Geometric Characterization of the Homogeneity of Continua with Microstructure †

Manuel de León and Marcelo Epstein

Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain, e-mail: mdeleon@pinar1.csic.es Department of Mechanical Engineering, University of Calgary, 2500 University Drive NW, T2N 1N4, Calgary, Alberta, Canada, e-mail: epstein@enme.ucalgary.ca

AMS Subject Class. (1991): 73B05, 73B10, 73B25, 53C10

1. Introduction

A continuum with microstructure may geometrically be modelled as an associated bundle with a principal bundle. The homogeneity is characterized by using the theory of connections in principal bundles.

A continuum with microstructure is a simple body \mathcal{B} each point of which has attached a manifold of parameters [2]. In geometrical terms, we have a body manifold \mathcal{B} and a fiber bundle $\tilde{\pi}: \tilde{\mathcal{E}} \longrightarrow \mathcal{B}$ over \mathcal{B} . Some kind of homogeneity is needed for each fiber and the geometrical measure of this homogeneity is supplied by the action of a Lie group on the manifold of parameters. In geometrical words, the fiber bundle is associated with a principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ with structure group \mathcal{G} .

In this framework, a configuration is an embedding of principal bundles of $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ into the trivial bundle $\pi_0: \mathbb{R}^n \times \mathcal{G} \longrightarrow \mathcal{B}$. A change of configuration is a deformation. The material response is supposed to depend on the 1-jet of the deformation. We introduce the notion of uniformity and isotropy group in terms of jets. If the body $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ enjoys smooth uniformity we can characterize the homogeneity in terms of three connections: one linear connection Γ on \mathcal{B} and two connections in the principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$: Λ (which is defined from a global section $\mathcal{P}: \mathcal{B} \longrightarrow \mathcal{E}$) and $\bar{\Lambda}$. In fact, it is proved that \mathcal{B} is locally homogeneous if and only if the torsion tensor

[†]This work has been partially supported through grants of the National Science and Engineering Research Council of Canada and DGICYT-Spain, Proyect PB94-0106.

T of Γ identically vanishes and the global section $\mathcal{P}: \mathcal{B} \longrightarrow \mathcal{E}$ is parallel with respect to $\bar{\Lambda}$.

These results recover the ones for second grade materials [3, 4, 12, 9] (see also [7, 8]), Cosserat continua [11, 6] and continua with vector microstructure [5].

Our approach may be considered as the natural generalization of the continuous theories of inhomogeneities of Noll [18] and Wang [20] (see also [19]). An alternative approach based in a defective crystalline lattice due to Kondo, Bilby and Kröner [14, 1, 15]) was recently updated by Kröner [16]. The use of principal bundles formalism in elastoplasticity theories may enjoy interesting features as the recent work by Epstein and Maugin shows [10] (see also [17, 16]).

2. Continua with microstructure. Uniformity and material symmetries

An n-dimensional body \mathcal{B} is said to be a continuum with microstructure if there exists a bundle $\tilde{\pi}: \tilde{\mathcal{E}} \longrightarrow \mathcal{B}$ associated with some principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ with structure group \mathcal{G} . The standard fibre \mathcal{F} of $\tilde{\mathcal{E}}$ is the manifold of parameters. We assume that \mathcal{F} has dimension m and dim $\mathcal{B} = n \leq 3$.

of parameters. We assume that \mathcal{F} has dimension m and dim $\mathcal{B} = n \leq 3$. Denote by $\pi_0 : \mathbb{R}^3 \times \mathcal{G} \longrightarrow \mathbb{R}^3$ the trivial bundle. Therefore, a configuration of \mathcal{E} is a principal bundle embedding $\tilde{\Phi} : \mathcal{E} \longrightarrow \mathbb{R}^3 \times \mathcal{G}$ which induces the identity between the structure groups. We denote by $\Phi : \mathcal{B} \longrightarrow \mathbb{R}^3$ the induced embedding between the bases.

A deformation is a change of configuration, that is, given two configurations $\tilde{\Phi}_i: \mathcal{E} \longrightarrow \mathbb{R}^3 \times \mathcal{G}, \ i=1,2, \ \tilde{\kappa}=\tilde{\Phi}_2 \circ \tilde{\Phi}_1^{-1}, \ \text{which is a principal bundle isomorphism from } \tilde{\Phi}_1(\mathcal{E}) \ \text{into } \tilde{\Phi}_2(\mathcal{E}) \ \text{inducing the identity between the structure groups and covering the diffeomorphism } \kappa = \Phi_2 \circ \Phi_1^{-1}: \Phi_1(\mathcal{B}) \longrightarrow \Phi_2(\mathcal{B}).$

We assume that the material response is completely characterized by a scalar function which depends on the first derivative of the deformation. The constitutive equation is:

$$W = W(j_{\tilde{X},\tilde{\kappa}(\tilde{X})}^1 \ \tilde{\kappa}) \ . \tag{1}$$

We can consider equivalence classes of local principal bundle isomorphisms (as in the Appendix A) and then the constitutive equation more appropriately reads as follows:

$$W = W(j_{X,\kappa(X)}^1 \tilde{\kappa}) , \qquad (2)$$

where $j^1_{X,\kappa(X)}$ $\tilde{\kappa}$ denotes the equivalence class of $j^1_{\tilde{X},\tilde{\kappa}(\tilde{X})}$ $\tilde{\kappa}$.

From now on, we fix a reference configuration $\tilde{\Phi}_0$, and make the obvious identifications: $\mathcal{B} = \Phi_0(\mathcal{B})$, $\mathcal{E} = \tilde{\Phi}_0(\mathcal{E})$.

DEFINITION 1. A continuum with microstructure \mathcal{B} is said to be uniform if for every pair of points $X,Y\in\mathcal{B}$ there exists a local isomorphism of principal bundles $\tilde{\Phi}$ (inducing the identity between the structure groups) such that $\Phi(X)=Y$ and

$$W(j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa} \circ j^{1}_{\tilde{X},\tilde{\Phi}(\tilde{X})} \ \tilde{\Phi}) = W(j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa})$$

$$, \ \forall \tilde{X} \in \pi^{-1}(X), \forall j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa} \ , \quad (3)$$

where o denotes the composition of jets.

With the obvious notations, the uniformity condition may be equivalently written as

$$W(j_{\Phi(X),\kappa(\Phi(X))}^{1} \ \tilde{\kappa} \circ j_{X,\Phi(X)}^{1} \ \tilde{\Phi}) = W(j_{\Phi(X),\kappa(\Phi(X))}^{1} \ \tilde{\kappa}) \ , \ \forall j_{\Phi(X),\kappa(\Phi(X))}^{1} \ \tilde{\kappa} \ , \ (4)$$

where o denotes the composition of equivalence classes of jets.

Such a 1-jet (and its class) will be called a local uniformity from X to Y. A material symmetry at a point $X \in \mathcal{B}$ is a 1-jet $j^1_{\tilde{X},\tilde{\Phi}(\tilde{X})}$ $\tilde{\Phi}$ where $\tilde{\Phi}$ is a local isomorphism of principal bundles (inducing the identity between the structure groups) such that $\pi(\tilde{\Phi}(\tilde{X})) = \pi(\tilde{X}) = X$ and

$$W(j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa} \circ j^{1}_{\tilde{X},\tilde{\Phi}(\tilde{X})} \ \tilde{\Phi}) = W(j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa})$$

$$, \ \forall \tilde{X} \in \pi^{-1}(X), \forall j^{1}_{\tilde{\Phi}(\tilde{X}),\tilde{\kappa}(\tilde{\Phi}(\tilde{X}))} \ \tilde{\kappa} \ . \tag{5}$$

Again, by using equivalence classes of jets, we can write Equation (5) as follows

$$W(j^1_{\Phi(X),\kappa(\Phi(X))}\ \tilde{\kappa}\circ j^1_{X,\Phi(X)}\ \tilde{\Phi}) = W(j^1_{\Phi(X),\kappa(\Phi(X))}\ \tilde{\kappa})\ , \quad \forall j^1_{\Phi(X),\kappa(\Phi(X))}\ \tilde{\kappa}\ . (6)$$

From (5) (or 6) we deduce that the collection $\bar{\mathcal{G}}(X)$ of all material symmetries at X forms a group which is called the isotropy group at X. Of course, the collection $\mathcal{G}(X)$ of all the induced 1-jets on the base \mathcal{B} also forms a group.

3. Uniform continua with microstructure

Consider the family $\bar{\Omega}(\mathcal{B})$ of all the local uniformities $j_{X,\Phi(X)}^1\tilde{\Phi}$. (Here we use the notations introduced in Appendix A). We have $\bar{\Omega}(\mathcal{B})\subset \tilde{J}^1(\mathcal{E})$.

DEFINITION 2. A continuum with microstructure \mathcal{B} is said to be smoothly uniform if $\bar{\Omega}(\mathcal{B})$ is a Lie subgroupoid which admits a smooth global section. Such a section it is called a global smooth uniformity.

From now on, we suppose that \mathcal{B} enjoys global smooth uniformity and $\sigma: \mathcal{B} \times \mathcal{B} \longrightarrow \bar{\Omega}(\mathcal{B})$ is a global uniformity, that is, σ is a smooth global section of $(\bar{\alpha}, \bar{\beta}): \bar{\Omega}(\mathcal{B}) \longrightarrow \mathcal{B} \times \mathcal{B}$.

Choose a point $X_0 \in \mathcal{B}$ and define $S: \mathcal{B} \longrightarrow \bar{\Omega}(\mathcal{B})$ by $S(X) = \sigma(X_0, X)$. Next, choose a non-holonomic frame $\bar{Z}_0 = j^1_{e_1, \tilde{\Psi}(e_1)} \tilde{\Psi}$ at X_0 (see Appendix C) and put:

$$S(X) = \bar{S}(X) \circ \bar{Z}_0, \ \forall X \in \mathcal{B}$$

where $\bar{S}(X)$ is the representative in S(X) with source $\tilde{\Psi}(e_1)$. In other words, $S: \mathcal{B} \longrightarrow \bar{F}\mathcal{E}$ is a non-holonomic parallelism on \mathcal{B} . Sometimes we shall refer to \mathcal{S} as a field of uniformities.

DEFINITION 1. A non-holonomic frame \bar{Z}_0 at X_0 will be called a reference crystal at that point.

By using a reference crystal \bar{Z}_0 we obtain a Lie subgroup \bar{G} of $\bar{G}(n,\mathcal{G})$ as follows:

$$\bar{G} = \{ \bar{Z}_0^{-1} \circ \bar{Z} \circ \bar{Z}_0 \mid Z \in \bar{\mathcal{G}}(X_0) \} ,$$
 (7)

where \bar{Z} denotes the representative of the class Z with source $\tilde{\Psi}(e_1)$. By applying the results of Appendix D, we know that S induces:

- A global section \mathcal{P} of the principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ (and hence, a connection Λ in \mathcal{E}).
 - A linear parallelism \mathcal{Q} on \mathcal{B} (and hence a linear connection Γ on \mathcal{B}).
 - A connection Λ in \mathcal{E} .

Notice that there is a degree of freedon in the choice of S. In fact, if we change the reference crystal \bar{Z}_0 to a new one \bar{Z}'_0 , then $\bar{Z}'_0 = \bar{Z}_0(A, B, C)$, where $(A, B, C) \in \bar{G}(n, \mathcal{G})$. Thus, S' = S(A, B, C) is a new field of uniformities.

Furthermore, there is another degree of freedom. Suppose that \bar{G} is a continuous Lie subgroup of $\bar{G}(n,\mathcal{G})$. Hence we prolongate a non-holonomic

parallelism S by \bar{G} and obtain a \bar{G} -reduction of $\bar{F}\mathcal{E}$. Therefore, all the sections S(A(X), B(X), C(X)), where $(A, B, C) : \mathcal{B} \longrightarrow \bar{G}$, are admissible non-holonomic parallelisms or, in other words, new fields of uniformities.

Remark 1. There is a more general class of continua with microstructure. Suppose that \mathcal{B} only enjoys local smooth uniformity, that is, $\bar{\Omega}(\mathcal{B})$ is a Lie subgroupoid which only admits local sections (in other words, local uniformities). As above, we fix a point X_0 at \mathcal{B} and a non-holonomic frame at X_0 . Proceeding in the same way, we obtain local sections of $\bar{\pi}: \mathcal{B} \longrightarrow \bar{F}\mathcal{E}$ and, by prolongation, a \bar{G} -reduction. We call such a reduction a \bar{G} -structure.

4. Homogeneous continua with microstructure

DEFINITION 3. We say that \mathcal{B} is homogeneous if there exists a global configuration $\tilde{\kappa}$ such that:

- 1. $\kappa: \mathcal{B} \longrightarrow \mathbb{R}^3$ is an embedding into \mathbb{R}^n , i.e. $\kappa(\mathcal{B}) \subset \mathbb{R}^n$; and
- 2. $S = \tilde{\kappa}^{-1}$ is a uniformity field.

More precisely, for each $X \in \mathcal{B}$, let $\tilde{\mathcal{A}}_X : \mathbb{R}^n \times \mathcal{G} \longrightarrow \mathcal{E}$ be the bundle isomorphism defined by

$$\tilde{\mathcal{A}}_X(r,R) = \tilde{\kappa}^{-1}(r + \kappa(X), R) . \tag{8}$$

Then \mathcal{B} is homogeneous if $\mathcal{S}(X) = j^1_{e_1, \tilde{\mathcal{A}}_X(e_1)}$ $\tilde{\mathcal{A}}_X$ is a uniformity field. The continuum \mathcal{B} is said to be locally homogeneous if every point of \mathcal{B} has a neighborhood which is homogeneous.

In that case, there exist local coordinates (x^i) in \mathbb{R}^n such that

$$S(x^{i}) = \left(x^{i}, \mathcal{P}^{\alpha}(x), 1, \frac{\partial \mathcal{P}^{\alpha}}{\partial x^{j}}\right) . \tag{9}$$

That is, S is an integrable prolongation.

Conversely, let S be a uniformity field for B. If S is an integrable prolongation, then B is locally homogeneous.

Thus, we deduce the following result which characterizes geometrically the homogeneity of a medium with structure.

Theorem 1. A continuum with microstructure \mathcal{B} is locally homogeneous if and only if it admits a field of uniformities which is an integrable prolongation.

In order to decide if a continuum \mathcal{B} is locally homogeneous, we proceed as follows. Suppose first that there are no material symmetries except the identity, i.e., $\bar{G}=(e,1,0)$. Take a field of uniformities \mathcal{S} , with associated connections Γ , Λ , and $\bar{\Lambda}$. Compute the torsion tensor of the linear connection Γ . If it vanishes, we then check if the global section \mathcal{P} is parallel with respect to $\bar{\Lambda}$. If it is not, we change to another field of uniformities $\mathcal{S}'=\mathcal{S}(A,B,C)$ by means of a change of reference crystal and consider the new three connections Γ' , Λ' , and $\bar{\Lambda}'$. Clearly, $\Gamma'=\Gamma$, and $\mathcal{P}A$ is parallel with respect to $\bar{\Lambda}'$ if and only if \mathcal{P} is so also. If we can choose $(A,B,C)\in \bar{G}(n,\mathcal{G})$ such that \mathcal{P} is parallel with respect to $\bar{\Lambda}'$, we have finished, and \mathcal{B} is locally homogeneous.

Now, suppose that \bar{G} is not trivial. In this case, we have many choices for a uniformity field. The geometrical answer for a local homogeneity characterization needs to develop an appropriate study of the integrability problem for \bar{G} -structures.

A. LIE GROUPOID ASSOCIATED WITH A PRINCIPAL BUNDLE

Let $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ be a principal bundle with structure group \mathcal{G} . Denote by $J^1(\mathcal{E})$ the manifold of 1-jets $j^1_{\tilde{X},\tilde{\Phi}(\tilde{X})}\tilde{\Phi}$ of local automorphisms $\tilde{\Phi}$ of \mathcal{E} such that $\tilde{\Phi}(\tilde{Y}A) = \tilde{\Phi}(\tilde{Y})A$, $\forall \tilde{Y} \in \mathcal{E}, \forall A \in \mathcal{G}$. Notice that $J^1(\mathcal{E}) \subset \Pi^1(\mathcal{E},\mathcal{E})$, the Lie groupoid of the invertible 1-jets of the manifold \mathcal{E} . We define an equivalence relation on $J^1(\mathcal{E})$ as follows: $j^1_{\tilde{X},\tilde{\Phi}(\tilde{X})}\tilde{\Phi} \sim j^1_{\tilde{X}A,\tilde{\Phi}(\tilde{X})A}\tilde{\Phi}$. The equivalence class of $j^1_{\tilde{X},\tilde{\Phi}(\tilde{X})}\tilde{\Phi}$ will be denoted by $j^1_{X,\Phi(X)}\tilde{\Phi}$, where $X = \pi(\tilde{X})$ and Φ is the induced diffeomorphism between the bases. Denote by $\tilde{J}^1(\mathcal{E})$ the quotient space $J^1(\mathcal{E})/\mathcal{G}$. If we define

$$\bar{\alpha}([j^1_{X,\Phi(X)}\tilde{\Phi}]) = X \;,\; \bar{\beta}([j^1_{X,\Phi(X)}\tilde{\Phi}]) = \Phi(X) \;,$$

we can easily check that $\tilde{J}^1(\mathcal{E})$ is a Lie groupoid over \mathcal{B} with source and target maps $\bar{\alpha}, \bar{\beta}: \tilde{J}^1(\mathcal{E}) \longrightarrow \mathcal{B}$.

Furthemore, the set of induced 1-jets $j_{X,\Phi(X)}^1\Phi$ is just $\Pi^1(\mathcal{B},\mathcal{B})$.

B. Bundles associated with principal bundles

Let $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ be a principal bundle with structure group \mathcal{G} . Suppose that \mathcal{G} acts on the left on a manifold \mathcal{F} , namely $\mathcal{G} \times \mathcal{F} \longrightarrow \mathcal{F}$. We define on

the product manifold $\mathcal{E} \times \mathcal{F}$ the following action of \mathcal{G} :

$$(\mathcal{E} \times \mathcal{F}) \times \mathcal{G} \longrightarrow \mathcal{E} \times \mathcal{F} ,$$

$$(\tilde{X}, \xi) A \leadsto (\tilde{X}A, A^{-1}\xi) .$$
(10)

Denote by $\tilde{\mathcal{E}} = \frac{\mathcal{E} \times \mathcal{F}}{\mathcal{G}}$ the quotient space and by $\tilde{\pi} : \tilde{\mathcal{E}} \longrightarrow \mathcal{B}$ the canonical projection. We have that $\tilde{\pi} : \tilde{\mathcal{E}} \longrightarrow \mathcal{B}$ is a fibre bundle with standard fibre \mathcal{F} which is called an associated fibre bundle with \mathcal{E} .

C. Non-holonomic frames of a principal bundle

Let $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ be a principal bundle with projection π and structure group \mathcal{G} . Consider the trivial principal bundle $\mathbb{R}^n \times \mathcal{G} \longrightarrow \mathbb{R}^n$, where dim $\mathcal{B} = n$. Denote by e_1 the element $e_1 = (0, e)$, where e is the neutral element of \mathcal{G} .

A non-holonomic frame of \mathcal{E} at a point $X \in \mathcal{B}$ is a 1-jet $j^1_{e_1,\tilde{\Phi}(e_1)}$ $\tilde{\Phi}$ of a local principal bundle isomorphism $\tilde{\Phi}: \mathbb{R}^n \times \mathcal{G} \longrightarrow \mathcal{E}$, where $\tilde{\Phi}$ induces the identity between the structure groups, and $\pi(\tilde{\Phi}(e_1)) = X$. The collection of all non-holonomic frames at all the points of \mathcal{B} is denoted by $\bar{F}\mathcal{E}$ and we have $\bar{F}\mathcal{E} \subset F(\mathcal{E})$, where $F(\mathcal{E})$ denotes the linear frame bundle of the manifold \mathcal{E} .

Take canonical coordinates (r^i) , $1 \le i, j, k, \dots \le n$, on \mathbb{R}^n and coordinates (R^{α}) , $1 \le \alpha, \beta, \gamma, \dots \le \dim \mathcal{G}$, on \mathcal{G} (we can choose normal coordinates on \mathcal{G} , for instance). On \mathcal{E} we have fibred coordinates (x^i, X^{α}) . We have

$$\tilde{\Phi}(r,R) = (\Phi(r), \varphi(r)R) , \qquad (11)$$

where $\Phi: \mathbb{R}^n \longrightarrow \mathcal{B}$ and $\varphi: \mathbb{R}^n \longrightarrow \mathcal{G}$. We get

$$j_{e_1,\tilde{\Phi}(e_1)}^1 \tilde{\Phi} = \left(\Phi^i(0), \varphi^\alpha(0), \frac{\partial \Phi^i}{\partial r^j}(0), 0, \frac{\partial \varphi^\alpha}{\partial r^j}(0), \varphi^\alpha(0)\right) . \tag{12}$$

We have used the following local coordinates:

$$\mathcal{B} : (x^{i}),$$

$$\mathcal{E} : (x^{i}, X^{\alpha}),$$

$$F(\mathcal{E}) : (x^{i}, X^{\alpha}; x^{i}_{,j}, x^{i}_{,\beta}, X^{\alpha}_{,j}, X^{\alpha}_{,\beta}).$$

$$(13)$$

With these notations the coordinates of $j^1_{e_1,\tilde{\Phi}(e_1)}$ $\tilde{\Phi}$ are $(x^i,X^{\alpha};x^i_{,j},X^{\alpha}_{,j})$. We deduce that $\bar{F}\mathcal{E}$ is a $(n+\dim\mathcal{G})(n+1)$ -dimensional submanifold of $F(\mathcal{E})$.

Furthermore, if we consider the elements $j_{e_1,\bar{\Phi}(e_1)}^1$ $\bar{\Phi}$ from $\mathbb{R}^n \times \mathcal{G}$ into itself such that $\Phi(0) = 0$, we obtain a Lie group denoted by $\bar{G}(n,\mathcal{G})$ whose elements are of the form (A,B,C), where $A \in \mathcal{G}$, $B \in Gl(n,\mathbb{R})$ and $C \in \text{Lin }(\mathbb{R}^n,\mathfrak{g})$, \mathfrak{g} being the Lie algebra of \mathcal{G} . Thus, $\bar{G}(n,\mathcal{G})$ may be identified with the product $\mathcal{G} \times Gl(n,\mathbb{R}) \times \text{Lin }(\mathbb{R}^n,\mathfrak{g})$, the multiplication law given by the following formula obtained by applying the chain rule:

$$(A_1, B_1, C_1)(A_2, B_2, C_2) = (A = A_1 A_2, B = B_1 B_2, C = A_2 C_1 B_2 + A_1 C_2),$$

$$(14)$$

with the following definitions:

- If $A \in \mathcal{G}$ and $C \in \text{Lin }(\mathbb{R}^n, \mathfrak{g})$, then AC is the composition $\mathbb{R}^n \stackrel{C}{\longrightarrow} \mathfrak{g} \stackrel{A}{\longrightarrow} \mathfrak{g}$, the second mapping being the induced one from the right translation by A.

- If $B \in Gl(n, \mathbb{R})$ and $C \in \text{Lin }(\mathbb{R}^n, \mathfrak{g})$, then CB is the composition $\mathbb{R}^n \stackrel{B}{\longrightarrow} \mathbb{R}^n \stackrel{C}{\longrightarrow} \mathfrak{g}$.

A simple computation shows that $\bar{\pi}: \bar{F}\mathcal{E} \longrightarrow \mathcal{B}$, where $\bar{\pi}$ is the canonical projection, is a principal bundle over \mathcal{B} and with structure group $\bar{G}(n,\mathcal{G})$. $\bar{F}\mathcal{E}$ will be called the non-holonomic frame bundle of \mathcal{E} . We denote by $\rho: \bar{F}\mathcal{B} \longrightarrow \mathcal{F}\mathcal{B}$ and $\theta: \bar{F}\mathcal{B} \longrightarrow \mathcal{E}$ the canonical projections.

D. Non-holonomic parallelisms

DEFINITION 4. A global section $S: \mathcal{B} \longrightarrow \bar{F}\mathcal{E}$ is called a non-holonomic parallelism on \mathcal{E} .

By using the projections ρ and θ , \mathcal{S} determines:

- A global section $\mathcal{P}: \mathcal{B} \longrightarrow \mathcal{E}$;
- A linear parallelism Q on B;
- A connection $\bar{\Lambda}$ in $\pi: \mathcal{E} \longrightarrow \mathcal{B}$, by defining the horizontal subspaces as follows. Let $\mathcal{S}(X) = j^1_{e_1,\tilde{\Phi}(e_1)}\tilde{\Phi}$ be such that $\tilde{\Phi}(r,R) = \varphi(r)R$, where $\varphi(r) = \tilde{\Phi}(r,e)$. We define a horizontal subspace $H_{\mathcal{P}(X)} = d\varphi(0)(T_0\mathbb{R}^n)$ and, then we transport $H_{\mathcal{P}(X)}$ by the action of \mathcal{G} .

Remark 2. Roughly speaking, a nonoholonomic frame at a point X is an infinitesimal element of connection, that is, a horizontal subspace over X.

Conversely, let \mathcal{P} be a global section of \mathcal{E} and \mathcal{Q} a linear parallelism on \mathcal{B} . We obtain a non-holonomic parallelism $\mathcal{P}^1(\mathcal{Q})$ on \mathcal{E} by defining $\mathcal{S}(X)$ to be the "linear connection" at $\mathcal{P}(X)$ given by the horizontal subspace spanned by the tangent vectors $\{d\mathcal{P}(X)(\mathcal{Q}(X))\}$.

DEFINITION 5. (1) A non-holonomic parallelism S is called a prolongation if $S = \mathcal{P}^1(Q)$. (2) S is called an integrable prolongation if $S = \mathcal{P}^1(Q)$ and Q is integrable.

Suppose that $\mathcal{P}(x^i) = (x^i, \mathcal{P}^{\alpha}(x))$ and $\mathcal{Q}(x^i) = (x^i, \mathcal{Q}_i^i(x))$. Hence

$$\mathcal{P}^1(\mathcal{Q})(x^i) = \left(x^i, \mathcal{P}^{lpha}, \mathcal{Q}^i_j, \mathcal{Q}^k_j rac{\partial \mathcal{P}^{lpha}}{\partial x^k}
ight) \;.$$

Therefore $\mathcal{S}(x^i)=(x^i,\mathcal{P}^{\alpha},\mathcal{Q}^i_j,\mathcal{R}^{\alpha}_j)$ is a prolongation if and only if

$$\mathcal{R}_{j}^{\alpha} = \mathcal{Q}_{j}^{k} \frac{\partial \mathcal{P}^{\alpha}}{\partial x^{k}} .$$

and, S is an integrable prolongation if and only if there exist local coordinates (x^i) on B such that

$$Q_j^i = \delta_j^i \,, \tag{15}$$

$$\mathcal{R}_{j}^{\alpha} = \frac{\partial \mathcal{P}^{\alpha}}{\partial x^{j}} \,. \tag{16}$$

If S is a non-holonomic parallelism on E then it defines three connections:

- A linear connection Γ on ${\cal B}$ induced by the linear parallelism ${\cal Q}$ and with Christoffel components:

$$\Gamma_{jk}^{i} = -(\mathcal{Q}^{-1})_{k}^{l} \frac{\partial \mathcal{Q}_{l}^{i}}{\partial x^{j}} \,. \tag{17}$$

- A connection Λ in the principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ whose horizontal subspace at $\mathcal{P}(X)$ is obtained by transporting the tangent space $T_X\mathcal{B}$. Then we transport it by the action of the Lie group \mathcal{G} . The horizontal subspaces along \mathcal{P} are locally spanned by

$$\left\{ \frac{\partial}{\partial x^i} + \frac{\partial \mathcal{P}^{\alpha}}{\partial x^i} \frac{\partial}{\partial X^{\alpha}} \right\} . \tag{18}$$

- A connection $\bar{\Lambda}$ in the principal bundle $\pi: \mathcal{E} \longrightarrow \mathcal{B}$ whose horizontal subspaces along \mathcal{P} are locally spanned by

$$\left\{ \mathcal{Q}_{i}^{j} \frac{\partial}{\partial x^{j}} + \mathcal{R}_{i}^{\alpha} \frac{\partial}{\partial X^{\alpha}} \right\} . \tag{19}$$

From (17), (18) and (19) we deduce the following.

THEOREM 2. A non-holonomic parallelism S is an integrable prolongation if and only if Γ is symmetric and $\Lambda = \bar{\Lambda}$.

Theorem 2 may be rephrased as follows. Denote by T the torsion tensor of Γ . Hence we have.

THEOREM 3. A non-holonomic parallelism S is an integrable prolongation if and only if T identically vanishes and P is parallel with respect to the connection $\bar{\Lambda}$.

The result follows taking into account that Λ and $\bar{\Lambda}$ coincide if and only if

$$d\mathcal{P}(X)(Q_i) = (Q_i(X))^{\bar{H}}, \ \forall X \in \mathcal{B}, \ 1 \le i \le n,$$

where $\{Q_1, \ldots, Q_n\}$ is the linear parallelism defined by \mathcal{Q} and $U^{\bar{H}}$ denotes the horizontal lift of a tangent vector $U \in T_X \mathcal{B}$ to \mathcal{E} .

References

- [1] BILBY, B.A., Continuous distributions of dislocations, in "Progress in Solid Mechanics", Nort-Holland, Amsterdam, 1, 1960, 329–398.
- [2] CAPRIZ, "Continua with Microstructure", Springer Tracts in Natural Philosophy, 35, 1989.
- [3] DE LEÓN, M., EPSTEIN, M., On the integrability of second order G-structures with applications to continuous theories of dislocations, Reports on Mathematical Physics, 33(3) (1993), 419-436.
- [4] DE LEÓN, M., EPSTEIN, M., Corps matériels de degré supérieur, Comptes Rendus Acad. Sc. Paris, 319 Série I, (1994), 615-620.
- [5] DE LEÓN, M., EPSTEIN, M., Differential geometry of continua with structure, 8th International Symposium on Continuum Models and Discrete Systems, Varna, Bulgaria, June 11-16, 1995.
- [6] DE LEÓN, M., EPSTEIN, M., Geometrical theory of uniform Cosserat media, Preprint IMAFF-CSIC, 1995.
- [7] Elzanowski, M., Prishepionok, S., Locally homogeneous configurations of uniform elastic bodies, *Reports on Mathematical Physics*, **31** (1992), 229–240.
- [8] ELZANOWSKI, M., PRISHEPIONOK, S., Connections on higher order frame bundles, Proceedings Colloquium on Differential Geometry, July 25-30, 1994, Debrecen, Hungary.
- [9] Elzanowski, M., "Mathematical Theory of Uniform Elastic Structures", Politechnika Swietokrzyska, Kielce 1995.
- [10] EPSTEIN, M., Geometrical aspects of uniformity in elasticity and plasticity, 8th International Symposium on Continuum Models and Discrete Systems, Varna, Bulgaria, June 11-16, 1995.

- [11] EPSTEIN, M., DE LEÓN, M., The differential geometry of Cosserat media, Proceedings Colloquium on Differential Geometry, July 25-30, 1994, Debrecen, Hungary.
- [12] EPSTEIN, M., DE LEÓN, M., The geometry of uniformity in second-grade elasticity, *Acta Mechanica*, 114(1-4) (1996), 217-224.
- [13] ERINGEN, A.C., KAFADAR, CH.B., "Polar Field Theories, Continuum Physics", vol. IV, Part I, ed. A.C. Eringen, Academic Press, New York, 1976, pp. 1–73.
- [14] KONDO, K., Geometry of elastic deformation and incompatibility, Memoirs of the Unifying Study of the Basic Problems in Engineering Sciences by Means of Geometry, Tokyo Gakujutsu Benken Fukyu-Kai, 1955, 1C.
- [15] KRÖNER, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch. Rational Mech. Anal., 4 (1960), 273–334.
- [16] Kröner, E., Dislocation theory as a physical field theory. 8th International Symposium on Continuum Models and Discrete Systems, Varna, Bulgaria, June 11-16, 1995.
- [17] LE, K.CH., STUMPF, H., Finite elastoplasticity with microstructure, Mitteilungen aus dem Institut für Mechanik, Ruhr-Universität Bochum, Nr. 92, November 1994.
- [18] NOLL, W., Materially uniform simple bodies with inhomogeneities, Arch. Rational Mech. Anal., 27 (1967), 1-32.
- [19] TRUESDELL, C., NOLL, W., "The Non-Linear Field Theories of Mechanics", Handbuch der Physik, Vol. III/3, Springer, Berlin, 1965.
- [20] WANG, C.C., On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations, Arch. Rational Mech. Anal., 27 (1967), 33-94.