepsilon}$ is a solution of $(P_{\lambda\varepsilon})$.

Proof. i) (a) $I_{\lambda \varepsilon}$ is proper. Indeed, for every $\varphi \in C_0^{\infty}(\Omega)$, we have

$$I_{\lambda\varepsilon}\left(\frac{\varphi}{\|\varphi\|_{p^*-\varepsilon}}\right)<+\infty.$$

- (b) $I_{\lambda\varepsilon}$ is lower semicontinuous for the weak topology of $W_0^{1,p}(\Omega)$: Let $(u_n)_n$ converge to u in the weak topology of $W_0^{1,p}(\Omega)$ and then, in the strong topologies of $L^p(\Omega)$ and $L^{p^*-\varepsilon}(\Omega)$. We may assume that $\liminf_{n\to+\infty}I_{\lambda\varepsilon}(u_n)<+\infty$, otherwise the conclusion is trivially reached. This implies the existence of a subsequence $(u_{n_k})_k$ of $(u_n)_n$ which belongs to the unit sphere of $L^{p^*-\varepsilon}(\Omega)$. Hence, so does u. We then deduce from the expression of $I_{\lambda\varepsilon}(u_n)$ that $\lim_{n\to+\infty}I_{\lambda\varepsilon}(u_n)\geq I_{\lambda\varepsilon}(u)$.
- (c) $I_{\lambda \varepsilon}$ is coercive on $W_0^{1,p}(\Omega)$, since $\lambda < \lambda_1$.

Properties (a)-(c) imply that $I_{\lambda\varepsilon}$ has a minimizer $\bar{u}_{\lambda\varepsilon}$ on $W_0^{1,p}(\Omega)$, which is positive in Ω by means of classical arguments.

- ii) For the existence of λ_* , one can see [7]. Recall that λ_* is equal to 0 if $N \geq p^2$ and λ_* is positive if $p^2 > N$.
 - iii) For every $\varphi \in C_0^{\infty}(\Omega)$ and every positive t, we consider

$$w_{\varepsilon t} = rac{ar{u}_{\lambda arepsilon} + t arphi}{\|ar{u}_{\lambda arepsilon} + t arphi\|_{p^* - arepsilon}}.$$

From the definition of $\bar{u}_{\lambda\varepsilon}$, we deduce

$$I_{\lambdaarepsilon}(w_{arepsilon t}) = rac{1}{\|ar{u}_{\lambdaarepsilon} + tarphi\|_{p^{f *}-arepsilon}^p} \left(\int_{\Omega} |
abla (ar{u}_{\lambdaarepsilon} + tarphi)|^p dx - \lambda \int_{\Omega} |ar{u}_{\lambdaarepsilon} + tarphi|^p dx
ight) \ \geq I_{\lambdaarepsilon}(ar{u}_{\lambdaarepsilon}) = \int_{\Omega} |
abla ar{u}_{\lambdaarepsilon}|^p dx - \lambda \int_{\Omega} |ar{u}_{\lambdaarepsilon}|^p dx.$$

By easy computations we obtain

$$I_{\lambda\varepsilon}(\bar{u}_{\lambda\varepsilon})\frac{\|\bar{u}_{\lambda\varepsilon} + t\varphi\|_{p^*-\varepsilon}^p - 1}{t} \le \frac{\|\nabla(\bar{u}_{\lambda\varepsilon} + t\varphi)\|_p^p - \|\nabla\bar{u}_{\lambda\varepsilon}\|_p^p}{t}$$
$$-\lambda \int_{\Omega} |\bar{u}_{\lambda\varepsilon}|^{p-1}\varphi \, dx + o(1).$$

It is easy to see that

$$\lim_{t\to o^+}\frac{\|\bar{u}_{\lambda\varepsilon}+t\varphi\|_{p^*-\varepsilon}^p-1}{t}=p\int_{\Omega}|\bar{u}_{\lambda\varepsilon}|^{p^*-1-\varepsilon}\varphi\,dx,$$

and,

$$\lim_{t\to 0^+}\frac{\|\nabla(\bar{u}_{\lambda\varepsilon}+t\varphi)\|_p^p-\|\nabla\bar{u}_{\lambda\varepsilon}\|_p^p}{t}=p\int_{\Omega}|\nabla\bar{u}_{\lambda\varepsilon}|^{p-2}\nabla\bar{u}_{\lambda\varepsilon}\nabla\varphi\,dx,$$

which gives,

$$I_{\lambda\varepsilon}(\bar{u}_{\lambda\varepsilon})\int_{\Omega}|\bar{u}_{\lambda\varepsilon}|^{p^*-1-\varepsilon}\varphi\,dx\leq \int_{\Omega}|\nabla\bar{u}_{\lambda\varepsilon}|^{p-2}\nabla\bar{u}_{\lambda\varepsilon}\nabla\varphi\,dx-\lambda\int_{\Omega}|\bar{u}_{\lambda\varepsilon}|^{p-1}\varphi\,dx.$$

If we replace φ by $-\varphi$ we obtain the required result.

iv) Follows immediately from (iii) and the definition of $u_{\lambda \varepsilon}$.

PROPOSITION 2.3. We have

$$\|\bar{u}_{\lambda\varepsilon}\|_p \leq c, \quad \|\bar{u}_{\lambda\varepsilon}\|_{W^{1,p}_o(\Omega)} \leq c, \quad \|u_{\lambda\varepsilon}\|_{W^{1,p}_o(\Omega)} \leq c,$$

for some constant c independent of ε and λ .

Proof. Since $\int_{\Omega} |\bar{u}_{\lambda\varepsilon}|^{p^*-\varepsilon} dx = 1$ for every λ and ε , one can prove using Hölder inequality, that $||\bar{u}_{\lambda\varepsilon}||_p \leq c_1$ for some constant c_1 independant of λ and ε . Let v be any element of $W_0^{1,p}(\Omega)$. Then,

$$I_{\lambda \varepsilon}(\bar{u}_{\lambda \varepsilon}) \leq \int_{\Omega} \left| \nabla \left(\frac{v}{\|v\|_{p^* - \varepsilon}} \right) \right|^p dx \leq c_2,$$

where c_2 is independent of λ and ε . And then, $\int_{\Omega} |\nabla \bar{u}_{\lambda\varepsilon}|^p dx \leq c_2 + \lambda_1 c_1$. The last assertion is a consequence of the definition of $u_{\lambda\varepsilon}$.

3. Epi-convergence of the functionals $I_{\lambda \varepsilon}$

The purpose of this work is to study the behavior of $\bar{u}_{\lambda\varepsilon}$ and $u_{\lambda\varepsilon}$ when λ goes to λ_1 or ε goes to 0. This will be done, using epi-convergence arguments. For this we begin by recalling this variational convergence

DEFINITION 3.1. ([2, Def. 1.9]) Let (X, τ) be a metric space, $(F_{\varepsilon})_{\varepsilon}$ and F_0 be functionals defined on X with values in $\mathbb{R} \cup \{+\infty\}$. We say that $(F_{\varepsilon})_{\varepsilon}$ epi-converges to F_0 in the topology τ if and only if the two following assertions are satisfied

- (EP1) For every $x \in X$, there exist $(x_{\varepsilon}^0)_{\varepsilon} \subset X$, such that $x_{\varepsilon}^0 \to x$ and $\limsup_{\varepsilon \to 0} F_{\varepsilon}(x_{\varepsilon}^0) \leq F_0(x)$.
- (EP2) For every $x \in X$ and every $(x_{\varepsilon}^0)_{\varepsilon} \subset X$ such that $x_{\varepsilon}^0 \to x$, we have $\liminf_{\varepsilon \to 0} F_{\varepsilon}(x_{\varepsilon}) \geq F_0(x)$.

THEOREM 3.2. ([2, Th. 1.10]) Assume that

- i) F_{ε} has a minimizer \bar{x}_{ε} on X,
- ii) The sequence $(\bar{x}_{\varepsilon})_{\varepsilon}$ is τ -relatively compact,
- iii) The sequence $(F_{\varepsilon})_{\varepsilon}$ epi-converges to F_0 , in τ .

Then, every limit point \bar{x} of the sequence $(\bar{x}_{\varepsilon})_{\varepsilon}$ is a minimizer of F_0 on X. And if $(x_{\varepsilon'})_{\varepsilon'}$ converges to \bar{x} , we have $\lim_{\varepsilon'\to 0} F_{\varepsilon'}(\bar{x}_{\varepsilon'}) = F_0(\bar{x})$.

PROPOSITION 3.3. ([2, p. 40]) Assume that $(F_{\varepsilon})_{\varepsilon}$ epi-converges to F_0 in the topology τ and that G is τ -continuous. Then, $(F_{\varepsilon} + G)_{\varepsilon}$ epi-converges to F + G in the topology τ .

LEMMA 3.4. (Brezis-Lieb) Let q > 1 and assume that $(f_k)_k$ converges to f in the weak topology of $L^q(\Omega)$ and almost everywhere in Ω . Then, we have

$$\lim_{k\to +\infty} \left(\int_{\Omega} |f_k|^q \, dx - \int_{\Omega} |f_k - f|^q \, dx \right) = \int_{\Omega} |f|^q \, dx.$$

This result has been established in [4] and can be extended in the following way (see [3]).

LEMMA 3.5. If $(u_{\varepsilon})_{\varepsilon}$ converges to u in the weak topology of $W_0^{1,p}(\Omega)$, we have

$$\lim_{\varepsilon \to 0} \left(\int_{\Omega} |u_{\varepsilon}|^{p^{*} - \varepsilon} \, dx - \int_{\Omega} |u_{\varepsilon} - u|^{p^{*} - \varepsilon} \, dx \right) = \int_{\Omega} |u|^{p^{*}} \, dx.$$

Let us recall also that the best constant S_N for the Sobolev embedding from $W_0^{1,p}(\Omega)$ into $L^{p^*}(\Omega)$ is defined by

$$S_N = \inf \left\{ \int_\Omega |
abla u|^p \, dx: \;\; u \in W^{1,p}_0(\Omega) \;\; ext{and} \;\; \int_\Omega |u|^{2^\star} \, dx = 1
ight\}.$$

 S_N is independent of Ω and is never achieved when Ω is bounded (see for instance [17]).

PROPOSITION 3.6. For every nonnegative and fixed ε , $(I_{\lambda\varepsilon})_{\lambda}$ epi-converges in the strong topology of $W_0^{1,p}(\Omega)$, when λ goes to λ_1 , to the functional $I_{\lambda_1\varepsilon}$.

Proof. Verification of (EP1): Let $u \in W_0^{1,p}(\Omega)$ and set $u_{\lambda}^0 = u$, for every $\lambda < \lambda_1$. If $\int_{\Omega} |u|^{p^* - \varepsilon} dx \neq 1$, we have $I_{\lambda \varepsilon}(u_{\lambda}^0) = +\infty$, which implies

$$\limsup_{\lambda \to \lambda_1} I_{\lambda \varepsilon}(u_{\lambda}^0) \le I_{\lambda_1 \varepsilon}(u).$$

If $\int_{\Omega} |u|^{p^*-\varepsilon} dx = 1$, we have

$$I_{\lambda arepsilon}(u_{\lambda}^0) = \int_{\Omega} |
abla u|^p \, dx - \lambda \int_{\Omega} |u|^{p^*} \, dx.$$

Then,

$$\limsup_{\lambda o \lambda_1} I_{\lambda arepsilon}(u^0_\lambda) = I_{\lambda_1 arepsilon}(u).$$

Verification of (EP2): Let $(u_{\lambda})_{\lambda}$ be any sequence converging to u in the strong topology of $W_0^{1,p}(\Omega)$. If $\int_{\Omega} |u|^{p^*-\varepsilon} dx = 1$, we have

$$\liminf_{\lambda o \lambda_1} I_{\lambda arepsilon}(u_\lambda) \geq \int_\Omega |
abla u|^p \, dx - \lambda_1 \int_\Omega |u|^p \, dx = I_{\lambda_1 arepsilon}(u).$$

If $\int_{\Omega} |u|^{p^*-\varepsilon} dx \neq 1$, u can't be the limit in the strong topology of $W_0^{1,p}(\Omega)$ of a sequence $(u_{\lambda})_{\lambda}$ of the unit sphere of $L^{p^*-\varepsilon}(\Omega)$. Hence,

$$\liminf_{\lambda o \lambda_1} I_{\lambda arepsilon}(u_\lambda) = +\infty = I_{\lambda_1 arepsilon}(u),$$

which ends the proof.

Let v_{ε} be a solution of the following variational problem

$$S_arepsilon = \inf \left\{ \int_\Omega |
abla v|^p \, dx \ : \ v \in W^{1,p}_0(\Omega) \ ext{ and } \ \int_\Omega |v|^{p^*-arepsilon} \, dx = 1
ight\}.$$

LEMMA 3.7. $(v_{\varepsilon})_{\varepsilon}$ is a minimizing sequence for S_N in the sense that

$$\lim_{\varepsilon \to 0} \frac{\|\nabla v_{\varepsilon}\|_{p}^{p}}{\|v_{\varepsilon}\|_{p^{*}}^{p}} = S_{N}.$$

Proof. Let $(w_j)_j$ be a minimizing sequence for S_N such that

$$\int_{\Omega} |w_j|^{p^*} dx = 1,$$

for all j. One has

$$\int_{\Omega} |\nabla w_j|^p \, dx \le S_N + o_j;$$

where $\lim_{j} o_{j} = 0$. We have

$$S_{\varepsilon} \leq \int_{\Omega} |\nabla \left(\frac{w_j}{\|w_j\|_{p^* - \varepsilon}} \right)|^p dx \leq \frac{1}{\|w_j\|_{p^* - \varepsilon}^p} (S_N + o_j),$$

and then,

$$\limsup_{\varepsilon \to 0} S_{\varepsilon} \le S_N + o_j.$$

On the other hand we have

$$S_N \le \frac{1}{\|v_{\varepsilon}\|_{n^*}^p} \int_{\Omega} |\nabla v_{\varepsilon}|^p dx$$

and

$$1 = \int_{\Omega} |v_{\varepsilon}|^{p^{\star} - \varepsilon} dx \leq (\int_{\Omega} |v_{\varepsilon}|^{p^{\star}} dx)^{\frac{p^{\star} - \varepsilon}{p^{\star}}} (meas(\Omega))^{\frac{\varepsilon}{p^{\star}}};$$

which gives

$$S_N \leq (meas(\Omega))^{\frac{\varepsilon}{p^*(p^*-\varepsilon)}} \int_{\Omega} |\nabla v_{\varepsilon}|^p dx \leq S_N + o_j.$$

And then,

$$S_N = \lim_{\varepsilon \to 0} \int_{\Omega} |\nabla v_{\varepsilon}|^p dx.$$

COROLLARY 3.8. $(v_{\varepsilon})_{\varepsilon}$ converges weakly to 0 in $W_0^{1,p}(\Omega)$.

Proof. It follows immediately from [17].

PROPOSITION 3.9. For every $\lambda \in]\lambda_*, \lambda_1[$, the sequence $(I_{\lambda\varepsilon})_{\varepsilon}$ epi-converges in the weak topology of $W_0^{1,p}(\Omega)$ to the functional I_{λ}^0 defined on this space by

$$I_{\lambda}^{0}(u) = \left\{ egin{array}{ll} \int_{\Omega} |
abla u|^{p} \, dx - \lambda \int_{\Omega} |u|^{p} \, dx + S_{N}(1-\int_{\Omega} |u|^{p} \, dx)^{rac{p}{p^{st}}} & ext{if} \quad \int_{\Omega} |u|^{p^{st}} \, dx \leq 1 \ +\infty & ext{otherwise} \, . \end{array}
ight.$$

Proof. Since the mapping $u \to \lambda \int_{\Omega} |u|^p dx$ is continuous on $W_0^{1,p}(\Omega)$ we can assume, using Proposition 3.3, that $\lambda = 0$.

Verification of (EP1): Let $u \in W_0^{1,p}(\Omega)$. If $\int_{\Omega} |u|^{p^*} dx > 1$ we have by setting $u_{\varepsilon}^0 = u$ for all $\varepsilon > 0$,

$$\limsup_{arepsilon o 0}I_{0arepsilon}(u_arepsilon^0)=+\infty=I_0^0(u).$$

Assume now that $\int_{\Omega} |u|^{p^*} dx \le 1$ and let

$$u_{\varepsilon}^{0} = \frac{u - bv_{\varepsilon}}{\|u - bv_{\varepsilon}\|_{p^{*} - \varepsilon}},$$

where $b = (1 - \int_{\Omega} |u|^{p^*} dx)^{\frac{1}{p^*}}$. $(u - bv_{\varepsilon})_{\varepsilon}$ converges weakly in $W_0^{1,p}(\Omega)$ and a.e. on Ω to u. By Lemma 3.4, we have

$$\int_{\Omega} |u - bv_{\varepsilon}|^{p^{*} - \varepsilon} dx - b^{p^{*} - \varepsilon} \int_{\Omega} |v_{\varepsilon}|^{p^{*} - \varepsilon} dx = \int_{\Omega} |u|^{p^{*}} dx + o(\varepsilon),$$

which gives

$$\lim_{\varepsilon \to 0} \int_{\Omega} |u - bv_{\varepsilon}|^{p^{*} - \varepsilon} dx = b^{p^{*}} + \int_{\Omega} |u|^{p^{*}} dx = 1.$$

The sequence $(|\nabla v_{\varepsilon}| dx)_{\varepsilon}$ converges weakly to 0 in $L^{p}(\Omega)$ and a.e. on Ω . By Lemma 3.4, we obtain

$$\lim_{\varepsilon \to 0} \left(\int_{\Omega} |\nabla u_{\varepsilon}^{0}|^{p} \, dx - \int_{\Omega} |\nabla (u_{\varepsilon}^{0} - u)|^{p} \, dx \right) = \int_{\Omega} |\nabla u|^{p} \, dx,$$

and then,

$$\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u_{\varepsilon}^{0}|^{p} dx = \int_{\Omega} |\nabla u|^{p} dx + S_{N} b^{p}.$$

Verification of (EP2): Let $(u_{\varepsilon}^0)_{\varepsilon}$ be a weakly convergent sequence in $W_0^{1,p}(\Omega)$ to some u.

If $\int_{\Omega} |u|^{p^*} dx > 1$, we have $\int_{\Omega} |u_{\varepsilon}^0|^{p^*-\varepsilon} dx \neq 1$ for all ε near 0 and then

$$\liminf_{\varepsilon \to 0} I_{\varepsilon}^{0}(u_{\varepsilon}^{0}) = +\infty \geq I_{0}^{0}(u).$$

Assume now that $\int_{\Omega} |u|^{p^*} dx \leq 1$ and that $\int_{\Omega} |u_{\varepsilon}^0|^{p^*} dx = 1$ for at least a subsequence of $(u_{\varepsilon}^0)_{\varepsilon}$. By the concentration compactness principle there exists two positive measures $d\mu$ and $d\nu$ such that

- (i) $(|\nabla u_{\varepsilon}^{0}|^{p} dx)_{\varepsilon}$ converges weakly in the sense of measures to $d\mu$,
- (ii) $(|u_{\varepsilon}^0|^{p^*} dx)_{\varepsilon}$ converges weakly in the sense of measures to $d\nu$,
- (iii) $d\mu \geq |\nabla u|^p dx + \sum_{i \in \Lambda} \mu_i \delta_{x_i}$,
- (iv) $d\nu = |u|^{p^*} dx + \sum_{i \in \Lambda} \nu_i \delta_{x_i}$

where Λ is at most countable, $x_j \in \bar{\Omega}$, μ_j and ν_j are nonnegative constants such that $\mu_j \geq S_N \nu_j^{\frac{p}{p^*}}$ for all $j \in \Lambda$. If we set $\Lambda_0 = \{j \in \Lambda : x_j \in \Omega\}$ we obtain from (i) and (ii) that

$$\lim_{arepsilon o 0} \int_{\Omega} |
abla u_{arepsilon}^0|^p \, dx = \int_{\Omega} d\mu \geq \int_{\Omega} |
abla u|^p \, dx + \sum_{j \in \Lambda_0} \mu_j,$$

and,

$$1 = \lim_{\varepsilon \to 0} \int_{\Omega} |u_{\varepsilon}^{0}|^{p^{\star}} dx = \int_{\Omega} d\nu = \int_{\Omega} |u|^{p^{\star}} dx + \sum_{j \in \Lambda_{0}} \nu_{j}.$$

Consequently,

$$\sum_{j\in\Lambda_0}
u_j=1-\int_\Omega |u|^{pst}\,dx=b^{p^st},$$

and

$$\begin{split} \liminf_{\varepsilon \to 0} \int_{\Omega} |\nabla u_{\varepsilon}^{0}|^{p} \, dx &= \int_{\Omega} d\mu \geq \int_{\Omega} |\nabla u|^{p} \, dx + \sum_{j \in \Lambda_{0}} \mu_{j} \\ &\geq \int_{\Omega} |\nabla u|^{p} \, dx + S_{N} \sum_{j \in \Lambda_{0}} \nu_{j}^{\frac{p}{p^{*}}} \\ &\geq \int_{\Omega} |\nabla u|^{p} \, dx + S_{N} \big(\sum_{j \in \Lambda_{0}} \nu_{j} \big)^{\frac{p}{p^{*}}} \\ &\geq \int_{\Omega} |\nabla u|^{p} \, dx + S_{N} b^{p} = I_{0}^{0}(u). \end{split}$$

PROPOSITION 3.10. When λ goes to λ_1 , the sequence $(I_{\lambda}^0)_{\lambda}$ epi-converges to the functional $I_{\lambda_1}^0$, in the strong topology of $W_0^{1,p}(\Omega)$.

Remark 3.11. If $\lambda = \lambda(\varepsilon)$ with $\lim_{\varepsilon \to 0} \lambda(\varepsilon) = \lambda_1$, then the functional $J_{\varepsilon} = I_{\lambda(\varepsilon)\varepsilon}$ epi-converges to $I_{\lambda_1}^0$ in the weak topology of $W_0^{1,p}(\Omega)$, but not in the strong topology of this space.

Indeed, let $u \in W_0^{1,p}(\Omega)$ such that $\int_{\Omega} |u|^{p^*} dx < 1$. If there exists a sequence $(u_{\varepsilon})_{\varepsilon}$ which converges strongly to u in $W_0^{1,p}(\Omega)$, we have $\int_{\Omega} |u_{\varepsilon}|^{p^*} dx < 1$ for every ε near 0. Then

$$\limsup_{arepsilon o 0} J_{arepsilon}(u_{arepsilon}) = +\infty > I_{\lambda_1}^0(u).$$

It follows that (EP1) is not satisfied.

From the above results we can deduce the following commutative diagram

$$I_{\lambda\varepsilon} \qquad \stackrel{\varepsilon \to 0}{\rightharpoonup} \qquad I_{\lambda}^{0}$$

$$\downarrow \lambda \to \lambda_{1} \qquad \qquad \downarrow \lambda \to \lambda_{1}$$

$$I_{\lambda_{1}\varepsilon} \qquad \stackrel{\varepsilon \to 0}{\rightharpoonup} \qquad I_{\lambda_{1}}^{0}$$

where the arrow \rightarrow (resp. \rightarrow) means an epi-convergence for the weak (resp. strong) topology of $W_0^{1,p}(\Omega)$.

4. Asymptotic behavior of $(\bar{u}_{\lambda \varepsilon})_{\lambda}$ and $(u_{\lambda \varepsilon})_{\lambda}$

Let φ_1 be the first eigenfunction of the problem (P) normalized by the condition $\|\varphi_1\|_{\infty} = 1$. We may assume that φ_1 is positive on Ω and we set $\bar{u}_{\lambda_1\varepsilon} = \varphi_1/\|\varphi_1\|_{p^*-\varepsilon}$, for all nonnegative ε .

PROPOSITION 4.1. For every nonnegative ε , when λ goes to λ_1 , the sequence $(\bar{u}_{\lambda\varepsilon})_{\lambda}$ converges to $\bar{u}_{\lambda_1\varepsilon}$, in the strong topology of $W_0^{1,p}(\Omega)$.

Proof. The sequence $(\bar{u}_{\lambda\varepsilon})_{\lambda}$ is bounded in $W_0^{1,p}(\Omega)$; then it contains a subsequence which converges weakly to a minimizer of the functional $I_{\lambda\varepsilon}$, namely $\bar{u}_{\lambda_1\varepsilon}$. We have

$$\int_{\Omega} |
abla u_{\lambdaarepsilon}|^p \, dx = \lambda \int_{\Omega} |ar{u}_{\lambdaarepsilon}|^p \, dx + I_{\lambdaarepsilon}(ar{u}_{\lambdaarepsilon}),$$

which converges to

$$\lambda_1 \int_{\Omega} |\bar{u}_{\lambda_1 \varepsilon}|^p dx + I_{\lambda_1 \varepsilon}(\bar{u}_{\lambda_1 \varepsilon}) = \lambda_1 \int_{\omega} |\bar{u}_{\lambda_1 \varepsilon}|^p dx = \int_{\Omega} |\nabla \bar{u}_{\lambda_1 \varepsilon}|^p dx,$$

when λ goes to λ_1 . On the other hand the p-laplacian being strongly monotone, there exists a constant c such that

$$\int_{\Omega} (|\nabla \bar{u}_{\lambda\varepsilon}|^{p-2} \nabla \bar{u}_{\lambda\varepsilon} - |\nabla \bar{u}_{\lambda_{1}\varepsilon}|^{p-2} \nabla \bar{u}_{\lambda_{1}\varepsilon}) (\nabla \bar{u}_{\lambda\varepsilon} - \nabla \bar{u}_{\lambda_{1}\varepsilon}) dx$$

$$\geq c \|\bar{u}_{\lambda\varepsilon} - \bar{u}_{\lambda_{1}\varepsilon}\|_{W_{c}^{1,p}(\Omega)}^{p}.$$

We have

$$\begin{split} \int_{\Omega} |\nabla \bar{u}_{\lambda\varepsilon}|^{p-2} \nabla \bar{u}_{\lambda\varepsilon} \nabla \bar{u}_{\lambda_{1}\varepsilon} \, dx &= \lambda \int_{\Omega} |\bar{u}_{\lambda\varepsilon}|^{p-1} \bar{u}_{\lambda_{1}\varepsilon} \, dx \\ &+ I_{\lambda\varepsilon} (\bar{u}_{\lambda\varepsilon}) \int_{\Omega} |\bar{u}_{\lambda\varepsilon}|^{p^{*}-1-\varepsilon} \bar{u}_{\lambda_{1}\varepsilon} \, dx, \end{split}$$

which converges to $\lambda_1 \int_{\Omega} |\bar{u}_{\lambda_1 \varepsilon}|^p dx$, when λ goes to λ_1 ; and,

$$\int_{\Omega} |\nabla \bar{u}_{\lambda_1 \varepsilon}|^{p-2} \nabla \bar{u}_{\lambda_1 \varepsilon} \nabla \bar{u}_{\lambda_\varepsilon} \, dx = \lambda_1 \int_{\Omega} |\bar{u}_{\lambda_1 \varepsilon}|^{p-1} \bar{u}_{\lambda_\varepsilon} \, dx,$$

which converges to $\lambda_1 \int_{\Omega} |\bar{u}_{\lambda_1 \varepsilon}|^p dx$, when λ goes to λ_1 . This results yields $\lim_{\lambda \to \lambda_1} \|\bar{u}_{\lambda \varepsilon} - \bar{u}_{\lambda_1 \varepsilon}\|_{W_0^{1,p}(\Omega)} = 0$.

COROLLARY 4.2. For all nonnegative ε , when λ goes to λ_1 , the sequence $(u_{\lambda\varepsilon})_{\lambda}$ converges to 0, strongly in the topology of $W_0^{1,p}(\Omega)$.

From the above diagram and Theorem 3.2, we obtain the following results.

THEOREM 4.3. We have the following commutative diagram

$$egin{array}{lll} ar{u}_{\lambdaarepsilon} & \stackrel{arepsilon o 0}{\longrightarrow} & ar{u}_{\lambda 0} \\ \downarrow \lambda o \lambda_1 & & \downarrow \lambda o \lambda_1 \\ ar{u}_{\lambdaarepsilon} & \stackrel{arepsilon o 0}{\longrightarrow} & ar{u}_{\lambda_1 0} \end{array}$$

and then, the following convergences

$$u_{\lambda\varepsilon}$$
 $\stackrel{\varepsilon\to 0}{\longrightarrow}$ $u_{\lambda 0}$ $\downarrow \lambda \to \lambda_1$ $\downarrow \lambda \to \lambda_1$

Let us recall the following result (see for instance [8, Prop. 13]).

PROPOSITION 4.4. Let $u \in W_0^{1,p}(\Omega)$ such that $-div(|\nabla u|^{p-2}\nabla u) = f$, where $f \in L^s(\Omega)$. If s > N/p, then $u \in L^\infty(\Omega)$ and we have $||u||_\infty \le c||f||_s^{\frac{1}{p-1}}$, where $c = c(N, p, meas(\Omega))$.

PROPOSITION 4.5. For all nonnegative ε , the sequence $(u_{\lambda\varepsilon})_{\lambda}$ is bounded in $L^{\infty}(\Omega)$ and, when λ goes to λ_1 , converges uniformly to 0.

Proof. Let f, g be the functions defined by

$$f(x) = \lambda x^{p-1} + x^{p^*-1-\epsilon}, \qquad g(x) = \lambda_1 x^{p-1} + x^{p^*-1-\epsilon},$$

for every nonnegative ε . Choose r such that $r/p^* > N/p$. If we multiply $(P_{\lambda\varepsilon})$ by $u^r_{\lambda\varepsilon}$ and integrate on Ω , we obtain

$$r\beta^{-p} \int_{\Omega} |\nabla u_{\lambda\varepsilon}^{\beta}|^p dx = \int_{\Omega} f(u_{\lambda\varepsilon}) u_{\lambda\varepsilon}^r dx, \tag{4.1}$$

where $\beta = (r - 1 + p)/p$. Since

$$\lim_{x \to +\infty} \frac{g(x)}{x^{p^*-1}} \le 1,$$

there exists a positive constant γ such that

$$g(x)x^r \le 2x^{p^*-1+r} + \gamma, \tag{4.2}$$

for all nonnegative real x. From (4.2) we deduce

$$\int_{\Omega} f(u_{\lambda\varepsilon}) u_{\lambda\varepsilon}^{r} dx \leq \int_{\Omega} g(u_{\lambda\varepsilon}) u_{\lambda\varepsilon}^{r} dx \leq 2 \int_{\Omega} u_{\lambda\varepsilon}^{p^{*}-1+r} dx + \gamma meas(\Omega). \quad (4.3)$$

By Hölder inequality we obtain

$$\int_{\Omega} u_{\lambda\varepsilon}^{p^*-1+r} dx \le \left(\int_{\Omega} u_{\lambda\varepsilon}^{\beta p^*} dx\right)^{\frac{p}{p^*}} \left(\int_{\Omega} u_{\lambda\varepsilon}^{p^*} dx\right)^{1-\frac{p}{p^*}}.$$
 (4.4)

And by the Sobolev inequality we have

$$S_N(\int_{\Omega} u_{\lambda\varepsilon}^{\beta p^*} dx)^{\frac{p}{p^*}} \le \int_{\Omega} |\nabla u_{\lambda\varepsilon}^{\beta}|^p dx. \tag{4.5}$$

Combining (4.1)-(4.5), we obtain

$$\left(S_N - 2\left(\int_{\Omega} u_{\lambda_{\varepsilon}}^{p^*} dx\right)^{1 - \frac{p}{p^*}}\right) \int_{\Omega} u_{\lambda_{\varepsilon}}^{\beta p^*} dx \leq \gamma meas(\Omega).$$

Since $(u_{\lambda \varepsilon})_{\lambda}$ converges to 0 in $W_0^{1,p}(\Omega)$, we have

$$S_N - 2(\int_{\Omega} u_{\lambda\varepsilon}^{p^*} dx)^{1-\frac{p}{p^*}} > 0,$$

for all λ near λ_1 . And, then we conclude that $(u_{\lambda \varepsilon})_{\lambda}$ is bounded in $L^s(\Omega)$, where $s = \beta p^*$.

Since s > N/p, $(u_{\lambda \varepsilon})_{\lambda}$ is bounded in $L^{\infty}(\Omega)$ and then, in $C^{1,\alpha}(\Omega)$, for some $\alpha \in]0,1[$; which gives the required result.

PROPOSITION 4.6. We obtain the following results

i) For every $x \in \Omega$, $\lim_{\lambda \to \lambda_1} \|u_{\lambda \varepsilon}\|_{\infty}^{-1} u_{\lambda \varepsilon}(x) = \varphi_1(x)$.

ii)
$$\lim_{\lambda \to \lambda_1} \int_{\Omega} |\nabla (\|u_{\lambda \varepsilon}\|^{-1} u_{\lambda \varepsilon} - \varphi_1)|^p dx = 0$$

Proof. Let $v_{\lambda\varepsilon} = \|u_{\lambda\varepsilon}\|_{\infty}^{-1} u_{\lambda\varepsilon}$, then we have

$$-div(|\nabla v_{\lambda\varepsilon}|^{p-2}\nabla v_{\lambda\varepsilon}) - \lambda v_{\lambda\varepsilon}^{p-1} = \|u_{\lambda\varepsilon}\|_{\infty}^{p^{\star}-p-\varepsilon} v_{\lambda\varepsilon}^{p^{\star}-1-\epsilon} \quad \text{in} \quad \Omega.$$

Since $(v_{\lambda\varepsilon})_{\lambda}$ is bounded in $L^{\infty}(\Omega)$, when λ goes to λ_1 , it converges uniformly to the solution of the equation of $-div(|\nabla u|^{p-2}\nabla u) = \lambda_1 u^{p-1}$, namely φ_1 ; which establishes (i).

For (ii) it suffices to remark that $(v_{\lambda\varepsilon})_{\lambda}$ converges weakly to φ_1 in $W_0^{1,p}(\Omega)$ and that $\int_{\Omega} |\nabla v_{\lambda\varepsilon}|^p dx$ converges to $\lambda_1 \int_{\Omega} \varphi_1^p dx = \int_{\Omega} |\nabla \varphi_1|^p dx$.

Proposition 4.7. Assume that p = 2. Then, we have

$$\mathrm{i)} \ \lim_{\lambda \to \lambda_1} (\lambda_1 - \lambda) \|u_{\lambda \varepsilon}\|_{\infty}^{\varepsilon + 2 - 2^*} = \frac{\|\varphi_1\|_{2^* - \varepsilon}^{2^* - \varepsilon}}{\|\varphi_1\|_2^2}.$$

ii) For every x in Ω ,

$$\lim_{\lambda \to \lambda_1} (\lambda_1 - \lambda) (u_{\lambda \varepsilon})^{\varepsilon + 2 - 2^*}(x) = \frac{\|\varphi_1\|_{2^* - \varepsilon}^{2^* - \varepsilon}}{\|\varphi_1\|_2^2} (\varphi_1(x))^{\varepsilon + 2 - 2^*}.$$

iii)
$$\lim_{\lambda \to \lambda_1} (\lambda_1 - \lambda)^{-\frac{2}{2^* - 2 - \epsilon}} \int_{\Omega} |\nabla u_{\lambda \varepsilon}|^2 dx = \lambda_1 \|\frac{\varphi_1}{\|\varphi_1\|_{2^* - \varepsilon}}\|_2^4.$$

Proof. (i) Let $v_{\lambda\varepsilon}$ defined as in the proof of the preceding proposition. We have

$$(\lambda_1-\lambda)\|u_{\lambdaarepsilon}\|_{\infty}^{arepsilon+2-2^*}\int_{\Omega}v_{\lambdaarepsilon}arphi_1\,dx=\int_{\Omega}(v_{\lambdaarepsilon})^{2^*-1-arepsilon}arphi_1\,dx.$$

If λ goes to λ_1 we obtain the required result.

(ii) and (iii) follow from (i) and the Proposition 4.6.

REFERENCES

- [1] Anane, A., Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris, 305 (1) (1987), 725-728.
- [2] ATTOUCH, H., "Variational convergence for functions and operators", Pitman, London, 1984.
- [3] BANDLE, C., Nonlinear elliptic equations involving critical Sobolev exponents: Asymptotic analysis via methods of epi-convergence, Z. Anal. Anwendungen, 13 (2) (1994), 1-13.
- [4] Brezis, H., Lieb, E., A relation between pointwise convergence of functions and convergence functionals, *Proc. Amer. Math. Soc.*, 88 (1983), 486-490.
- [5] Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.

- [6] Brezis, H., Peletier, A.L., Asymptotics for elliptic equations involving critical growth., in "Partial Differential Equations and the Calculus of Variations. Vol. 1", Dal Maso et al Eds. Birkhäuser, Basel, 1993, 149–192.
- [7] EGNELL, H., Existence and nonexistence results for m-laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988), 57-77.
- [8] GUEDDA, M., VERRON, L., Quasilinear elliptic equations involving critical Sobolev exponents, *Nonlinear Anal.*, **13** (8) (1989), 879–902.
- [9] GILBARG, D., TRUDINGER, T., "Elliptic partial equations of second order", Grundlehren der Mathematisches Wissenschaften, Vol. 224, Springer Verlag, Berlin, Heidelberg, 1977.
- [10] HAN, Z.C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré, 8 (2) (1991), 159-174.
- [11] GARCIA AZORERO, J.P., PERAL ALONSO, I., Existence and nonuniqueness for the p-laplacian: Nonlinear eigenvalues, Comm. P.D.E., 12 (1987), 1389-1430.
- [12] GARCIA AZORERO, J.P., PERAL ALONSO, I., Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, *Trans. Amer. Math. Soc.*, **323** (2) (1991), 877-895.
- [13] GARCIA AZORERO, J.P., PERAL ALONSO, I., On limits of solutions of elliptic problems with nearly critical exponent, *Comm. in P.D.E.*, **17** (11, 12) (1992), 2113–2126.
- [14] KNAAP, M.C., PELETIER, L.A., Quasilinear elliptic equations with nearly critical growth, *Comm. in P.E.D.*, 14 (1989), 1351–1384.
- [15] Lions, P.L., The concentation compactness principle in the calculus of variations. The limit case, part 1., Rev. Mat. Iberoamericana, 1 (1) (1985), 145-201.
- [16] LIONS, P.L., The concentation compactness principle in the calculus of variations. The limit case, part 2., Rev. Mat. Iberoamericana, 1 (2) (1985), 45–121.
- [17] LIONS, P.L., PACELLA, F., TRICARICO, M., Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, *Indiana Univ. Math. J.*, 37 (2) (1988), 301-324.
- [18] STRUWE M., "Variational Methods", Springer Verlag, Berlin, Heidelberg, 1990.
- [19] TALENTI, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
- [20] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.