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1. INTRODUCTION

Let Q be a smooth, open, bounded and starshaped domain in RV, with
N >3;and 1 < p < N. We consider the following problem

—div(|VulP2Vu) — AuP~t = wP 71=¢  in Q,
(Pae) u > 0 in Q,
u= 0 on 0N.

where p* = ITN_P; is the critical Sobolev exponent, in the sense that the em-

bedding of Wy ?(Q) into LY(Q) is compact for ¢ < p* and only continuous for
g = p*; X and ¢ are nonnegative reals.
Let \; be the first eigenvalue of the problem

P) —div(|VulP~2Vu) = AulP~>u  in Q,
u= 0 on Of.

The eigenvalue )\, exists, it is simple and isolated (see for instance [1]).
It is well known that the problem (Pyo) has a solution only in the two
following cases (see for instance [7] and [8]):

i) 1<p’<Nand 0< A< A,

ii) p2 > N and A\, < A < \;, where ), is some positive constant.
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In the case p = 2, the asymptotic behavior of the solutions of (P).) has
been intensively studied in the last years. In this paper, we will be concerned
with the behavior of the solutions when € goes to 0 or A goes to A; in the case
1<p<N.

This paper is organized in the following way: in section 2 we will recall
some existence and nonexistence results for (Py.) and we will establish some
a priori bounds. In section 3, we will study the epi-limits of the functionals
associated to (Py.) and in section 4, we describe the behavior of the solutions
when A goes to A; or € goes to 0.

2. EXISTENCE AND NONEXISTENCE RESULTS
Let us first recall the following result (see for instance [7] and [8]).
THEOREM 2.1. (Pohozaev identity) Let u € WP () be such that
—div(|VulP~2Vu) = f(u), (u€Q),

where f is some real function. Then for every z, € {2 we have

N/F uf(u)da:——/ (z — =0, )(g:j) do,

where F(z) = [ f(t)dt and v is the outward normal on OS.
Let I, be the functional defined on W, ?(Q) by

/ IVuldz — A / luPds i / P ~dz = 1,
Le(u) =4 " “ “
+00 otherwise.

PROPOSITION 2.2. i) Assume that € > 0. Then, for all A < A,, I, has
a positive minimizer 4y, .

ii) If e = 0, there exists a nonnegative constant A\, such that I, has a
positive minimizer Gy if and only if X €]A,, Ay [.
iii) For all € > 0, we have —div(|Viiy |P~2Viy.) — Miy, " = IAE(u,\E)u” —i-e,

iv) The function uy. defined by uy. = (I ,\5(17,,\5)):"-1104uAE is a solution of
(PAE)'
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Proof. i) (a) I, is proper. Indeed, for every ¢ € C5°(f2), we have

(2 ) < v
lpllpe <

(b) I,. is lower semicontinuous for the weak topology of Wy () : Let (tn)n
converge to u in the weak topology of Wy?(2) and then, in the strong topolo-
gies of LP(Q)) and LP"~¢(£2). We may assume that liminf,_, o Ix.(u,) < +00,
otherwise the conclusion is trivially reached. This implies the existence of a
subsequence (un,)r of (u,), which belongs to the unit sphere of LP"~¢().
Hence, so does u. We then deduce from the expression of I, (u,) that
liminf,, 4o Ine (un) > Ine (u)
(c) Iy is coercive on Wy ?(Q), since A < ;.

Properties (a)-(c) imply that I). has a minimizer %y, on Wy?(£2), which
is positive in {2 by means of classical arguments.

ii) For the existence of A,, one can see [7]. Recall that A, is equal to 0 if
N > p? and ), is positive if p> > N.

iii) For every ¢ € C$°(2) and every positive ¢, we consider

'a)\s + tSD

Wep = T,
7 e + tollpe—e

From the definition of %,., we deduce

_ 1
”"-_l')\e + t(,D

I)\s (wst ) P
p*—¢

( / IV (@xe + ) Pdz — A / e + t<p|”d:1:)
Q Q

> I (i) = /Q Vit [Pdz — A /Q |t |Pdz.

By easy computations we obtain

[ + 8ol =1 _ 9 (e + )15 = [V
t - t

- ,\/ lGre [P 0 dz + o(1).
Q

I)\s ("-_l')\e)

It is easy to see that

. 'l_l, +t pt_ h 1 -
lim “ Ae (p“p € =p/ Iﬂ)\elp .-1--5‘pd$,
Q

t—ot t
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and,

L V(e + )l — Vel

t—0t t

=p/ |Vﬁ,\5|”_2VﬁAEthdm,
Q
which gives,
T () / s dz < / Vit [P Vi Vo dz — A / [P o da.
Q Q Q

If we replace ¢ by —¢ we obtain the required result.
iv) Follows immediately from (iii) and the definition of u,.. 1

ProOPOSITION 2.3. We have
el < e, ”'U'/\E”WJ'P(Q) <g ”“As”wgm(g) <c
for some constant c independant of € and A.

Proof. Since [, |@s|P""°dz = 1 for every X and ¢, one can prove using
Hoélder inequality, that ||@,.||, < ¢; for some constant ¢; independant of A and
€. Let v be any element of W, *(2). Then,

De (e ) S/ v (||v

=)
Q p*—e¢
where ¢, is independant of A and €. And then, [, |V@,.|[Pdz < ¢ + Ajc;. The
last assertion is a consequence of the definition of u,.. §

p
dz S Ca,

3. EPI-CONVERGENCE OF THE FUNCTIONALS I,

The purpose of this work is to study the behavior of %), and u,. when A
goes to A; or € goes to 0. This will be done, using epi-convergence arguments.
For this we begin by recalling this variational convergence

DEFINITION 3.1. ([2, Def. 1.9]) Let (X,7) be a metric space, (F:). and
F, be functionals defined on X with values in R U {400}. We say that (F.).
epi-converges to Fy in the topology 7 if and only if the two following assertions
are satisfied

(EP1) For every z € X, there exist (z2). C X, such that z0 — z and
limsup F, (z?) < Fy(z).
e—0

(EP2) For every z € X and every (z2). C X such that z° — z, we have
lirri)iOanE(xE) > Fo(z).
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THEOREM 3.2. ([2, Th. 1.10]) Assume that

i) F. has a minimizer I. on X,
ii) The sequence (Z.). Is T-relatively compact,
iii) The sequence (F.). epi-converges to Fy, in 7.
Then, every limit point T of the sequence (Z.). is a minimizer of Fy, on X.

And if (z.). converges to T, we have lin}) F.(z.) = Fy (7).
g'—

PROPOSITION 3.3. ([2, p. 40]) Assume that (F.). epi-converges to Fy in
the topology T and that G is T-continuous. Then, (F, + G). epi-converges to
F + G in the topology T.

LEMMA 3.4. (Brezis-Lieb) Let ¢ > 1 and assume that (f;); converges to
f in the weak topology of L(Q2) and almost everywhere in Q. Then, we have

Jim ([1ndrde— [ 1= geas) = [ 1510 .

This result has been established in [4] and can be extended in the following
way (see [3]).

LEMMA 3.5. If (u.). converges to u in the weak topology of W,*(f), we

have
lim (/ |u6|p*_€ dx _/ er _ u|p~_s d:l:) — / Iulp* dz.
e—0 Q Q Q

Let us recall also that the best constant Sy for the Sobolev embedding
from Wy?(Q) into L?"(Q) is defined by

SN=inf{/ |VulPdz: ue WyP(R) and /|u|2*dx:1}.
Q Q

Sy is independant of © and is never achieved when Q is bounded (see for
instance [17]).

PROPOSITION 3.6. For every nonnegative and fixed €, (I).) epi-converges
in the strong topology of W, (), when )\ goes to A, to the functional Iy,..
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Proof. Verification of (EP1): Let u € Wy'P(Q) and set u} = u, for every
A< A If [ |ulP" ¢ dz # 1, we have I).(u3) = +oo, which implies

lim sup Iy (u) < Iy,c(u).
A=A

If [, |ulP" ¢ dz = 1, we have

I (u}) = / |Vul?P dz — /\/ |u|”' dz.
Q , Q

Then,

lim sup I (u3) = Iy, (u).
A=A

Verification of (EP2): Let (u,), be any sequence converging to u in the strong
topology of Wy ?(Q). If [, |u|?"~*dz = 1, we have

lim inf Iy, (uy) > / IVulP dz — Ay / P dz = I, ().
A=\ Q Q

If [, |u|P"~¢dz # 1, u can’t be the limit in the strong topology of W, *(f2) of
a sequence (uy), of the unit sphere of L?"~¢(Q). Hence,

llgilllfI)‘E(U,\) = 400 = I,\le(u),

which ends the proof. i

Let v, be a solution of the following variational problem
S, = inf{/ |VolPdz : v e WyP(Q) and / [v]P" ¢ dz = 1} .
Q Q

LEMMA 3.7. (v.). is a minimizing sequence for Sy in the sense that

IVueliz _

=0 ||v, N

P
p*

Proof. Let (w;); be a minimizing sequence for Sy such that
/ ijlp‘ dz =1,
Q

/{JVw,—]”dx < Sy +oj;

for all 5. One has
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where lim; 0; = 0. We have

w; 1
e [[19(1) pes s L5y 4o
< LV gl ) P2 S gy, O o)

J

and then,
limsup S, < Sy + o;.

e—0

On the other hand we have
1
Sy < —— / Vo |P dz
NS ol Jo !V

and

1=/|'v€
Q

Sy < (meas(Q))7E=a / |Vve|Pdz < Sy + o;.
Q

P~ dg < ( / e[ dz) 557 (meas(Q)) 5
Q

-

which gives

And then,
Sy = lim/ |V |P dz.
e—0 Jq

COROLLARY 3.8. (v.). converges weakly to 0 in Wy (Q).
Proof. It follows immediately from [17].

PROPOSITION 3.9. For every A €]\, \[, the sequence (I).). epi-converges
in the weak topology of Wy ®(Q) to the functional I3 defined on this space by

Jo IVulpdz — X [, |ulp dz + Sn(1— [, [ulP dz) 7 if [, |uf? dz <1
R(u)=
+o00 otherwise .

Proof. Since the mapping u — X [, |u|? dz is continuous on Wy?(Q) we
can assume, using Proposition 3.3, that A = 0.

Verification of (EP1): Let u € Wy P(Q). If [, |u
setting u® = u for all € > 0,

?"dr > 1 we have by

lim sup Io. (u?) = +oo = I3 (u).
e—0
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Assume now that [, |ul?" dz < 1 and let

0 u — by,

Up = ——————
< ”u_bvenp‘—s,

where b = (1 — [, Jul|” dz)?. (u — bv,). converges weakly in Wy*(Q2) and
a.e. on (2 to u. By Lemma 3.4, we have

/ |u — by |P" ¢ dz — b”‘_E/ [ve[P" ¢ dx = / lulP” dz + o(e),
Q Q Q
which gives

lim/ lu — bu [P~ dz = b +/ " dz = 1.
Q Q

e—0

The sequence (|Vv,|dz). converges weakly to 0 in L?(2) and a.e. on Q. By
Lemma 3.4, we obtain

lim (/ |Vu2|P dz — / |V (u — )P d:z:) = / |Vul? dz,
e—0 9] Q Q

and then,
lim / IVul]? dz = / IVul? dz + Swb.
e—0 Q Q

Verification of (EP2): Let (u?). be a weakly convergent sequence in W, **(1)
to some u.
If [, [u|P" dz > 1, we have [, [u2|P"~*dz # 1 for all € near 0 and then

linliglflf(ug) = +oo > I3 (u).

Assume now that [, |u”" dz < 1 and that [, [u2?" dz = 1 for at least a
subsequence of (u?).. By the concentration compactness principle there exists
two positive measures dy and dv such that

(1) (|Vu?|P dz). converges weakly in the sense of measures to du,
(ii) (|ul|”" dz). converges weakly in the sense of measures to dv,
(i) du > [VulPds + jep 1160,
(iv) dv = |u]P"dz + 3 cp vi0a;,
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where A is at most countable, z; € Q, p; and v; are nonnegative constants
£

such that p; > Syv/” for all j € A.
If we set Ap = {j € A: z; € Q} we obtain from (i) and (ii) that

I /V‘”’d =/d >/Vu"dz+ §
lim | [VuePde = | du> | |Vul > ou

Jj€Ao
and,
1=lim/ u°p‘dx=/dv=/up'da:+ V.
timg [ Jud o= [P dat 3o,
Consequently,
D v =1‘/ |uf?* dz = b,
J€Ao Q
- and

. . 0|p _ P .
luerlblonf/9|Vus| dx-/ﬂduZ/Q|Vu| dz + Zu,

J€Ao

> / IVuPdz + Sy 3 P
Q

J€Ao

> / |VulP dz + Sn( ) uj)f'_
Q

J€Ao

> / IVul? dz + Swb = IS (u).
Q
1

PROPOSITION 3.10. When X goes to A, the sequence (I?), epi-converges
to the functional I} , in the strong topology of WP(Q).

Remark 3.11. If A = A(e) with lim.,0 A(e) = A;, then the functional
Je = I\ epi-converges to I} in the weak topology of W,?(Q), but not in
the strong topology of this space.

Indeed, let u € Wy'?(Q) such that [, |u?" dz < 1. If there exists a sequence
(ue). which converges strongly to u in W, ?(2), we have [, |u.|”" dz < 1 for
every € near 0. Then

limsup J, (uc) = +o0 > I} (u).

e—0
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It follows that (EP1) is not satisfied.
From the above results we can deduce the following commutative diagram

e—0
I,\e —_ Ig
3 asn 3 ron
e—0 0
IA]E - I)q

where the arrow —(resp.—) means an epi-convergence for the weak (resp.
strong) topology of Wy ().

4. ASYMPTOTIC BEHAVIOR OF (fiy.)yx AND (uyxe)a

Let ¢, be the first eigenfunction of the problem (P) normalized by the
condition ||¢;]lcc = 1. We may assume that ; is positive on  and we set
Txe = @1/]¢1]|p+—e, for all nonnegative .

PROPOSITION 4.1. For every nonnegative €, when A goes to \;, the se-
quence (#y.)y converges to dy,., in the strong topology of Wy P ().

Proof. The sequence (&) is bounded in Wy?(Q); then it contains a
subsequence which converges weakly to a minimizer of the functional I,,,
namely @,,.. We have

-/ Vausel? dz = A / (Grel? dz + Iy (@ire),
Q Q
which converges to
A /,, e [P 47 + Inye (@ae) = M / |is,e|P dz = /Q Vi, |P dz,

when A goes to A;. On the other hand the p-laplacian being strongly mono-
tone, there exists a constant ¢ such that

/f)(lVﬁAeP’“?VfLAE — |Viiy, [P72Viy, ) (Vi — Vily,.) dz
Z c”ﬂ/\s - ﬂAlE”fVc}‘p(Q)'
We have
/Q|Vﬂ,\5|"'2Vﬁ,\EVﬁ,\lde = ,\/lem—‘ﬂmdz

+ I)\E(ﬂz\e) A |ak€|p._1_eﬁ)‘16 d.'l),
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which converges to A; [, |@,¢|? dz, when X goes to A;; and,
/Q |V'&,\15|”_2V17,MEV11A€ dzr = AI/Q lﬂ,\lel”‘lﬂxs dfl?,

which converges to \; [, |@,c|” dz, when X goes to A;. This results yields
limysx, 1Tre — Bnellwpr@) =0. 11

COROLLARY 4.2. For all nonnegative €, when A goes to A;, the sequence
(uxe)x converges to 0, strongly in the topology of W, ?(Q).

From the above diagram and Theorem 3.2, we obtain the following results.

THEOREM 4.3. We have the following commutative diagram

_ e—0 —
Ure — Uxg
3 r=en 3 ron
_ =0 _
’U‘AE - 'U',\lo

and then, the following convergences

e—0
Une — Uxo
3 r=an 3 A=
e—0
0 — 0

Let us recall the following result (see for instance [8, Prop. 13]).

PROPOSITION 4.4. Let u € Wy?(Q) such that —div(|Vu[P~2Vu) = f,

where f € L*(Q). If s > N/p, then u € L*(Q) and we have ||ul|o < c||f||37,
where ¢ = ¢(N,p, meas(Q)).

PROPOSITION 4.5. For all nonnegative €, the sequence (uy.)y is bounded
in L*(Q) and, when X goes to \;, converges uniformly to 0.

Proof. Let f, g be the functions defined by
f(z) = AgPt 4 zP 1, g(z) = MaP™t 4 2P 1,

for every nonnegative e. Choose r such that r/p* > N/p. If we multiply (Py.)
by u}. and integrate on (2, we obtain

rB" / IVl |P do = / F(une )i, da, (4.1)
Q Q



288 MARHRANI EL-MILOUDI, BRILLARD ALAIN

where 8 = (r — 1 + p)/p. Since

lim @) o
z—+oo pp -1

there exists a positive constant v such that
g(z)z" < 227 T 4, (4.2)

for all nonnegative real z. From (4.2) we deduce
/ flupe)ul, dr < / g(upe)ul, dz < 2/ w2 T dr 4 ymeas(Q). (4.3)
Q o) Q
By Holder inequality we obtain
[t do < ([ uff o) ([ ulldo) . (4.4)
Q Q Q
And by the Sobolev inequality we have
S / W dn)F < / IVl P d. (4.5)
Q Q

Combining (4.1)-(4.5), we obtain

-2
<SN -2 (/ ub, da:) ) / U dz < ymeas(Q).
Q Q

Since (ux)x converges to 0 in W, *(Q), we have
Sy — 2(/ W dz)'E > 0,
Q

for all A near X\;. And, then we conclude that (u,.) is bounded in L*(2),
where s = Gp*.

Since s > N/p, (uye)y is bounded in L*®(Q) and then, in C*(2), for some
a €]0, 1[; which gives the required result. 1

PROPOSITION 4.6. We obtain the following results
i) For every z € Q, limy_,y, [[uell2ure (z) = ¢1(z).

i) Timy s, /Q IV (el re — @1)|P dz = 0
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Proof. Let vy, = |lurellZluae, then we have

Popme-le gy QL

~div(|Voae P2 Vuy.) — )\v,\s

Since (vy.)x is bounded in L*(Q2), when X goes to A;, it converges uniformly
to the solution of the equation of —div(|Vu[P~2Vu) = A uP~!, namely ¢y;
which establishes (i).

For (ii) it suffices to remark that (vy.), converges weakly to ¢; in W, ?(Q)
and that [, |Vv,|P dz converges to A, [, ¢} dz = [ |Vei|Pdz. 1

PROPOSITION 4.7. Assume that p = 2. Then, we have

i) lim (A — )\)”u)‘5”5+2—2‘ _ ||<p1 3:;

ii) For every z in (,
i (s — 0),0)7" (2) = BUEZE g, @yyeva
o AL

i) Jim (\, — )77 / IVure|? dz = Ay -1

I
lle 1||

Proof. (i) Let vy defined as in the proof of the preceding proposition. We
have

(A = Allunel[22 / Vretpr dz = / (3e)2 "1 0, da.

If A goes to A; we obtain the required result.
(ii) and (iii) follow from (i) and the Proposition 4.6. NI
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