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1. INTRODUCTION AND MAIN DEFINITIONS

Let X be a Banach space and let Y be a finite dimensional subspace. We
denote the unit ball of X by B(X). Let P: X — Y be some continuous linear
projection. Then P(B(X)) D B(Y) and P(B(X)) is a convex, symmetric with
respect to 0, bounded subset of Y. It is very natural to consider the following
question: How small can be made the set P(B(X)) under a proper choice of
P7? 1t is clear that the word “small” has a vague meaning in this context.

For one of the possible meanings of the word “small” this question was in-
vestigated in very many papers, I mean investigations of projection constants.
But to the best of my knowledge for other notions of “smallness” the question
was not considered.

In order to investigate the question it is natural to introduce the following
definition.

Let X be a finite dimensional normed space.

DEFINITION 1. A symmetric with respect to 0, bounded, closed convex
body A C X will be called a sufficient enlargement for X (or of B(X)) if for
arbitrary isometric embedding X C Y there exists a projection P: Y — X
such that P(B(Y)) C A.

*The research was partially supported by the ISF grant K3Z100, the final version of the
paper was prepared when the author was visiting the University of Michigan (Ann Arbor).
The author would like to thank M.S.Ramanujan for his hospitality.
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Convention. We shall use the term ball for symmetric with respect to 0,
bounded, closed convex body with nonempty interior in a finite dimensional
linear space.

Remark. 1t is clear that we have the following identity for the absolute
projection constant

AMX) =inf{A € R" : X\-B(X) is a sufficient enlargement for X}.

We use standard definitions and notation of Banach space theory (see [5], [12]).

2. SOME EXAMPLES AND OBSERVATIONS

Let A be a ball in a finite dimensional space X. The space X normed by
the gauge functional of A will be denoted by X 4.

We start with some simple observations. Their proofs are straightforward
and we omit them. By v, we denote the L. —factorable norm (see [12],

(p- 95)).

PROPOSITION 1. A ball A is a sufficient enlargement for X if and only if
Yoo(I) < 1, where I is the natural identity mapping I: X — X 4.

COROLLARY 1. If X andY are R™ with different norms and B(X) C B(Y)
then every sufficient enlargement for Y is a sufficient enlargement for X.

COROLLARY 2. Let T: X — Z be an invertible linear operator between
finite dimensional normed spaces. Then

Yoo (T) - T~H(B(2))
is a sufficient enlargement for X.

Remark 1. Of course the statement of Proposition 1 remains true if we
replace Yo, (T') by a greater norm on the space of operators, e.g. by m(T).

This observation is useful for example for those spaces X for which there
exist good estimates of my(T') for some operators T': X — l,. In particular,
by the well-known fact mo(I: I} — I3) =1 (see e.g. [8]), B(I}) is a sufficient
enlargement for {7 for every n € N. The analogous assertion is true for “most”
of random n-dimensional quotients of 12" (see [8] and [11]).
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Remark 2. Estimates of v, —norms of natural embeddings I} — 7' see
in [2].

COROLLARY 3. A symmetric with respect to 0 parallelepiped containing
B(X) is a sufficient enlargement for X.

PROPOSITION 2. [4] Convex combination of sufficient enlargements for X
is a sufficient enlargement for X.

The same is true for integrals with respect to probability measures. In
order to make this statement precise we need to introduce a notion of integral
of function, whose values are convex subsets in R”.

I introduce the notion of integral for convex body—-valued functions as some
mixture of Riemann and Lebesgue integrals. This definition of integral is
somewhat unnatural, but it is sufficient for our purposes and at the moment
I do not want to overcome difficulties which appear for more general notions
of integral.

Let M be a compact metric space with a regular Borel probability measure
. (The main example for us is the group of orthogonal matrices in R or its
closed subgroups with the normalized Haar measures).

The set of all compact convex subsets of R* will be denoted by C(n). We
shall consider C(n) as a metric space with the Hausdorff metric:

d(A, B) = max{supdist(a, B), supdist(b, A)}.
a€A beB

Recall the following well-known fact: C(n) is complete with respect to d.
For this and other results on convex bodies we refer to [9].

Let f: M — C(n) be a continuous function.

DEFINITION 2. The integral of f with respect to measure p is defined to

be
k(A)

& [, Somdutm) = i 3 @A) (),
where A is a pair consisting of a partition of M onto a finite number of
measurable subsets {M;(A)}D) and a family {ai( (A) D) of points for which
a;(A) € M;(A). Diameter of A is defined to be the maximum of the diameters
of the sets M;(A) (i =1,...,k(A)) in the metric space M. The limit in (1) is
considered in the Hausdorff metric.
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A proof that the integral exists can be obtained in the same way as the proof
of existence of Riemann integral in classical analysis.

PropOSITION 3. [4] Let X = (R, | - ||) be a normed space and M be a
compact metric space with a probability measure y. Suppose that a mapping
f: M — C(n) is continuous and that f(m) is a sufficient enlargement for X
for allm € M. Then

[ ) duem)

is also a sufficient enlargement for X.

Remark. B.Grinbaum used Proposition 3 in order to find the precise upper
estimate for A(I2).

3. SUFFICIENT ENLARGEMENTS AND INTEGRALS OF PARALLELEPIPEDS

Corollary 3 and Propositions 2 and 3 supply us with the following family
of sufficient enlargements for a space X: parallelepipeds containing B(X),
their convex combinations and integrals with respect to probability measures.
It is natural to ask: is it true that any sufficient enlargement contains some
sufficient enlargement of the described type?

The answer to this question is negative. The first example was found by
V.M.Kadets (1993). In his example X is a two-dimensional space, whose unit
ball is a regular hexagon. The space X can be isometrically embedded into [3..
Let P: 13, = X be the orthogonal projection. It is clear that A := P(B((3,))
is a sufficient enlargement for X. V.M.Kadets proved that A does not contain

any integral with respect to a probability measure of parallelograms containing
B(X).

Our purpose is to prove that analogous examples can be constructed even
for two dimensional Euclidean space.

THEOREM. There exists a sufficient enlargement for 12, which does not
contain any integral with respect to a probability measure of parallelograms
containing B(13).

Proof. Let us denote by S; and S5 the operators of counterclockwise rota-
tion of 12 onto 27/3 and 4m/3 respectively. Let e; and e, be the unit vector
basis of [2 and e} and e} be its biorthogonal functionals.
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It is easy to verify that for all z,y € ]RZ, llylls = 1 we have

2

T = g((w, Yy + (z, S1y)S1y + (z, S2y) Say).

Let y = e;. We have the following factorization of the identity operator on 2 :
I=RQ, 238 52
where
Q(z) = {(z,€2), (z, S1€2), (2, S2€2) },
R({ag,a1,a2}) = g(aoeg + a;1S1e; + az5s€;).

Hence the Minkowski sum of the line segments
9 .
A= 5([_62, es] + [—S1es, Si€] + [—Sae2, Sa€5])

is a sufficient enlargement for 3.
It is easy to verify that A is a regular hexagon with
sup{e;(z) : z € A} = 2
p{e;(z) : Nk

We need the following lemma.

LEMMA. Let P be a parallelogram containing B(l2). Then

1 2

Proof. We represent P as a sum of two line segments: P = [—fy, fi] +
[-f27 f2]

We introduce the notation
a :=sup{ej(z): z € ;’—(P + S, P + S, P)}.
We have
a= %(Iei(ﬁ)l +ler(f2)] + e (Sifi)| + le1 (S1f2)] + [ef (S2f1)| + le1(S2f2)])-

Set )
t(f1) = g (lei (f)l + et (Si 1) +lei (S2f1)l)-



PROJECTION CONSTANTS 471

Let us show that

111
t(fl) > \/§ )

and the equality is attained if and only if the angle between f; and e, is a
multiple of /3.
It is easy to see that in order to prove this statement it is sufficient to
consider the case when the angle a between f, and e, is in the interval [0, 5].
We have

t(f1) =

1Ak,
nfln

27 4
sina| + | sin(a + )] + | sin(a +

ES1)

2 4
~——(sina + sin(a + ;r) —sin(a + %))

”fl Il L8 (sina + V3 cos a)

It is clear that for vectors of the same norm this product is minimal if and
only if @ = 0 or @ = 7/3. In both cases we have t(f1) = || f1]|/v/3. So we have
proved the assertion about ¢(f;).

- Since a = t(f;) + t(f2), then

Al + 117
ety ﬁ 7
and the equality is attained if and only if the angles between f;, f» and e, are
multiples of 7/3. On the other hand since [—fy, fi] + [— f2, f2] D B(l3), then
If1ll, If2]l > 1 and if the angles between f;, f» and e, are multiples of /3,
then
N Full + [ foll > 2.

Hence a > 2/V3. 1

We return to the proof of the theorem. Suppose the contrary. Let M
be a metric space with a probability measure p and let F': M — C(n) be a
uniformly continuous function for which F'(m) is a parallelogram containing
B(I2) for each m € M and

/ F(m)du(m) C A.
M
Since A is invariant under action of S; and S, then

@) /M %(F(m) + S1F(m) + Sy F(m))du(m) C A.



472 M.I. OSTROVSKII

Hence

1 2
sup{ej(z): z € / =(F(m) + S1F(m) + S2 F(m))du(m)} < —.
M3 V3
This supremum equals to

/M sup{e(z): = € —;;(F(m) + S F(m) + Sy F(m))} du(m).

By the lemma the integrand is > Z- for each m. Hence the integral is > Z=.
This contradicts (2). §

It is natural to consider an“isomorphic” version of the question above. I mean
the following. If a sequence {X,}22; of finite dimensional normed spaces
is such that for some sufficient enlargements A, (n € N) for X,,, arbitrary
0 < C < oo and arbitrary integrals I,, with respect to probability measures of
parallelepipeds containing B(X,) we have

dneN, I, ZC-A,,
then we shall say that {X,} has property N.
- PrOBLEM 1. Do there exist sequences {X,} with property N?
PROBLEM 2. Does the sequence {l7}2; have property N?

PROBLEM 3. Does every sequence {X,}2°; for which Banach-Mazur dis-
tances
d(X,,1%)

ny oo

go to oo have property N7

Remark. One of the natural approaches to Problem 2 is to consider mul-
tiple tensor products of the construction of the theorem.

4. SOME OTHER PROBLEMS ON SUFFICIENT ENLARGEMENTS

It seems that the most important direction of research connected with the
sufficient enlargements is the following.

Clearly, for a space with large absolute projection constant, sufficient en-
largements should be much larger than the unit ball in some directions. The
problem is to describe the corresponding sets of directions. The problem can
be divided in a natural way into the following two problems.
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PROBLEM 4. What is the size of this set (for any reasonable notion of
size)?

PRrROBLEM 5. What are the restrictions on the shape of this set of direc-
tions?

Remark. In connection with these problems it is worthwhile to mention
that K.Ball [1] proved that for every ball B the ellipsoid F of maximal volume
in B and the parallelepiped @ of minimal volume containing B satisfy

(vol@/volE)Y/™ < \/e(volB(I%) /vol B(I}))*/™.
The results of [7] and [10] may also be of interest in this connection.

Remark. Investigations of large subspaces of [ (see Example after Corol-
lary 8 in [3]) show that the n-th root of the volume of sufficient enlargement
can be much less than the n-th root of the volume of A\(X)B(X).

Some additional information on sufficient enlargements can be found in [6].
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