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1. INTRODUCTION

Noether’s symmetries play an important role in the study of dynamical
systems described by a variational principle. In this talk an analysis of this
symmetries is presented; this is mainly based on the articles [GP 92] [GP 95].
The characterization of Noether’s symmetries as presented herein is especially
relevant when dealing with a singular lagrangian, since it allows to compute
its gauge transformations.

Here we will consider a time-independent mechanical lagrangian, of first
or higher order. However, the results may be extended to time-dependent
lagrangians with minor changes, and to field theory through the usual methods
of Theoretical Physics.

The case of higher order lagrangians appears as an extension of the first
order case; however, they have several relevant differences, and for the sake of
clearness they will be presented separately.

For this development several geometric structures for first order and higher
order lagrangians are needed [GP 89] [GPR 91]. However, we shall frequently
use a coordinate language. Other references with geometric aspects related to
this paper are [CF 93] [CLM 89] [CLM 91].

The organization of the paper is as follows. Section 2 contains some con-
siderations on symmetry transformations. Then we consider the case of first
order lagrangians: in section 3 some geometric structures and our characteri-
zation of Noether’s transformations are explained. This is also done for higher
order lagrangians in section 4. Finally, section 5 is devoted to an example.
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2. SYMMETRY TRANSFORMATIONS, GAUGE TRANSFORMATIONS

Let us consider, for instance, a differential equation' F(t,q,q) = 0 for a
path ¢(t). A transformation ¢(t) ~ 4(t) is a symmetry transformation of the
differential equation if it transforms solutions into solutions. A gauge trans-
formation is a family of symmetry transformations depending on an arbitrary
function of time.

It is usually easier to study infinitesimal symmetry transformations dg (and
at the end integrate them). Let us explain the meaning of this statement. For
instance one may have dq = A(t,q,4,q,...). Then the (finite) transformation
of a path gy generated by this infinitesimal transformation is the one-parameter
family (g.) which is the solution of the partial differential equation

a—f;gl = A(t,q.(t),d:(t), G- (£),...)

with initial condition gy, provided that this solution exists. This is a general-
ization of the case of point transformations, those where 6¢ depends only on
(t,q)

For a gauge transformation the dependence of dq on the arbitrary function
©(t) is usually as a local functional:

0q = A(t, 6,4, Gy 50,9, P, ... ).

Of course, these concepts may be given a geometric expression. For a point
transformation, the paths are transformed by the flow of a certain vector field
in a manifold @ (or R x Q). For a generalized transformation, if we denote
by 7: R x Q — R the trivial fibration, then dq is represented by a w-vertical
vector field along the projection R x T'Q — R x Q for a certain I € N.
However, in this paper we will not insist in these geometric questions.

There are some interesting cases of symmetry transformations when deal-
ing with lagrangian dynamics. In this paper we will be mainly concerned
with Noether’s transformations, but comparison with hamiltonian symmetry
transformations is always interesting.

An infinitesimal Noether’s transformation of a lagrangian L is an infinites-
imal transformation dq such that the variation of L under this transformation
is a total derivative:

0L =DyF

Indices of coordinates will be omitted



NOETHER TRANSFORMATIONS 67

0
for a certain F' [Noe 18] [Bes21] [Olv86]. Here D, = % + z,-:qiﬂa—qi is the
. o e . oL oL _.
total time-derivative, and the variation of L is L = 6—5q+ T&H—' .., where
q q

for instance §¢ = D;0q and so on. It can be shown that a Noether’s symmetry
is a symmetry transformation of the Euler-Lagrange equations of L.
The relation above can be equivalently written

where [L] = 0 are the Euler-Lagrange equations of L,

oL oL
[L]—a_q_Dta_q.-i-... P}
and G is related to F' through a certain expression. Notice that this second
definition of a Noether’s transformation is a conservation law: the function G
is a constant of motion.

On the other hand, for the hamiltonian formalism it is interesting to study
symmetry transformations generated by a function, i.e., d¢ = {¢, G} and sim-
ilarly for dp. In the case of a singular lagrangian there is a correspondence
between first-class primary hamiltonian constraints and generators of hamil-
tonian gauge symmetries —see [GP 88] for instance— but this correspondence
may fail.

In [GP 92] it is shown that, at least in certain examples, our characteriza-
tion of Noether’s transformations can be used to construct lagrangian gauge
transformations for systems not possessing hamiltonian gauge generators; this
observation can be extended to higher order lagrangians [GP 95].

3. THE CASE OF FIRST ORDER LAGRANGIANS

Let us consider an autonomous first order lagrangian, perhaps singular,
L: TQ — R. The well-known Legendre’s map FL of L connects the velocity
space V = T(Q with the phase space P = T*Q. Its local expression (in natural
coordinates) is
FL(g,v) = (g,P),

where[p = 0L/0v are the momenta.
The time-evolution operator K connecting velocity and phase spaces
[BGPR 86] is less known. Following [GP 89], it is the vector field along the
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Legendre’s map that satisfies certain conditions (namely, it satisfies a “sec-
ond order condition” and the pull-back of its contraction with the canonical
symplectic form of P is the differential of the lagrangian energy). Its local
expression is

0 OL O
K(q,v) =v+—+ ———.
This operator can be used to:
o write the Euler-Lagrange equation intrinsically,
e construct all the lagrangian constraints from the hamiltonian ones,

e characterize the generators of hamiltonian symmetry ‘transformations,
and

e characterize the conserved quantities of Noether’s transformations.

Our main interest in this paper is the last of these applications. However,
let us comment briefly on the other ones.

3.1. EQUATIONS OF MOTION Let £ be a path in V. Let us consider the
differential equation [GP 89]

T(FL) o€ = K o &.

In other words, the following diagram must be commutative:

T(v) LU 1(p)
3 K

I

|4 p

13 FL
In coordinates, if £ is represented by (g(t),v(t)), this reads
) oL 4 O’L ; oL
= = —
=1 ov 3qq ov Ov aq’
that is to say, the Euler-Lagrange equation for &.
This equation can be also expressed in terms of vector fields?:

T(FL)o X ~ K.
N

2f%Omeansf:OonN.
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This means that, if X is a vector field on V tangent to the submanifold N,
then X satisfies the equation above if and only if its integral curves satisfy the
Euler-Lagrange equation.

3.2. CONSTRAINTS From now on let us assume that L is a singular la-

grangian, that is to say, the Legendre’s map is not a local diffeomorphism. In
2

coordinates, this means that the hessian matrix W = is singular.

Then the Euler-Lagrange equation is singular, andagx?gtence and unique-
ness of solutions may fail: the solutions cover only a subset V() of V, and
many solutions may pass through a point.

On the other hand, the definition of the hamiltonian formalism is more
difficult. Then, assuming certain regularity conditions, one may use Dirac’s
theory, which in more geometric terms amounts to consider the hamiltonian
formalism as a presymplectic system on the primary hamiltonian constraint
submanifold P) = FL(V) C P. Then also the solutions cover only a subset
PU) of P, and many solutions may pass through a point.

The subsets V) ¢ V and PY) C P can be described by constraints.
An important result is that the lagrangian constraints x can be obtained by
applying the operator K to the hamiltonian constraints ¢ [Pon 88]:

x=K-¢.
Here K, as any vector field along a map, acts as a differential operator on
functions. In coordinates this reads x(q,v) = v FL* (8_4)) + oL FL* (?ﬁ) .
dq/) = 0Oq op

Let us consider in particular the primary hamiltonian constraints ¢,,, which

define the primary hamiltonian constraint submanifold P*) ¢ P. The vec-
0 . . .

tors vy, = FL* <%) constitute a basis of the kernel of the hessian W, and

p
the primary lagrangian constraints —the first compatibility conditions arising

from the Euler-Lagrange equations— are

oL 0L
0 =4 = (g ~gga0)

these constraints define the primary lagrangian constraint submanifold V() C
V.

It is also worth noticing that the primary hamiltonian constraints allow to
construct a frame (I',) for Ker T(FL); in coordinates these read

g

Ly =Ygy
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These vector fields are useful to test the (local) projectability of a function in
velocity space to a function in phase space.

3.3. GENERATORS OF HAMILTONIAN SYMMETRY TRANSFORMATIONS Let
us only state the main result [GP 88]: a function Gg(t,q,p) in phase space
generates (through Poisson bracket) a hamiltonian symmetry transformation
if and only if?

K- -Gy = 0,
vV
where V) is the final lagrangian constraint submanifold. This condition can
be expressed in another equivalent condition; both are useful to find hamilto-
nian gauge transformations.

3.4. NOETHER'S TRANSFORMATIONS Let us consider an infinitesimal
Noether’s transformation for a first order autonomous lagrangian, for which

F + G = pdgq. We have the following result [GP 92]:

THEOREM 1. Let dq(t,q,v) be a Noether’s transformation with conserved
quantity Gp(t,q,v). Then Gy, is projectable to a function Gy (t, q,p) such that

0.

~
vQa)

Conversely, given a function Gy (t,q,p) such that
K. -Gg=—- Z ™ X4
. 7

(a combination of primary lagrangian constraints) then

_ g+ (9GH 7
0qg = FL (8p)+§r'yﬂ

is a Noether’s transformation with conserved quantity Gy = FL*(Gg).

Before discussing the meaning of this result and sketching its proof, let us
remark that here the operator K acts on a time-dependent function and so it
carries an extra term J/0t; of course, in this context K can be regarded as a
vector field along the time-dependent Legendre’s map FL: RxTQ — RxT*Q
—see [CFM 94] for some geometric aspects of this extension.

3¢ ~ ~
fEOmeansfFOanddfFO.
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Notice that, whatever be the lagrangian —assuming the usual mild regu-
larity conditions that allow the construction of the hamiltonian formalism—
the function G, is projectable through FL. However, dq is not necessarily
projectable, and indeed its projectability is equivalent to the projectability of
the functions r*; if this is satisfied then it can be proved that, after redefinition
of Gy, this function generates a hamiltonian symmetry transformation.

On the other hand, there is some indetermination in the conserved quantity
G, of dg; see [GP 94] for a discussion about this question.

The proof of the theorem is quite simple. First, one must take the con-
servation law deduced from dq and look at the coefficient of the acceleration
to obtain I, - G, = 0 and conclude the projectability of G, Gy = FL*(Gy);
this shows that dg — FL* (0G'x/0dp) is a null vector 3, 7#7, of the hessian W.
Second, one must introduce this expression into the conservation law and use
the basic relation

99
K.-g=|[L|FL* (——) + D; FL*(g)
op
(9 may be time-dependent) and the expression of the primary lagrangian con-
straints.

4. THE CASE OF HIGHER ORDER LAGRANGIANS

Here some results and notation from [GPR 91] will be presented. See also
[LR 85] [BGPR 88].

We consider a kth order lagrangian L: T*@Q — R. The Euler-Lagrange
equations [L] = 0 can be written as a first order equation in T?*~1Q (this is
what will be called the lagrangian formalism of L), and there is a hamiltonian
formulation of the theory in T*(T*~'Q). Both spaces are connected through
the Legendre-Ostrogradskii’s map

]:L(qo’ ’q2k—1) = (q07"' 7Qk—l;ﬁ07--. 71310—1)7

where the Ostrogradskil’s momenta are defined by

k—i—1
. o oL
P = E (-1)’D < ) .
=0 ‘ aqi+j+1
Equivalently,
e oL i oL i
P = t= 72— -Dy".

B 3—‘11:’ P Jg;
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Notice that p* depends only on qq, - .. , gar—1—s-
Introducing the momenta step-by-step, for 0 < r < k an intermediate

space P, can be defined, with coordinates (qo,--.,qk_1-r;0°%--.,p" ). In
particular, the lagrangian and hamiltonian spaces are P, = T?*~1Q and P, =
T* (Tk_lQ).

Then the Legendre-Ostrogradskii’s map is decomposed into partial Ostro-
gradskii’s maps F,.: P, — P,,;, with local expression

r—1 r—1 Ar) .

fr(qOr'- aq2k~l—r;p01"' »D ) = (qO"" 7q2k—2—r;p0"" » P » D

T2k—1Q ]’I/ T* (Tk—lQ)

P, _Fa, )2 P, F. P., oo Ty P,

Now let us introduce the intermediate time-evolution operator K., which
is a vector field along F, satisfying certain conditions similar to those satisfyed
by K in the first order case. In coordinates it reads

9 + + 9 +
(haqo Q2k—1—raq2k_2_r

+(§£)i+<6_[l_ 0)i+" +(8L_ 7—1) 9
dg) a0 " \og, T )apt " \ag, P ) o

All these operators are connected by T(F,) o K,_; = K, o F,_;.

These operators are so as useful as in the first order case: they define
dynamics in the intermediate spaces P,, they relate the corresponding con-
straints, and are also useful to obtain hamiltonian symmetry generators and
Noether’s transformations. As before, let us commment on these points, and
especially on the last one.

K,

4.1. EQUATIONS OF MOTION Given a path &, in P, (0 <r < k), we can
consider the differential equation

T(J:.r) Ogr = Kr°§r7

that is to say, the following diagram must be commutative:
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1(p) 2 1(p,,)
£, K,

I ——— P,
&

Alternatively, one can consider the equation of motion in terms of a vector
field X, in P,:

— Py

T(F) o X, ~ K, .

All these dynamics are equivalent to the Euler-Lagrange equations.

4.2. CONSTRAINTS Now let us assume that L is a singular lagrangian:
FL (or any of the F.) is not a local diffeomorphism. In coordinates, this
means th2at the hessian matrix with respect to the highest order derivatives,

0°L
0qy, Oqy,
regularity conditions, it is still possible to construct the hamiltonian formula-
tion in P,. Then the equations of motion in each space P, yield constraints,
and it can be proved that a basis for the constraints of P, can be obtained by
applying K, to the constraints of P, ;.

For instance, if P,Sl) = Fr_1(Py_1) C P, is the primary hamiltonian con-
straint submanifold, it can be defined through some primary hamiltonian
constraints ¢}. Then application of K;_; to them yields the primary con-
straints of P,_,, and this proceeds in the same way until the primary la-
grangian constraints ¢f, which define the primary lagrangian constraint sub-
manifold Po(l) C P,. This is also true for the secondary constraints and so
on.

As for first order lagrangians, the primary constraints yield a basis for

Ker W: o4
Yu = Fr-1 (kal) .

(Notice that v, depends only on (qo, ... ,gx).) Then, a basis for Ker T(F,) is
constituted by the vector fiels

, is not invertible. In this case, assuming as usual certain mild

0

I =y, ——
# WBsz—l-r’

which can be used to test the projectability of a function in P, to P,,;.
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It is interesting to notice that the primary lagrangian constraints can be
expressed also as

¢y = Ko- ) = (_1)k_1[L]'7u = (—1)k_10-'7m

where we use the notation provided by separing the highest order derivative
in the Euler-Lagrange equations:

k
oL oL
L= (-1'D; (51) = 5= — Do =a = (=1 gul.
[ ] ;( ) t 8Qr aqo

4.3. GENERATORS OF HAMILTONIAN SYMMETRY TRANSFORMATIONS Gi-
ven a function Gy(t, qo,--- ,qr—1,p° ... ,p*"1) in phase space, the necessary
and sufficient condition for it to generate a hamiltonian symmetry transfor-
mation is

This result is similar to that for first order lagrangians, but it uses Kj_, instead
of K.

4.4. NOETHER’S TRANSFORMATIONS Let us consider again the two defi-
nitions of a Noether’s transformation; for a kth order lagrangian, the relation
between the functions F and G is F + G = Y.*_0 "dq,. Now the main result
is [GP 95]:

THEOREM 2. Let dq(t,qo,- .- ,926—1) be a Noether’s transformation with
conserved quantity G. Then Gy, is projectable to a function G; in P, such
that

Ko'GI % 0,

P

where Pél) is the primary lagrangian constraint submanifold. Conversely,
given a function G((t,qq,- .. ,q2x_2,p°) such that

Ky -Gp=— Zr"(a’yﬂ)
o
(a combination of primary lagrangian constraints) then
* BGI
=7 (ap" ) - %:M“

is a Noether’s transformation with conserved quantity G, = F§(Gy).
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As for first order lagrangians, notice that here K, acts on a time-depen-
dent function, and so it contains the term 0/0t. Notice also that there is
some indetermination in the functions 7#, and this allows also the existence of
Noether’s transformations with vanishing conserved quantity.

However, now there is no guarantee that the conserved quantity G be
projectable to the hamiltonian space P,. Moreover, even in the case that both
the conserved quantity Gy and the coefficients of the Noether’s transformation
dq are projectable to Py, it could happen that any of the possible functions G
which are projection of G, generates a hamiltonian symmetry transformation.

In conclusion, in contrast to the first order case, where there are two possi-
bilities for a Noether’s transformation according to its projectability to phase
space, for a higher order lagrangian there are several different possibilities
according to the degree of projectability of the coefficients of a Noether’s
transformation and its conserved quantity.

Finally, let us sketch the proof of the theorem. The highest order derivative,
42k, 11

appears linearly, and its coefficient is

oGy,
—1)*Wéq — = 0;
( ) 7 O0qok—1

so, contraction with the null vectors 7, shows that G = F;(Gy) for a certain
function Gy in P;. Next we use the general relation

K, - g—[L]]:*(a

3 O) +Dt}'*( )

and after these substitutions and looking again at the coefficient of gy in the

resulting expression we conclude that dqg — FJ ( ap 01 ) is a null vector of W:

5q (6G1) ZT”’)’;L

for some 7#(t,qo, - -. ,q2x—1). Using this expression we obtain
K, -G+ ZT“(a’yu) =0.
"

All this reasoning can be inverted to obtain the converse.
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5. AN EXAMPLE

For a relativistic particle we consider a lagrangian proportional to the
curvature of its world line [Pis 86] [BGPR 88] [GP 95],

_ VA V() (@) — (wix,)?
L=« A, =« ) ,

where « is a constant parameter. Here x(t) is in Minkowski space R¢, we
write @x,, for its nth time-derivative, and

A, = det((z;x;))1<i j<n-
We also put

(w261)617 €3 = T3 — (m3e2)€2 - (.’12361)61.
(ese2) (er€1)

e =, €y = Ty —

The partial Ostrogradskii’s transformations are

Py =T3R4 2o P, By P =T (T(RY)

(m07w17w2)m3) = (w07 w17m27ﬁ0) 1
(m07w1=w2’p0) = (w07m17p07i’ )a

where the momenta are defined by

3 0L  « .
P e T V&
oL «
.0 .1
= — —-D;p =— .
p oz, P \/A_263

To be precise, P, is not all T3(R¢), but the open subset defined by A; > 0,
Ay > 0. Similarly for P, and Ps.
The lagrangian is singular since the hessian matrix

W L o ( _elﬂely_ezﬂezu>
o oxh oy /A, (ere1)  (eze3)

has rank d — 2.
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The intermediate evolution operators are

K, = x +m28+6La (aL—")i
oxg oz, Oxy Op° oz, op!
d o o a [N, A, d
= 1731—8-“:—0-1-3328—:31— (P + \/A—2<A—%el+2—A—1-ez)> opt’
K, = =z + x 0 + x3 9 + oL 0
oxy oz, Oxy, Oxzy Op°
0 3}
= 1315w—0+w28—m1+-’173;9?2a

and the Euler-Lagrange equations are

oL ; .
(L] == 8_:130 - D,p’ = —-D;p’ = 0.

As a hamiltonian we can take
H = (pozl)a

and there are two primary constraints in the hamiltonian space P;:

H=we),  wi=3(@P)-25).

(x124)

Proceeding with the hamiltonian stabilization we obtain secondary constraints

¢5={¢5, H} = —(p°z1), o5 ={¢5,H} = —(p"p")

and a tertiary constraint

¥ = {y7,H} = (p°p°).

All them are first-class.

The constraints in P, are obtained by applying the operator K; to the
hamiltonian constraints. There are only three independent constraints re-
maining: ¢}, 1! and 2.

Similarly from the intermediate constraints we obtain the lagrangian con-
straints by application of K,. Then we have only 9§ = K - 9.

Finally we obtain the null vectors of the hessian:

* a 3 * 8 3 -
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Once all these elements have been obtained, one may ask for the symmetry
transformations. The results are the following [GP 95].

On one hand, the model does not have any hamiltonian gauge symmetry
generator, in spite of having two primary first-class hamiltonian constraints.

On the other hand, the model has two independent gauge Noether’s trans-
formations. They can be obtained through our characterization, looking for a
function G; combination of secondary constraints of P;, and they are

o = (p(t)wh
sz = 2p()p" + p(t)p,

where ¢ is an arbitrary function of time.

These transformations and their generating functions G; are indeed pro-
jectable to the hamiltonian space; however, they do not yield hamiltonian
gauge transformations.

Some other examples of computation of Noether’s gauge transformations
for first order lagrangians can be found in [GP 92].
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