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1. INTRODUCTION

Piezoelectricity is a process of electromechanical interaction that occurs
exclusively in anisotropic solids, thus found in most crystals. The piezoelec-
tric effect, however, can also be induced in originally isotropic ceramics (such
as barium titanate and lead titanate zirconate) through a process known as
poling, which consist of subjecting the ceramic to a very high direct voltage
for a certain amount of time.

Ceramics of these type are extensively used in electronic packaging, elec-
tromechanical devices, control systems and large flexible structures. In these
applications the ceramic bodies are subjected to severe loading conditions as a
result of which they may fail due to fracture or dielectric breakdown. Failure
becomes even more eminent when the piezoelectric body has inherent manu-
facturing defects such as cracks, holes or impurities.

The purpose of this article is to present a brief account of a problem with
strong practical connotations, namely a piezoelectric body containing a hole
of elliptic shape, which in the limit is representative of a crack. A theoretical
model is presented to analyze the behavior of the electro-elastic fields in the
neighborhood of the cavity and crack.

2. LINEAR PIEZOELECTRICITY

We are concerned with deformable dielectric bodies lacking a center of ma-
terial symmetry and,therefore, prone to exhibit piezoelectricity. The analysis
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of such bodies is carried out through the conjunction of continuum mechanics
and electrodynamics theories, of which this section gives an account of the
main equations for time-independent deformations. The piezoelectric body
B, with body forces and charge density neglected, is described in terms of a
Cartesian coordinate system x,,z,z3. Denoting by Tj;, D;, S;i;, u; and E;
the components of stress, induction, strain, displacement and electric field,
respectively, and by ¢ the electric potential, the governing equations reduce
to elastic equilibrium and Gauss law, namely

aT;; aD;
ailfj 8:171; -

and the relations of strain-displacement and irrotationality of the electric field,
that is
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where (2b) is a consequence of the quasi-electrostatic approximation. The set
(1)-(2) represents 13 equations in 22 unknowns, which must be complemented
by constitutive relations derived by means of thermodynamic potentials. One
possible phenomenological description of a piezoelectric material is obtained
by considering the electric enthalpy, namely

¥ = U(Sij’ D;) — E;D; 3)
from where the stress and induction are obtained through the relations

ov ov
T = '(9—571_—; D; = _BEi (4)

When strain and electric field are the independent variables, the most
general, linear piezoelectric material is described by the following quadratic

function: 1 i
¥ = §Cijkl Sij Sk — 561'1' E; Ej — ey, Ei Sir (5)

where c¢;j1, €;; and e;;;, are the components of the elastic, dielectric and piezo-
electric tensors satisfying the following symmetry conditions:

Cijkl = Cijik = Cjikl = Crlijy;  C€kij = €kjis  €ik = €k
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Hence, using (4) and (5) the constitutive relations for the linear material
become

Tij = Cijkl Sk — €kij E;
D; = ey Sk + € Ex (6)

From (6) it is clear that when ej;; = 0 one obtains constitutive relations for
the elastic and electrostatic problems independently of each other. Moreover,
it should be pointed out that (6) is the most suitable equation for theoretical
purposes. On the other hand, expressions in terms of stress and electric field
as independent variables are mostly used for experimental purposes, while
equations derived from a thermodynamic potential as function of stress and
induction are convenient for two-dimensional analyses.

3. A PIEZOELECTRIC BODY WITH A HOLE

The problem under consideration is the following: B is unbounded and as-
sumed transversely isotropic with respect to a coordinate system z,y, z such
that the axis of material symmetry(perpendicular to the isotropic plane) is
in z-direction. Examples of materials with this particular symmetry are fur-
nished by poled ferroelectric ceramics with their polarization vector along z
and hexagonal crystals of the 6mm class with their 6th fold axis again parallel
to z.

Material is extracted from the body to produce a volumetric hole in the
form of an infinitely long cylinder with elliptic face of dimensions 2a and
2b (a > b), such that the generator of the cylinder is perpendicular to y
while the major and minor axes of the ellipse remain along coordinates x
and z, respectively. When b = 0 the generator of the cylinder becomes the
leading edge (or front) of a slit crack. Under the assumption of plane strain
conditions along the generator, a two-dimensional analysis of the elliptic hole
contained in the anisotropic plane can be carried out in closed form. Despite
the fact that such configuration is two-dimensional, the problem gives rise
to the most general condition of electro-elastic coupling effects, thus being
a valuable source to withdraw information regarding the effects of defects in
piezoelectric materials.

Furthermore, the elliptic hole (whose contour we shall denote by T') is
assumed to be filled with a homogeneous gas, most likely air of dielectric con-
stant (or permittivity) ey, and is free of forces and electric surface charge.
On the other hand, mechanical and electrical loads in the form of forces, dis-
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placements, charge or voltages are applied to the body at remote distances,
inducing, in general, stresses, electric fields, etc. in the body and hole. Nat-
urally, in the latter no mechanical fields are present. Finding the electric
variables permeating the hole reduces to the solution of Laplace’s equation for
the electric potential ¢° in the cavity, that is VZ¢° = 0.

In contrast, the solution in matter is a much more difficult problem which
requires first to define an appropriate set of constitutive equations. As men-
tioned before, a set in terms of stress and induction is the most convenient
when the analysis is carried out in two dimensions, in which case we have [1]

Sea a;; a;z 0 T,, 0 by D
Szz = ||G12 Q22 0 Tzz +1 0 b22 {Dz} (7&)

2Sa:z O 0 Q33 T£Z b13 O v
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T _ 13 11 T
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where a;;, b;; and c; are the elements of the reduced (or effective) elastic
compliance, piezoelectric and impermittivity matrices, respectively.

The two-dimensional versions of (1) and (2) in conjunction with (7) must
be solved subject to boundary conditions stating that I' is traction free and
that the normal component of the induction and the electric potential are
continuous. Thus

., =0 ;b= 0;
a¢°
- : r
D, €o pe on
b= ¢ (8a-d)

where the variables to the left of the equal signs are calculated in matter, ¢,
and ¢, are the Cartesian components of the stress vector and n is the unit
outward normal vector to I'.  We refer to (8) as the exact set of boundary
conditions.

4. BELECTRO-ELASTIC FIELDS IN MATTER

Exact expressions for the elastic and electric variables induced in B by the
applied loads were found recently by Sosa and Khutoriansky [1] by means of
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complex variables analysis and will not be repeated here. Instead we concen-
trate on the values taken by the fields on I', from where important information
regarding the behavior of B can be deduced. To this end, it is convenient to
express the fields in terms of components normal (n) and tangent (s) to T,
where the only independent variable is the angle 0 < § < 27 measured over
the curve in counter clockwise sense. For example, we can show that the
normal and tangential components of the electric field are given by

(aE cos b + E°sinf) +

apy cos 0 — sin 0) Ky Fy,
(9a-b)

3
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k=1
3
— (aE¥ cos§ — EX sinf) + Z

@ll\-’J ®|l\3

where E2°, E° are the prescribed values of the field at infinity,

ak(sinf +icos@)
asinf — ppbcosf ’

b
a=—-; O©=\/a2cos?f +sin’f; F,=
a

and a; are three coeflicients that depend on the material properties of the
body and gas enclosed within the hole and on the applied loads. Moreover, py
are three complex roots (with positive imaginary parts) satisfying the charac-
teristic equation

arien p® + [anicos + 2a10¢11 + azzcry + b3, + b2, + 2021 b13) p
[ag9C11 + 2a12Cog + A33Cos + 2b21b9 + 2b13bos] 42 + @gaCan + b3, =0

and
b13022ﬂk — cya o (Do p + b22)

cipg + Coa
As far as the elastic variables is concerned, we have that on I' the stress
vector vanishes, thus T, = T,,, = 0. However, a hoop stress can, in general,
be induced, whose value is given by

T.s(0) = — [T sin® 0 + T2 a? cos® O — 2T v cos O sin 6]

@2

2
62%; pi sinf + a cos 0)2 Fy, (10)
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where T9, etc. are normal and shear stresses prescribed at remote distances

T

from the hole. From (9) and (10) we derive the following results:

REsULT 1: Comparison between exact and impermeable models.

When B is subjected to a field E® = E, e,, where e, is a unit vector in
z-direction, the field induced on the boundary of a slender elliptic hole has
very different characteristics according to the nature of the electric boundary
conditions prescribed on I'. Indeed, from (9b) it is found that

(ay + 2¢11¢5 ) Egce cos 0

E,(9) = (ay + 2€9¢11)O

(11)

where 1 < v < 2 is a material parameter. The so-called impermeable model,
is based on an approximation consisting of neglecting the domain interior to
the hole, or equivalently setting ¢¢ = 0. In such a case, the two electric
boundary conditions given by (8c-d) are replaced by simply D,, = 0. The
physical argument behind such approximation relies upon the fact that the
dielectric constants of B are usually much larger than €. As we shall see such
an argument has limitations imposed by the geometry of the hole. Letting
EA(0) be the field due to the impermeable approximation as found from (11)

when ¢; = 0, we have
EA(0) 14 2€C11
E,(0) ory
Now, for most piezoelectric materials €yc;; ~ 107* and v ~ 1. Therefore,
for relatively “open” holes, that is when a >> €yci1, exact and approximate
models yield the same answer. On the other hand, when the ellipse is very
slender, such that a ~ €c;; it is found that E4(6) > E,(#), and in the
limit, when o — 0 one obtains E4(§) — oo. This last result says that the
field becomes singular everywhere in the slit crack (and in particular at its
tip), a result found by other authors whose works were based precisely on

impermeable boundary conditions ([2, 3, 4, 5, 6]).

(12)

RESULT 2: Field-defect interactions using (9).
Within the realm of exact boundary conditions, the case of a slit crack
subjected to E® = E; e, gives for § =0

lim E,(0) = Eo

a—0 €0Ca2

(13)

That is, use of conditions (8) predicts at the tip of the crack a bounded field.
From a practical point of view, however, this result still places strong restric-
tions on the magnitudes of the applied field E,. This is so because for most
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ceramics €ycys ~ 107%. Since most poled ferroelectric ceramics loose their
piezoelectric properties when subjected to fields of order 10° V/m applied in
a direction opposite to the inherent polarization vector, it is clear that under
prescribed fields of only 100 V/m the material will degrade permanently. In
other words, the material fails electrically.

RESULT 3: Stresses induced by electric fields.

The case of a piezoelectric body subjected to a remote electric field, in ad-
dition to mechanical forces, has consequences that we would like to consider
here. It is interesting to note that some experimental observations and analyt-
ical models have speculated that an electric field may enhance or retard crack
propagation initiated by the application of mechanical forces. Therefore, let
us study the case when B is subjected to a field in z-direction, and draw our
attention to the behavior of the stress component T, on I' at the point § = 0.
Thus, from (10) we have

K (cz —€0) Eo
ay + 2€pc11

where K is a positive, real number. If the piezoelectric solid is, in addition,
subjected to remote forces, the corresponding stresses can be added to (14)
according to the principle of superposition. On this point, it is useful to
note that the sign of T,,(0) in (14) depends solely on the sign of E,, since
the rest of the expression is positive. Thus, the electric field can increase or
reduce the intensity of the normal stress generated by say tensile forces applied
in an independent manner. Due to the implications of this effect it seems
appropriate to investigate the order of magnitude of the stress induced only by
E,. To this end, we note that for piezoelectric ceramics, the quantities involved
in (14) have the following orders of magnitude: ¢;;,cyy ~ 108, € ~ 1072 y ~ 1
and K ~ 10® — 10°. Hence, according to these values, the stress induced by
the field for aspect ratios in the range say 1072 < a < 1 is given (in its most

critical condition) by

10 x Ej

T (0) ~ (15)

That is, the slender the ellipse, the larger the stress in accordance to physical
intuition. In some cases the value given by (15) may have a substantial inci-
dence in the overall value of the hoop stress. For example, a field of 10° V/m
applied alone could induce a stress of up to 100 MPa if the axes of the ellipse
are in the ratio 1/100. Such value of stress is clearly detrimental in view of

the fact that most piezoceramics have tensile strengths of approximately 80
MPa.
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