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Noll’s axiomatic method in continuum mechanics proceeds from the algebra
of bodies and the properties of interactions (as objects in an appropriate linear
space) to reach finally balance equations. When the material is complex and
the order parameters are coordinate of points of a (non-linear) manifold, there
seems to be no way of adapting this method. However, previous embedding
of the manifold in a linear space (which is always possible) provides a possible
escape route. The embedding may appear artificial, but, on the contrary, in
some cases it enriches the model and leads to significant results. The case of
nematic liquid crystals is treated in detail.

1. INTRODUCTION

Noll’s axiomatic method in continuum mechanics proceeds from the algebra
of subbodies of a given body and the properties of interactions between pairs
of disjoint subbodies (for an account see Ch. I of [1]). It is built on concepts
well-established in rigid body dynamics, where the interaction is measured by
a pair of vectors (resultant force and resultant torque) an so by an element in
a special linear space; hence the idea that the strength of the interaction be
measured generally by an element of an appropriate linear space.

Yet, in continua with microstructure, virtual rates of shift in microstates
(states which are described by elements of a manifold M of finite dimension
m) belong to tangent spaces of M, which, generally, vary from place to place.
Thus the corresponding exertions (the strength of which is measured in cotan-
gent spaces) cannot be summed up outright into totals and thus Noll’s starting
point seems to fade away. An artificial but adequate tool to overcome the diffi-
culty is offered by Whitney’s theorem: M can always be embedded in a linear
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space of dimension 2m + 1. Then, within the wider context, one can follow
Noll’s approach [2].

However, the total strength of the exertion on a body evaluated in this
way may be destitute of intrinsic physical meaning. In general, even rules
of variance under changes of embedding are missing. Nevertheless, we show
below that the tool is not always fictitious, as it may seem; on the contrary,
at least in some cases, it enriches the original model and leads to additional
concrete results.

2. INTERMEZZO

The embedding, the existence of which is assured by Whitney’s theorem,
is not unique; nor is it always mandatory to resort to a space of dimension
2m + 1: a space of lower dimension may suffice sometimes.

We quote below a very elementary example, which is of some relevance
for the questions addressed to in the next section. Consider the manifold of
directions in a plane; its image could be the improper line. But we could also
think of the set of segments of unit length, all with the same midpoint. Adding
an arrow, arbitrarily, to each segment, we obtain a set of unit vectors n; the
set {N|N =n®n} is in one-to-one correspondence with the set of directions
(the two eigenvalues of N are 1 and 0; the eigendirection relative to the former
ties with the direction of n). Rather than of N one can think of Q = N — 1T
(I, identity); then {Q} is the linear space of symmetric traceless tensors in
the plane. Now, one can, for instance, evaluate the average direction in a set,
by averaging the corresponding ()’s: one finds in particular that the average
of two ortogonal directions is the null tensor.

One may muse why one needs to proceed in such a devious way: if the angle
0 between two directions is acute the bisectrix of the angle is the ‘average’
direction, surely. However, one stumbles on the case § = 7; the loss of a
unique ‘average’ in that case points to a deeper issue: the set of directions
cannot be covered by a single chart; on one chart the average can be always
decided upon, but the result may depend on the chart.

In the special example one could proceed alternatively: pick one ‘master’
direction d; choose positive rotations; associate with a direction forming the
acute angle 6 with d a unit vector at an angle 26; embed those vectors in the
linear space of vectors in the plane. Averages ensue; in particular, the average
of two orthogonal directions turns out to be the null vector.

If one tries to repeat similar steps in three dimensions, recourse to as-
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sociated tensors is successful again: the embedding occurs in (now) five-
dimensional space Sym, of symmetric traceless (3x3) tensors. On the contrary,
if one adds simply (in the second process) the longitude to twice the ‘latitude
north’, one stumbles on the difficulty that all points on the equator crowd in
the ‘south pole’.

3. THE CASE OF LiQuiD CRYSTALS

Let us now return to our remarks of Sect. 1 and examine the case of nematic
liquid crystals, a case where the microstructure is a direction (m = 2). If +n
are the two unit vectors with a given direction, the latter determines (and is
determined by) the tensor Q =n®n — %I uniquely (I is now the 3x3 identity
tensor); the set of all ) is a manifold in Sym,, which comprises all tensors
with third invariant equal to % and second invariant equal to —%; a manifold
that degenerates into two dimensions because two eigenvalues coincide.

We have mentioned the possibility, within Sym,, of calculating averages of
directions; precisely that manipulation is required by physical circumstances.
The material element (modelled so far as a point adorned with a direction)
must be imagined to contain many molecules, which are seldom utterly aligned;
one direction usually prevails but the discipline is not strict.

Thus, the construct that emerges is an average and that average should,
correctly, be read in Sym,. By doing so one obtains not only the prevailing
direction (if any), but also the degrees of triaxiality § and of prolation s in
the distribution of directions [3]. Only when, occasionally, 8 = 0 and s = 1
absolute discipline reigns; chaos (isotropy) wins if 3 =0, s = 0.

We must pass on now to give a corresponding measure of the strength of
the exertion on a body of nematic. As our goal is narrow, i.e. to provide an
example, we confine our attention to two special issues: (i) the total fictitious
‘torque’ exerted by external body actions to adjust appropriately the triad of
principal axes of @; (ii) the strength of the exertion of self-equilibrated forces
against triaxiality and prolation.

To obtain the first quantity observe that, if Q is any element of Sym,,, k®
(i = 1,2,3) its (real) eigenvalues and c¥ its corresponding eigenvectors, then

3
Q=Y ke @

i=1
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and the time-derivative

3
Q=7 9 @ —2sym[(eq)q] , (3.1)
=1
where e is Ricci’s permutation tensor and q is a fictitious spin of the principal
axes of Q.
Then the virtual power per unit volume of external actions (with volume
density B) is given by

B-Q=Y BuytY +q-e((symB)Q), (3.2)

i=1

where B;;) are the diagonal components of B when the principal axes of () are
taken as reference. We conclude that the fictitious ‘torque’ on the principal
axes is

/tdB . t=e((symB)Q) .
B

To achieve the second goal, we follow an alternative route, rather than
through manipulation of the first term in the r.h.s. of (3.1). We accept
a standard suggestion regarding the free energy o of a nematic (k, a, b, c,
appropriate constants)

o=k(VQ)’ +atrQ®> —btrQ® +ctrQ*; (3.3)

we confine our attention to homogeneous conditions when o reduces to &,the
sum of the last three addenda in the r.h.s. of (3.3); we express ¢ in terms of

sand @ )
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finally we evaluate the virtual power & which corresponds to virtual rates §

and 8
. 2c¢cs*( 3b , 3a ¢ (3a .
52 (L300, 9(%% oy 3)' —(—22).
7 974< Tt (c+7>s Stggpl\e t2)P

Thus the strength of the exertions turns out to be
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When 7, is positive, the tendency is towards isotropy; otherwise the prolation
tends to increase. If a and c are both positive, triaxiality is never favoured.
Through the detailed study of (3.4) one could duplicate the analysis in the
last section of [3] and confirm those results.
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