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1. INTRODUCTION

This work presents a setting for the formulation of the mechanics of grow-
ing bodies. By the mechanics of growing bodies we mean a theory in which
the material structure of the body does not remain fixed. Material points may
be added or removed from the body.

We consider two general kinds of growing body theories. The first, re-
viewed in Section 2 and discussed in [9], considers growing bodies whose parts
are identifiable throughout the various growth stages. Such growing bodies
are intended to model systems such as the human body where it is quite nat-
ural to assume that we can identify the parts and points in the body although
the material points (or cells) that they contain change during growth. The
growing body is defined as the set containing these identifiable points. Our
ability to identify the various growing body points can be motivated by an as-
sumption that they have different properties. The material points are assumed
to be elements of a material manifold—a Euclidean space for simplicity. A
growth stage is specified by means of an embedding of the growing body into
the material manifold and we refer to such an embedding as a content. The
image of the content contains the material points that constitute the body at
the corresponding growth stage.

The second theory, pertaining to symmetrically growing bodies, abandons
the assumption that the various growing body points are identifiable. As such,
it is intended to model phenomena like solidification or crystal growth. The

* Dedicated to the Memory of Etan Peled, March 18, 1979-July 18, 1995

tEditor’s Note: This paper was presented in the “Third Metting on Current Ideas in Me-
chanics and Related Fields” celebrated in Segovia (Spain) in June 1995 and it was intended
to appear in Extracta Mathematicae, Vol. 11, Nim. 1 (1996), where all the contributions
to this metting were collected. N

261
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term symmetry is used because this theory is obtained from the former when
one considers the action of the group of diffeomorphisms of the growing body
manifold on the various contents of the growing body. Specifically, we now
identify two contents if they differ by a diffeomorphism of the growing body.
Such an equivalence class of contents is traditionally referred to as a shape in
the global analysis literature.

The basic framework used in the formulation of the theories is the con-
struction of an infinite dimensional manifold structure for the configuration
space of a mechanical system (as in [8]), and then defining generalized veloci-
ties and generalized forces as elements of the tangent and cotangent bundles,
respectively. In both theories, the configuration spaces have structures of fiber
bundles. The base manifold in the case of growing bodies is the collection of
contents. For symmetrically growing bodies, the base manifold is the col-
lection of shapes of the growing body and its manifold structure is given by
[5], [6], [1], [2] and [7]. The fiber over a particular content or a shape is the
collection of the configurations of the image of the content or the shape, re-
spectively, in the physical space. In both cases, material velocity fields provide
connections on the respective fiber bundles.

This basic framework implies that forces are Schwartz distributions. Stress
theory is obtained by requiring these distributions to be of order one and
representing them by measures—the stress measures. Densities representing
these measures, if they exist, are the stress fields. Forces associated with the
growth of the body are analogous to Gurtin’s configurational forces (see [4]).
The stresses associated with the growth of the body are analogous to the
Eshelby tensor, [3].

2. REVIEW OF GROWING BODIES

The notion of a growing body is introduced in order to model a situation
in which the material structure of a body is not fixed so material points are
added and removed from the body. While the material structure is allowed
to vary, a growing body has additional structure that allows one to identify
its elements—the growing body points—throughout the growth of the body.
Thus we make the following definitions.

DEFINITION 2.1. A growing body, B, is a compact three dimensional sub-
manifold with a boundary of a three dimensional Euclidean space.
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DEFINITION 2.2. The material manifold is a three dimensional Euclidean
space M with tangent space V. ‘

DEFINITION 2.3. A content of the growing body B is a smooth embedding
c: B— M.

The material manifold represents the collection of material points, and as such,
the image of the growing body under a content is a simple body of continuum
mechanics. The collection of all contents of the growing body, the content
space, is Emb(B, M). In the following, the physical space will be modeled by
R3.

DEFINITION 2.4. A configuration x of the growing body is a smooth em-
bedding «: ¢{B} — R3, for some content c.

Since c¢{B} is a simple body, Q) = Emb(c{B}, §R3 is the collection of its
configurations in space. The configuration space of the growing body is there-
fore

QB = UQc{B}’ c € Emb(B, M).

The mapping 7: Qg — Emb(B, M) such that w(k) = c if & € Q(py will be
referred to as the configuration space projection. The following proposition is
an application of a standard result (e.g., [7]) on spaces of embeddings.

PROPOSITION 2.1. The content space is an open subset of C™(B, M), and
as such, it is a Frechet manifold whose tangent space at any content may be
identified with C*(B, V). Similarly, Q.(py is open in C™(c{B}, R®) 50 Q (s; is
a Frechet manifold whose tangent space at any configuration can be identified

with C™(c{B}, R®).

PROPOSITION 2.2. The configuration space of the growing body has the
structure of a trivializable fiber bundle whose typical fiber is Emb(B, R?).

Proof.” A natural global fiber bundle chart
&: Qg — Emb(B, M) x Emb(B, R®)

is defined on Qg by &(k) = (7(k), k o m(K)).

For a configuration x of the growing body, the second component e =
ko m(k) of &(x) will be referred to as the extent corresponding to .
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DEFINITION 2.5. A generalized velocity is an element £ of the tangent
bundle T'Q3.

Using the global chart &, a generalized velocity may be represented by (¢, é) €
C™(B,V) x C™(B,R?) to which we will refer as the growth rate and extent
rate, respectively.

DEFINITION 2.6. A material velocity field v is an element of the vertical
subbundle VQp C TQ@s, i.e., v € TxQc(g), ¢ = (k) for some « € Qp.

The term “material velocity field” is used because an element of T,,Qc(5},
represents a generalized velocity of the simple body ¢{B} at its configuration
£ in space.

PROPOSITION 2.3. There is a natural connection on T'()p such that the
vertical component associated with a generalized velocity k£ € T,Qp is given
by

v(X) =éoc ! (X) — Dr(X)(éoc7 (X)),

where, (¢, é) are the representatives of k in the global chart & and D is the
differentiation operator.

Proof. Consider the following diagram.

Inclusion Tw

TuQes) == TxQs === T.Emb(B, M)

A

T.®|| T~ PLT
T.Emb(B, M) x T.Emb(B, R®)
Here,
I': T.Emb(B, M) = C7(B,V) = C7(B,V x ®°) = T,.3{T,.Qz)}
is defined by I'(¢) = (1, Dk o c)(é), i.e., I'(¢) = (¢)(¢(¢), Dig(ey(¢(¢))) and
A: T,Emb(B, M) x T,Emb(B,R*) — T,Emb(B, ®®)

is defined by A = ¢ *opryo (1-1Io pri), where asterisks denote pullbacks,
e.g., ¢*(v) := vocand ¢ *(¢) := ¢ o c™1*. Hence, specifically,

A(é, €)=¢éo cl— Dk(éo c_l).
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From the definitions it follows that pr; o I’ = 1, and (I — I" o pr1)(¢,é) =
(0,é — (Dk o ¢)(¢)). The mappings I" and A are defined so as to make the
diagram commutative.

Generalized forces are elements of the cotangent bundle of the correspond-
ing configuration space. In the sequel we denote dual spaces and cotangent
bundles by asterisks. In particular, we have the following definitions.

DEFINITION 2.7. A content force f. at the content c¢ of the growing body
is an element of TEmb(B, M) = C*(B,V)*. An extent force f. at the extent
e is an element of TyEmb(B,R%) = C™(B,R*)*. A simple body force on
the simple body B at the configuration x: B — R? is an element f,, of
T*Emb(B,R?) = C™(B,R*)*. A growing body force fz at the configuration
K is an element of T Q5.

We can use the global chart @ in order to represent growing body forces by
means of content and extent forces. Thus,

Ti®: T*Emb(B,M) x T;Emb(B,R*) - T:Qp, e=kKoc
gives the representation

f8(R) = T (fe, fo) (k) = fe(é) + fe(é),

where (¢, €) are the representatives of the generalized velocity & under the
chart &.

Similarly, the decomposition (T, A), provided by the connection, induces
the mapping

(Tm,A)": (Tr(x)Emb(B, M) X TxQ.(5y)* = T, Qs

that gives a representation of fz by means of a force f, € ToEmb(B, M) and
a simple body force f,, in the form

f8(k) = [(Tm, A)* (fa, f)l(K) = fa(€) + fm(v), ¢é=Tn(k), v = A(K).

The situation is illustrated in the following diagram.

Inclusion* T*m

T;:Qc{B} — QA T:QB ad Tc*Emb(Ba M)

A * - /
\ T,:QHT,:QS‘I %

T*Emb(B, M) x T*Emb(B, R?)
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The relation between the various components representing a growing body
force are given by

¢=fa—fmo(Droc ) oc
fe=1Imo c ',

whose inverse relations are

fo=fe+ feo(Droc)
fm = feoc".

First order stress theory is obtained if one assumes, as we do for the rest
of this section, that forces are distributions of order one. Such forces are
represented by stress measures (see [8] and [10]). For the sake of simplicity
we assume that the various stress measures are given in terms of smooth
densities with respect to the volume measures on the various regions. (See [9]
for a general presentation.) The representation using the stress densities is of
the form

fg(k):/é-sc dVB—i-/Dé-S’c dVB—i-/é-se dVB+/Dé-Se dVg.
B B B

Here, the first two terms on the right represent f., the last two represent fe,
the vector fields s, and s, are the ambient force fields and the tensor fields S,
and S, are stress tensor fields. Using the Gauss theorem one can rewrite the
last equation in terms of body force fields b., b, and surface force fields ¢, t.,
satisfying,

te = Se(n), te = Se(n), on 0B,

be = sc—DivS,, be=s,— DivS,, on B,

in the form
f8(k) =/(c’-tc+é-te) dA3+/(c"bc+é-be) dVs.

oB B

Similarly, it is possible to use stress fields for the representation of the com-
ponents f, and f,, to obtain

fe(k) = [(oc™!)-sqdV + [ D(¢oc™t)- SudV
/ /

B

+/v-sde+/Dv-Sde.
B B
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Here, B = ¢{B} and V is the volume on B. The representation by force fields
is of the form

fB(R)= [(€-ta+V-tn)dA+ | (¢-ba+V-by)dV,
] /

where,

te = Sa(n), tm = Sm(n), on 0B,
ba == 3a - Div Sa, bm == Sm - DiV Sm, on B,

and A is the area measure on 9B.

3. KINEMATICS OF SYMMETRICALLY GROWING BODIES

The foregoing discussion assumed that points in the growing body kept
their identities though the various content mappings. The physical motiva-
tion behind this assumption is that the various points in the growing body
have properties that vary smoothly over the body. These measurable (in the
physical sense) properties are used in order to identify these points.

The present section abandons this assumption and we consider a growing
body that is homogeneous in the sense that it is not possible to distinguish
between the growing body and its image under a diffeomorphism. Consider
the action ¥ of the group of diffeomorphisms of B, Diff(B), on the content
space Emb(B, M), given by

¥ : Emb(B, M) x Diff(B) - Emb(B, M), ¥(c,g) =cog, g € Diff(B).

If ¢y = ¢; o g for some diffeomorphism g then their images, the simple bodies
c2{B} and c;{B}, are identical. Hence, Q.,(8} = Qc,(8), i-e., the fibers of Qg
over them are identical. If the body is homogeneous so that the distribution
of the properties in the growing body is not affected by diffeomorphisms of B,
the physical motivation for our ability to identify the elements of the growing
body is no longer valid and one has to identify two contents c;, cy satisfying
co = c1 0 g. Thus, we have an equivalence relation ¢ on Emb(B, M).

DEFINITION 3.1. The space of shapes of a symmetrically growing body is
the quotient set S = Emb(B, M)/p. An element x € S will be referred to as
a shape (see [5], [7], [1] and [2]).
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Thus, for a symmetrically growing body the role of the contents is assumed by
shapes. As we have seen above, an equivalence class Y € S can be identified
with the image of any of its members—a simple body. In the following we
will use this identification and, for example, we write @, for the collection of
configurations in space of the simple body x. It seems to us that the notion of
a shape of a symmetrically growing body is similar to the notion of a control
volume used by Gurtin [4].

In order to formulate mechanics in this situation, one has to provide S
with a differentiable structure. This has been done in a general situation by
(1], (2], [5], [6] and [7].

PROPOSITION 3.1. The collection S is a Frechet manifold. A chart on S
is constructed as follows. Let xo be a shape and let n: Oxo X R —» W C
M be a tubular neighborhood of 0xo in M. There is a neighborhood U C
C™(0x0) (C™(8xo) is the space of smooth functions on Oxo) such that & :
U —8,9(u) = {n(X,u(X))| X € Oxo} is a chart on S.

Since M has a Euclidean metric, we can use tubular neighborhoods that
are normal to the boundary dx. The tangent space TS can be identified
with the space of smooth sections of the normal bundle v : N — 9x to the
boundary of x. In other words, just as we have taken equivalence classes of
embeddings under the action of the group of diffeomorphisms to construct S
from Emb(B, M) the tangent space T)S can be obtained by taking equiva-
lence classes in C°(B, V), the tangent space to Emb(, M), under the action
of infinitesimal diffeomorphisms—vector fields on B that are tangent to its
boundary. The resulting equivalence classes are the sections of the normal
bundle. In the sequel we will identify an element x € Ty S with the single
component, a C~ function, that the corresponding normal vector field has
with respect to the outward unit normal n to Jy.

DEFINITION 3.2. The configuration space of a symmetrically growing body
is
Q= U Qx-

XES

Charts on @ are constructed by extending artificially normal vector fields
on dx to x in order to generate diffeomorphisms of x with the images of
neighboring shapes. This is done using the dragging of the domain of [5]
defined as follows.
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DEFINITION 3.3. Let 17: Oxo X ® & W C M be a tubular neighborhood
of Oxp in M. A dragging of the domain x along 7 is a differentiable mapping
6 : U — Diff” (M), with U ¢ C™(0x0) a domain of a chart : U — S, ®(u) =
{n(X,u(X))| X € 8xo} containing 8o, that satisfies:

(i) 6(u) = (X)n(X,u(X)) for all X € dxqo,
(i) 5(0) = Zar, |
(iii) d(u)(X) # X only in a neighborhood of dx( contained in W.

It is possible to show (see [5]) that such a dragging of the domain can always be
constructed. Once a dragging of the domain is given, one can construct a local
trivialization in a neighborhood of xo. If x = ®(u) = {n(X,u(X))| X € dxo},
u € U the diffeomorphism Q,, — Q, is given by kg — Ko 0 d(u)™".

PROPOSITION 3.2. The configuration space @ is a bundle ts : Q@ — S
whose fiber at x is Q, = Emb(x, R*). The fibers are isomorphic to Emb(B, R*)—
the space of extents.

Unlike the case where the symmetry requirement was not imposed, there is
no natural identification of @, with Emb(B,R?) because x is not a unique
embedding but an equivalence class.

We recall that the tangent space T,Qp was identified with

C™(B,T(M x ®)) = C™(B,V x ®2).
Using charts, an element £ € T,Q can be identified with a pair
(X, €) € C™(v) x C™(B, %),

containing a section of the normal bundle and an extent rate.
Consider an
X € Interior(x) C M

and a motion «(t) in Q such that x(0) € Q. Then, X is in the interior
of the images of x(t) = ms(x(t)) for ¢ in a neighborhood of zero. Thus, the
value k(t)(X) is well defined for all ¢ in that neighborhood of the zero and the
derivative, the material velocity field,

v(X) = SO,

can be calculated. It can be shown that v is well defined even on the boundary
of x and in fact v is C" 7" if k is C” (see [11]). As in Section 2 we use A to
denote the mapping & +— v.
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PROPOSITION 3.3. The mapping A is the vertical projection of a connec-
tion on Q).

4. FORCES ON SYMMETRICALLY GROWING BODIES
In accordance with the general setting we make the following definition.

DEFINITION 4.1. A force on a symmetrically growing body at the config-
uration £ € @ is an element of T} Q.

The decomposition (T'm, A): TxQ — Tr(x)S X C™(x, R?) generates a decom-
position of forces. Thus, a force on a symmetrically growing body may be
represented in the form

f(&) = fs(Tm(k)) + fm(A(R)) = fs(X) + fm(v).

The force f,, and its representation by stresses were considered in Section 2.
Note that since shapes are invariant with respect to diffeomorphisms of B,
one cannot use a shape to pull back fields defined on x onto B as was done
in section 2. For this reason we must use the representation by fields defined
on the identifiable x, i.e., by fm as in section 2. Forces in T3S have been
considered in [12].

DEFINITION 4.2. A shape force fs at the shape x is an element of TyS

that is continuous with respect to the C' norm when T, S is identified with
the space of C™ sections of the normal bundle.

PROPOSITION 4.1. A force fs can be represented in the form

fsx) = [ dos+ [ Di-dzs,
ax ax
where o is a real valued measure over 0x and X's is a measure over Jx valued

in T'Ox.

The measures representing the shape force (accretive force in the terminology
of [12]) are the corresponding stress measures. If stress measures that repre-
sent the shape force are given, the force may be restricted to a two dimensional
submanifold P of dx by

fsp(0) = [ xdos+ [ Dx-dzs

P P
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Since O has no boundary, the stress measures can be approximated by smooth
densities with respect to the area measure on dx. Thus we have the following.

PROPOSITION 4.2. Every shape force fs may be approximated with arbi-
trary accuracy by the smooth real function s; over 0x and a smooth vector
field tangent to Ox in the form

fs(x) = /()’css + Dx - Ss) dA.
Ox

If s; and Ss are given, then, the force fsp for a two dimensional submanifold
with boundary P of Ox is given by

fs00 = [ xbsaa+ [x-tsdL,

P oP

where DivSs + bsss on P and Ss- A =ts on OP. Here, X is the unit normal
on Ox to OP. The field bs is the shape body force and the field ts is the shape
surface force.

Clearly, when we consider the whole of x, d(0x) = 0 and the second
integral vanishes.

The representation of a symmetrically growing force by smooth stress fields
is therefore in the form

f(k) = /()’(ss +D)'(-S’s)dA+/(v-sm+Dv-Sm)dV,
ox X
and the representation in terms of body forces and surface forces is

f(f'c)=/>’(b,gdA+/v-tmdA+/v-bde.

Ox ox X
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