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1. INTRODUCTION

Motivated by the theory of uniform elastic structures [2] we try to deter-
mine the conditions for the local flatness of locally integrable connections on
non-holonomic frame bundles of order 2. Utilizing the results of Yuen [8] as
well as our results for the holonomic case [3], we show that the locally inte-
grable non-holonomic 2-connection is locally flat if, and only if, its projection
to the bundle of linear frames is symmetric and the so-called inhomogeneity
tensor (cf., Elzanowski and Prishepionok [4]) vanishes.

In the last section of this short paper we show how these results can be
interpreted in the framework of the theory of uniformity of simple elastic
materials with microstructure.

2. NoN-HoLoNOMIC SECOND-ORDER FRAME BUNDLES

Let B be an n-dimensional C*°-manifold. Denote by H?2(B) the space of all
2-frames of B. Respectively, let H?(B) be the space of all holonomic 2-frames
of B (cf., Yuen [8]). Given a holonomic frame p? € H?(B) there exists always
a local (about the origin of IR™) diffeomeorphism f : U(0) C IR" — B such
that 72(p?) = f(0) and its second jet at 0 € IR"™ can be identified with p?. =2,
respectively 72, denote here the standard projections onto the base manifold
B.

Choosing a coordinate chart {y',---y"} on B about y = f(0) and a carte-
sian coordinate system {z!,--- 2™} on IR" we have p* = (v, y%, % z) where
i=1,---,n, A B =1,---,n, det y', # 0 and ¥z = y44. In contrast, an
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arbitrary (non-holonomic) frame p*> € H?(B) is usually identified with a first
jet at the origin of a local differentiable map f : U(0) c R™ — H'(B). H*(B)
denotes here the space of all linear frames of B. Given a local coordinate sys-
tem on H'(B), say {y",y4}, B* = (y',y}4,¥'p, Y4,5) Where, in general, v # y',
and vy} p # yp 4 If, however, the map f is such that f(0) = j(=* o f)(0)
ie., (y',v4) = (y',y’4) for some choice of a coordinate chart on B, then the
frame, the function f induces, is called semi-holonomic. The space of all semi-
holonomic 2-frames of B will be denoted by H?(B). It is now obvious from
the later construction that H2(B) > H2(B) > H*(B).

As it is well known (cf., Saunders [7]) these spaces are the principal bundles
over B with the structure groups G2, G? and G2, respectively. The group G2,
which is the set of all 2- jets of the origin preserving local diffeomorphisms
of IR", is the semidirect product of the general linear group GL(n,IR) and
the algebra of all IR"-valued symmetric bi-linear forms NZ(IR",IR"). On the
other hand, G? is the set of all first jets of the local automorphisms of H'(B)
preserving the zero fibre and is isomorphic to the zero fibre of H2(IR"). As
a group it can be viewed as a semidirect product of two copies of GL(n,IR)
and the algebra NZ(IR", IR"™) of all IR"-valued bi-linear forms. It acts on the
non-holonomic frame bundle H%(B) on the right as follows: take a 2-frame
P = (v, ¥4, ¥'p, ¥4 ) and let (4,95, ol ) represent an element of G2 then,
using the standard shorthand,

W ¥, ¥'s Vi) P8, 95, aép) = (V' vape, ¥'s9h, Vi sIBPE + Yhadp).

Obviously, this action is consistent with the action of G2 on H2(B) and
the action of G* = GL(n,IR) on the bundle of linear frames H'(B). Indeed, if
the frame p? is semi-holonomic and p4 = g4, for any A,C = 1,--- ,n, then,
the resulting frame is also semi- holonomic. If, moreover, v 5 and o, are
symmetric the action produces a holonomic frame.

In addition to being the principal bundles over the manifold B these spaces
are affine bundles over the bundle of linear frames H 1(B) with the standard
fibers N2, N7 and N7, respectively.

3. NoN-HorLoNoMIC 2-CONNECTIONS

Suppose now that a linear connection on the frame bundle of non-holonomic
2-frames is given. Such a connection is represented on H2(B) by an equivariant
1-form w? with values in the Lie algebra §? of its structure group G2, i.e., for
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every vector x from the tangent space TH?(B) w?(x) € §° At any 2-frame
p? the kernel of the connection form w?, as a linear map on the tangent space
Ty H?(B), is a n-dimensional vector subspace H,.»($?) called the horizontal
space of the connection w? at p2. This gives an n-dimensional equivariant
differentiable (horizontal) distribution H,> on H?(B).

As shown by Kobayashi [5] (see also Elzanowski and Prishepionok [3]), ev-
ery linear connection on the second order frame bundle is uniquely induced by
the so-called £-connection of order 3, i.e., a G!-invariant section €3 : H!(B) —
H?(B). Indeed, in general, every &-connection of order k + 1 induces a GL-
reduction N» = wi+! (e*+1(H'(B))) of H**!(B), called the characteristic man-
ifold of the connection w* and a GL-reduction M« = ¥ (H*(B)). Equiva-
lently, the mapping £**! induces the characteristic manifold N+ and a GL-
invariant partial section ¢* : Nx — H*+!(B) (onto the manifold M,) called
the characteristic section.

In particular, given a 2-frame $2 € N, a vector x € Ty H?(B) is a hori-
zontal vector of w? if, and only if, 65(q?(x)) = 0 where 63 is the g*-component
of the fundamental form 63 on H3(B).! The kernel of the form 5 is called
the standard horizontal space of the frame ¢*(p*). The horizontal distribution
of the connection w? on the submanifold N, is therefore the GL-equivariant
distribution of the standard horizontal spaces of the corresponding (through
the section ¢?) frames from the image of the £- connection £ 2. The extension
of this distribution to the whole of H?(B) is done uniquely by the associated
action of the structure group G2 on the tangent space.

The 2-connection @? is called a holonomic connection, respectively a semi-
holonomic connection, if it is a reduction of a non-holonomic 2-connection to
the corresponding reduction of the bundle of non-holonomic 2-frames. Note
that in either of these two cases the corresponding £-connection €® is not
necessarily a section into a reduction of H3(B) to the holonomic (respectively
semi-holonomic) structure group G* (respectively G?).

In what follows, we consider only 2-connections @? which are locally in-
tegrable i.e., their horizontal distributions are locally integrable differential
distributions. Therefore, by the Frobenious theorem, for every base point
z € B there exists a local section [2 of the non-holonomic second order frame
bundle H2(B) such that the horizontal distribution ;- is a lift of the tangent
space TB. Namely, H;» = Z(TB).

'For the definition of the fundamental for on a frame bundle consult Kobayashi [5] or
Elzanowski and Prishepionok [3]. '

ZNote that, in general, such a distribution is not tangent to the characteristic manifold
N@Z.
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Given a locally integrable non-holonomic second order connection &2 it
locally induces two, in general different, linear connections. Indeed, if &?
is locally integrable then for every point z € B there exists always a local
section 12 : U(z) — H?(B) generating its horizontal distribution. There is
also a section p' : U(z) — H'(B) such that p' = #2 o [>. The section p?
generates a horizontal distribution on H'(B). We therefore have a locally
integrable linear connection on H'(B), denoted projw!. It is easy to see that
the distribution .1 is a projection, by #%,, of the horizontal distribution
of the 2-connection &?. It can also be shown (cf., Elzanowski and Prishepionok
[3]) that Ny.oj.1, the characteristic manifold of projw?, is the #7-projection of
the characteristic manifold of @?.

Moreover, given the locally integrable connection &2, the generating section
12 and its projection p! there exists also a partial section ¢2 : p*(U(z) — H?(B).
This section when extended equivariantly, by the action of the general linear
group?®, to the whole manifold H*(U(z)) becomes a local £-connection of order
2. As we have stated earlier, its existence is equivalent to the availability of
a new linear connection i®?, called the induced connection, the characteristic
manifold of which is the entire bundle of linear frames over U(z)* while the
characteristic section is the equivariant extension of the partial section ¢. Let
us also add that the manifold M, is the GL-reduction of H %2(B) based on the

image ¢*(p" (U(z))).
4. LocALry FLAT NoN-HoLoNOMIC 2-CONNECTIONS

We are now in the position to address the main question posed in the
Introduction i.e., what are the necessary and sufficient conditions an arbitrary
2-connection must satisfy to be locally flat 7 We may start by saying that it was
shown by Yuen [8] that a semi-holonomic connection @? is locally flat if, and
only if, it has no torsion, it is curvature free and is the prolongation of a linear
connection. Here by the torsion we understand the IR" @& g'-valued 2-form
d6?|3,,, while the curvature is the g*-valued 2-form d&?|4,_, (see e.g., Cordero
at al.[1]). The 2-connection (possibly non-holonomic) & is the prolongation
of some linear connection, say w!, if its horizontal distribution is a differential
lift of the horizontal distribution H,:. More precisely, the prolongation of the

3Realize that the general linear group can be embedded canonically into the group G>.

4Characteristic manifolds of all linear connections are identical and all equal to the bundle
of linear frames H'(B), as evident from the definition of the characteristic manifold (cf.,
Elzanowski and Prishepionok [3]).
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connection w!, with its characteristic section ¢2, is the 2-connection, denoted
by P(w'), such that at every p' € H(B)

Hrwy (@ (p')) = ¢ (Hor (p1))-

This immediately implies that:

ProprosITION 1. (Elzanowski and Prishepionok [3] ) A 2-connection is
the prolongation of some linear connection if, and only if, its horizontal dis-
tribution is tangent to its characteristic manifold.

It can be shown (see Elzanowski and Prishepionok [3] and Elzanowski [2])
that the prolongation of a linear connection is unique. It can also be proved
that for any linear connection w! its prolongation is such that projP(w!) = w!
and that @® = P(w') if, and only if, N2 = ¢*(N,1). Moreover,

PROPOSITION 2. Any locally integrable 2-connection &* (holonomic or
not) is the prolongation of some linear connection if, and only if,

iw? = projd?.

Proof. If the locally integrable connection &? is the prolongation of some
linear connection - and it can only be the prolongation of its own projection
proj@?* - then its characteristic distribution is tangent to its characteristic
manifold. Consequently, N2 = 2GL = M- by the definition of the induced
connection. Also, as stated earlier, ¢*(Nprjo2) = Ny2. This proves that
the characteristic sections of the induced and the projected connection é,re‘_ .
identical. The projected connection and the induced one are, therefore, equal
as they have the same characteristic manifolds and the same characteristic
sections. The converse is now obvious. 1

For a locally integrable 2-connection &? to be the prolongation is, therefore,
equivalent to the vanishing of the g!-valued tensorial form

Dye = i@? — projo?.

Obviously, the vanishing of the tensor D2 does not yet guarantee the local
flatness of the non-holonomic connection @?. Its vanishing is, however, both
the necessary and sufficient condition for the local flatness of any locally inte-
grable holonomic connection w?. Indeed, if the locally integrable connection
w? is holonomic then the corresponding local section [ goes into the holo-

nomic 2-frame bundle H?(B). Consequently, its induced connection iw?® has,
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as we showed in [3], vanishing torsion. In fact, it is symmetric only if its &-
connection is a section into the holonomic frame bundle (cf., Yuen [8]). The
horizontalistribution of iw? may, however, be nonintegrable. Inontrast, projw?
is locally integrable but it probablyas some non-vanishing torsion. The van-
ishing of the tensor D, makes these two linear connections equal and so both
locally flat. The vanishing of D, 2, according to Proposition 2, proves also that
the 2-connection w? is the prolongation. As the prolongation of the locally flat
linear connection is also locally flat [ | the connection w? is locally flat too.

If we now turn our attention to the semi-holonomic case, say @?, the vanish-
ing of the corresponding tensor D> makes the induced connection equal to the
projected one. Both connections are also curvature free as the 2-connection
@? is curvature-free. There is no guarantee, however, that they are locally
flat as there is no indication that they have zero torsions. In contrast with
the holonomic case, the induced connection is not necessarily symmetric as
its corresponding £-connection (the invariantly extended partial section ¢?) is
not a section into the holonomic frame bundle H?(B). To make this happen,
however, it is enough to demand that the torsion of the induced connection,
which is now identical with the projected connection, vanish. We therefore
have:

PROPOSITION 3. Any locally integrable semi-holonomic 2- connection &? is
locally flat if, and only if, the tensor D;: vanishes and the projected connection
projw? is symmetric.

The completely non-holonomic case reduces, in fact, to the semi- holo-
nomic situation. Namely, let us consider a locally integrable non-holonomic
2-connection &2. Let, as before, I? be the integral local section of its horizontal
distribution. There exist therefore both the projected connection proj@? as
well as the induced connection i@?. If the tensor D, vanishes and the torsion
of the projected connection projd? is zero then @? is not only the prolonga-
tion (of its own projection) but the induced connection i@? is locally flat (its
torsion and curvature vanish). Note also that as the induced connection i&?
is symmetric the local section [, which plays the role of the £-connection of
the induced one, must be the section into the holonomic second order frame
bundle, (8], [3]. Thus, the 2-connection &? is reducible to the holonomic con-
nection and by Proposition 3 is locally flat. Note that in the completely
non-holonomic case the 2- connection @? can be projected onto the first or the
second factor. The arguments presented above are simultaneously applicable
in both situations.
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5. LocALLY HOMOGENEOUS DEFORMABLE CONTINUOUS BODIES

Suppose now that the manifold B represents a continuous deformable ma-
terial body. For simplicity let us assume that it can be covered by a global
chart. We select one such chart 1, : B—IR® as the reference configuration of
the body B and identify the material body with is image 1 (B) C IR®. Given
any other configuration, say ¢ : B—IR’, a l-jet of 4y X ¢! at = € y(B) is
called a local configuration of the material point x. The mechanical properties
of the so-called simple elastic body are completely characterized by the smooth
real-valued energy function W on the space of all local configurations of B. If
some additional structure, given for example by a smooth distribution on B of
deformable triads of vectors, is also available then the mechanical properties
of such a simple material with microstructure are determine by a function W
but now on the space of non-holonomic 2-frames of B (see e.g., de Le6n and
Epstein [6] or Elzanowski and Prishepionok [4]).

We say that such a material body is smoothly uniform, i.e., build of the
same material points, it there exists a smooth section [2 : B—H?(B), called
the material configuration, such that the strain energy function W is constant
on the image of 2.

The energy function W may have, over a given material point, a non-trivial
isotropy group. If the material body B is uniform these isotropy groups are
isomorphic. If the function W representing a uniform material body has a
non-trivial isotropy group then the choice of the material configuration is not
unique. Namely, any smooth action of the isotropy group will produce yet
another material configuration.

The material configuration {2 induces on H2(B) the so-called material par-
allelism. Such a parallelism is locally integrable but is not necessarily flat.
However, if there is one which is locally flat, and so the inducing section [2
is locally generated by a coordinate system on the manifold B the body is
called locally homogeneous. In other words, the simple material body with
microstructure is locally homogeneous it admits a locally flat material par-
allelism. Adopting what we have said in the first part of this paper about
the conditions for the local flatness of non-holonomic 2- connections, one can
claim that:

PROPOSITION 4. A simple material body with the microstructure given by
triads of deformable vectors is locally homogeneous if, and only if, there exists
the material parallelism (the material 2-connection &?) such that its tensor
D;> vanishes and the projected linear connection proja?® is symmetric.
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