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1. INTRODUCTION

A continuum with microstructure may geometrically be modelled as an
associated bundle with a principal bundle. The homogeneity is characterized
by using the theory of connections in principal bundles.

A continuum with microstructure is a simple body B each point of which
has attached a manifold of parameters [2]. In geometrical terms, we have a
body manifold B and a fiber bundle 7 : £ — B over B. Some kind of ho-
mogeneity is needed for each fiber and the geometrical measure of this homo-
geneity is supplied by the action of a Lie group on the manifold of parameters.
In geometrical words, the fiber bundle is associated with a principal bundle
7w : £ — B with structure group G.

In this framework, a configuration is an embedding of principal bundles
of 7 : & — B into the trivial bundle 7, : R" x G — B. A change of
configuration is a deformation. The material response is supposed to depend
on the 1-jet of the deformation. We introduce the notion of uniformity and
isotropy group in terms of jets. If the body = : £ — B enjoys smooth
uniformity we can characterize the homogeneity in terms of three connections:
one linear connection I' on B and two connections in the principal bundle
7 : & — B: A (which is defined from a global section P : B — &) and A. In
fact, it is proved that B is locally homogeneous if and only if the torsion tensor
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T of T' identically vanishes and the global section P : B — £ is parallel with
respect to A

These results recover the ones for second grade materials [3, 4, 12, 9] (see
also [7, 8]), Cosserat continua [11, 6] and continua with vector microstructure
[5].

Our approach may be considered as the natural generalization of the con-
tinuous theories of inhomogeneities of Noll [18] and Wang [20] (see also [19]).
An alternative approach based in a defective crystalline lattice due to Kondo,
Bilby and Kroner [14, 1, 15]) was recently updated by Kroner [16]. The use
of principal bundles formalism in elastoplasticity theories may enjoy interest-
ing features as the recent work by Epstein and Maugin shows [10] (see also
17, 16)).

2. CONTINUA WITH MICROSTRUCTURE. UNIFORMITY AND MATERIAL
SYMMETRIES

An n-dimensional body B is said to be a continuum with microstructure
if there exists a bundle # : £ — B associated with some principal bundle
w: £ — B with structure group G. The standard fibre F of £ is the manifold
of parameters. We assume that F has dimension m and dim B =n < 3.

Denote by 7y : R*xG —» R the trivial bundle. Therefore, a configuration
of £ is a principal bundle embedding & : £ — R?® x G which induces the
identity between the structure groups. We denote by ¢ : B — R’ the
induced embedding between the bases.

A deformation is a change of conﬁguratlon that is, given two configurations
d;,: &€ — R* x G, i=12&k=®a,0 <I)1 , which is a principal bundle iso-
morphism from &, (£) into ®,(£) inducing the identity between the structure
groups and covering the diffeomorphism k = ®, 0 & : ®,(B) — ®,(B).

We assume that the material response is completely characterized by a
scalar function which depends on the first derivative of the deformation. The
constitutive equation is:

W = W(j}(’k(x) ) . (1)

We can consider equivalence classes of local principal bundle isomorphisms
(as in the Appendix A) and then the constitutive equation more appropiately
reads as follows:

W =W (i ncx) 7) » (2)
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where jy . x) & denotes the equivalence class of j ; 3, -

From now on, we fix a refere~nce configuration ®,, and make the obvious
identifications: B = ®¢(B), £ = Py(E).

DEFINITION 1. A continuum with microstructure B is said to be uniform if
for every pair of points X,Y € B there exists a local isomorphism of principal
bundles ® (inducing the identity between the structure groups) such that
®(X) =Y and

z _ -1 ~
) @) =W(igz) r@x) F)

, VX € W_I(X),Vjé()?),k(é()?)) Fyo (3)

S

.1 ~ .
W (i5(%),z@0) *© Ix 6%

where o denotes the composition of jets.

With the obvious notations, the uniformity condition may be equivalently
written as

W (Jax) m(ax)) % Ix.a0x) ®) =W (Gacx) m@x) ) » Vs x@ex) & (4)

where o denotes the composition of equivalence classes of jets.
Such a 1-jet (and its class) will be called a local uniformity from X to Y.
A material symmetry at a point X € B is a 1-jet j}(’ 3(X) & where & is
a local isomorphism of principal bundles (inducing the identity between the
structure groups) such that 7(®(X)) = 7(X) = X and

-1 ~ -1 _ -1
W(s.m@0) BoIxac) ©) =W s a@xy F)
g -1 -1 ~
Again, by using equivalence classes of jets, we can write Equation (5) as
follows
W(j;)(X),n(Q(X)) Ko jxax) @) = W(jé)(X),n(fb(X)) )y Viex)m@x) F-(6)

From (5) (or 6) we deduce that the collection G(X) of all material symme-
tries at X forms a group which is called the isotropy group at X. Of course,
the collection G(X) of all the induced 1-jets on the base B also forms a group.
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3. UNIFORM CONTINUA WITH MICROSTRUCTURE

Consider the family Q(B) of all the local uniformities % a( x)‘i’~ (Here we
use the notations introduced in Appendix A). We have Q(B) c J1(€).

DEFINITION 2. A continuum with microstructure B is said to be smoothly
uniform if Q(B) is a Lie subgroupoid which admits a smooth global section.
Such a section it is called a global smooth uniformity.

From now on, we suppose that B enjoys global smooth uniformity and
o : Bx B —s Q(B) is a global uniformity, that is, o is a smooth global section
of (&, B) : QUB) — B x B.

Choose a point X, € B and define S : B — Q(B) by S(X) = (X, X).
Next, choose a non-holonomic frame Z, = j:l’\i,(el)@ at Xy (see Appendix C)
and put:

S(X)=8(X)oZ,,VX €B,

where S(X) is the representative in S(X) with source ¥(e;). In other words,
S : B — FE& is a non-holonomic parallelism on B. Sometimes we shall refer
to S as a field of uniformities.

DEFINITION 1. A non-holonomic frame Z, at X, will be called a reference
crystal at that point.

By using a reference crystal Z, we obtain a Lie subgroup G of G(n,G) as
follows:

G={Z;'0Z0Z | Z€G(Xo)}, (7)

where Z denotes the representative of the class Z with source U(e;).
By applying the results of Appendix D, we know that S induces:

- A global section P of the principal bundle 7 : £ — B (and hence, a
connection A in £).

- A linear parallelism Q on B (and hence a linear connection ' on B).

- A connection A in &.

Notice that there is a degree of freedon in the choice of S. In fact, if we
change the reference crystal Z, to a new one Z}, then Z} = Z,(A, B, C), where
(4,B,C) € G(n,G). Thus, S' = S(A4, B,C) is a new field of uniformities.

Furthermore, there is another degree of freedom. Suppose that G is a
continuous Lie subgroup of G(n,G). Hence we prolongate a non-holonomic
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parallelism S by G and obtain a G-reduction of FE. Therefore, all the sec-
tions S(A(X), B(X),C(X)), where (A, B,C) : B — G, are admissible non-
holonomic parallelisms or, in other words, new fields of uniformities.

Remark 1. There is a more general class of continua with microstructure.
Suppose that B only enjoys local smooth uniformity, that is, Q(B) is a Lie
subgroupoid which only admits local sections (in other words, local uniformi-
ties). As above, we fix a point X, at B and a non-holonomic frame at X.
Proceeding in the same way, we obtain local sections of 7@ : B — F& and, by
prolongation, a G-reduction. We call such a reduction a G-structure.

4. HOMOGENEOUS CONTINUA WITH MICROSTRUCTURE

DEFINITION 3. We say that B is homogeneous if there exists a global con-
figuration £ such that:

1. kK : B — R? is an embedding into R, i.e. k(B) C R"; and
2. § = k7! is a uniformity field.

More precisely, for each X € B, let Ax : R" x G — £ be the bundle
isomorphism defined by

Ax(r,R) = & (r + (X),R) . (8)

Then B is homogeneous if S(X) = ]el Ax(er) Ay is a uniformity field. The
continuum B is said to be locally homogeneous if every point of B has a
neighborhood which is homogeneous.

In that case, there exist local coordinates (z') in R™ such that
8’P"‘>

’781 (9)

S(a') = (x P(a), 1
That is, S is an integrable prolongation.
Conversely, let S be a uniformity field for B. If S is an integrable prolon-
gation, then B is locally homogeneous.
Thus, we deduce the following result which characterizes geometrlcally the
homogeneity of a medium with structure.

THEOREM 1. A continuum with microstructure B is locally homogeneous,
if and only if it admits a field of uniformities which is an mtegrable prolonga-
thH R Fothen
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In order to decide if a continuum B is locally homogeneous, we proceed
as follows. Suppose first that there are no material symmetries except the
identity, i.e., G = (e,1,0). Take a field of uniformities S, with associated
connections I', A, and A. Compute the torsion tensor of the linear connection
I". If it vanishes, we then check if the global section P is parallel with respect
to A. If it is not, we change to another field of uniformities S' = S(4, B, C) by
means of a change of reference crystal and consider the new three connections
I", A’, and A'. Clearly, I" = T', and PA is parallel with respect to A’ if and
only if P is so also. If we can choose (4, B, C) € G(n,G) such that P is parallel
with respect to A’, we have finished, and B is locally homogeneous.

Now, suppose that G is not trivial. In this case, we have many choices for
a uniformity field. The geometrical answer for a local homogeneity character-
ization needs to develop an appropiate study of the integrability problem for
G-structures.

A. LIE GROUPOID ASSOCIATED WITH A PRINCIPAL BUNDLE

Let 7 : £ — B be a principal bundle with structure group G. Denote by
J*(€) the manifold of 1-jets j% )2 of local automorphisms ® of £ such that
B(YA) = B(Y)A, VY € &,VA € G. Notice that J1(&) C II*(E,E), the Lie
groupoid of the invertible 1-jets of the manifold €. We define an equivalence
relation on JH(E) as follows: j}{’@()—()q) r\:j;?A,&)(X’)Aq)' The f:quiva,lence class
of j}(,&(k)(ﬁ will be denoted by jk 4(x)®, where X = WEX) and ® is the
induced diffeomorphism between the bases. Denote by J'(€) the quotient
space J(£)/G. If we define

@([j}(,é(){)‘i’]) =X, B([ﬁ(@(x@]) = @(X) )
we can easily check that J'(€) is a Lie groupoid over B with source and target

maps @, 3 : J'(£) — B.
Furthemore, the set of induced 1-jets jk o(x)® is just IT'(B, B).

B. BUNDLES ASSOCIATED WITH PRINCIPAL BUNDLES

Let m : £ — B be a principal bundle with structure group G. Suppose
that G acts on the left on a manifold 7, namely G x F — F. We define on
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the product manifold £ x F the following action of G:
ExXF)yxgG— EXF, (10)
(X,6)A~ (XA4,471¢) .

= ExXF ~ .
Denote by £ = the quotient space and by 7 : & — B the canonical

g s
projection. We have that 7 : £ — B is a fibre bundle with standard fibre F

which is called an associated fibre bundle with &.

C. NON-HOLONOMIC FRAMES OF A PRINCIPAL BUNDLE

Let w : £ — B be a principal bundle with projection 7 and structure group
G. Consider the trivial principal bundle R* x G — R", where dim B = n.
Denote by e; the element e; = (0, ¢e), where e is the neutral element of G.

A non-holonomic frame of £ at a point X € B is a 1-jet jil,&)(el) d of a

local principal bundle isomorphism & : R* x G —» &, where & induces the
identity between the structure groups, and m(®(e;)) = X. The collection of
all non-holonomic frames at all the points of B is denoted by FE and we have
FE C F(€), where F(E) denotes the linear frame bundle of the manifold &.
Take canonical coordinates (r?), 1 <4,4,k,--- <n, on R" and coordinates
(R*), 1< a,8,7, - <dim G, on G (we can choose normal coordinates on G,

for instance). On £ we have fibred coordinates (z¢, X*). We have

&(r, R) = (®(r), p(r)R) , (11)
where @ : R”" — B and ¢ : R" — G. We get

. . Y LY LU
Paen &= (20,670, 550,0,520,¢°0) . (2)

We have used the following local coordinates:

B : (z%),
£ : (a5,X9),
FE&) (a:i,X"‘;mid,x"’ﬁ,X‘f]‘,X’“ﬂ) . (13)
With these notations the coordinates of j:h&,(el) ® are (z*, X% 2* 5, X*;).

We deduce that FE is a (n+ dim G)(n + 1)-dimensional submanifold of F(£).
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Furthermore, if we consider the elements j:l, B(e1) ® from R™ x G into itself
such that ®(0) = 0, we obtain a Lie group denoted by G(n,G) whose elements
are of the form (A4, B,C), where A € G, B € Gl(n,R) and C € Lin (R", g), g
being the Lie algebra of G. Thus, G(n,G) may be identified with the product
G xGl(n,R)xLin (R", g), the multiplication law given by the following formula

obtained by applying the chain rule:

(Al,Bl, Cl)(Ag,Bg,Cz) == (A - A1A2,B - B1B2,C = A20132 + AlC2) ,
(14)

with the following definitions:

-If A€ G and C € Lin (R, g), then AC is the composition R* %5 g A,
g, the second mapping being the induced one from the right translation by A.

-If B € Gl(n,R) and C € Lin (R", g), then CB is the composition R* —»
R -% g.

A simple computation shows that 7 : F€ — B, where 7 is the canonical
projection, is a principal bundle over B and with structure group G(n,G). FE

will be called the non-holonomic frame bundle of £. We denote by p : FB —
FB and 6 : FB — & the canonical projections.

D. NON-HOLONOMIC PARALLELISMS

DEFINITION 4. A global section S : B — FE& is called a non-holonomic
parallelism on &.

By using the projections p and 0, S determines:

- A global section P : B — &;

- A linear parallelism Q on B;

- A connection A in 7 : £ — B, by defining the horizontal subspaces as
follows. Let S(X) = j:l’@(el)é be such that ®(r, R) = ¢(r)R, where p(r) =
®(r,e). We define a horizontal subspace Hpx) = dp(0)(ToR") and, then we
transport Hp(x) by the action of G.

Remark 2. Roughly speaking, a nonoholonomic frame at a point X is an
infinitesimal element of connection, that is, a horizontal subspace over X.

Conversely, let P be a global section of £ and Q a linear parallelism on B.
We obtain a non-holonomic parallelism P*(Q) on £ by defining S(X) to be
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the “linear connection” at P(X) given by the horizontal subspace spanned by
the tangent vectors {dP(X)(Q(X))}.

DEFINITION 5. (1) A non-holonomic parallelism S is called a prolongation
if § = PYQ). (2) S is called an integrable prolongation if S = P!(Q) and Q
is integrable.

Suppose that P(z*) = (z*,P*(z)) and Q(z*) = (z*, Q}(z)). Hence

PI(Q)(SI,‘i) — (:Ei,'Pa, ;’Qkapa) .

J axk
Therefore S(z*) = (z*,P*, Q%, RY) is a prolongation if and only if
opPe
a __ Nk
Rj - Qj ok

and, § is an integrable prolongation if and only if there exist local coordinates
(z*) on B such that

Q. =4, (15)
o« OP¢
i ori (16)

If S is a non-holonomic parallelism on £ then it defines three connections:
- A linear connection I' on B induced by the linear parallelism Q and with
Christoffel components:

1 09
Foxi
- A connection A in the principal bundle 7 : £ — B whose horizontal
subspace at P(X) is obtained by transporting the tangent space T'xB. Then
we transport it by the action of the Lie group G. The horizontal subspaces
along P are locally spanned by
0 0P 0

F;’k = —(Q_l) (17)

(18)

- A connection A in the principal bundle 7 : £ — B whose horizontal
subspaces along P are locally spanned by

.0 0
Jj_— a_ 7
{Qi 5 + R 8Xa} . (19)

From (17), (18) and (19) we deduce the following.



GEOMETRIC CHARACTERIZATION 125

THEOREM 2. A non-holonomic parallelism S is an integrable prolongation
if and only if T' is symmetric and A = A. '

Theorem 2 may be rephrased as follows. Denote by T' the torsion tensor
of I'. Hence we have.

THEOREM 3. A non-holonomic parallelism S is an integrable prolongation
if and only if T identically vanishes and P is parallel with respect to the
connection A.

The result follows taking into account that A and A coincide if and only if
dP(X)(Qi) = (X)), VX eB,1<i<n,

where {Q1,...,Q,} is the linear parallelism defined by Q and U denotes the
horizontal lift of a tangent vector U € T'xB to £.
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