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A solid may exhibit two crystalline structures which account for two differ-
ent phases. For most of the solid-solid phase transitions standard procedures
of thermodynamics are retained inadequate by metallurgists.

Basing on their viewpoint, the dominant process in the transformation of
one into the other crystalline structure is due to local elastic distortions. No-
tions such as strain transformation, self-strain, self-strain energy, coherency
are introduced and elasticity is invoked. Still however, infinitesimal elasticity
can be inadequate while finite elasticity may address to new questions.

1. INTRODUCTION

Andrews isothermal pressure-volume diagrams (1869) of liquid-vapour
transition and the corresponding Van der Waals mathematical model of inter-
pretation (1873) are currently regarded as a fundamental basis for the phase—
transition phenomena. Those diagrams show in evidence that a possible lack of
convexity of the free energy function in one of its arguments plays a prominent
role in the phenomenon. Nonetheless, the phase-transition of a solid material
from one crystalline structure into a different one may highlight new aspects
and address new questions. A metastable coexistance of the two crystalline
structures may occur and residual stresses may be revealed in the absence
of external loading. The internal stresses, in turn, can be attributed to the
internal strains, or self-strains, having in mind the stress—strain duality which
holds good in linear elasticity. Metallurgists are rather inclined to adopt the
self-strain model since Bain proposed it, as first, in 1924, [1]. Bain’s proposal
was to conceive the phase-transition as a strain—transformation. However, in
order to envisage the possible deformation to be associated with the strain—
transformation the knowledge of suitable local rotations is needed as well. We

221



222 C. TRIMARCO

find in the metallurgy literature that rules are prescribed for determining the
local rotations [2]. Nonetheless, the prescribed rotations turn out to be finite
rotations in most of the cases. The question arises then whether infinitesimal
elasticity may be the appropriate framework for describing the phenomenon.
Finite elasticity may be invoked but new questions emerge. For instance, the
duality of the description in stresses or strains fails as one description is not
equivalent to the other. Furthermore, stresses and strains have to be referred
to suitable reference configurations which are unneeded in the infinitesimal
elasticity theory [3]. A possible new viewpoint is expounded in the following.
According to metallurgists the self-strain is conceived as a local distortion of
a stress—free state. Hence, the strain—transformation with which it is associ-
ated, is not a deformation in the classical sense. It is rather a rearrangement
of points in the reference configuration. The additional condition of coherency
will guarentee the existence of a referential stress—free global configuration
[4-6].

Based on these remarks, the Eshelby energy—momentum tensor seems to
represent the proper stress tensor which governs the strain—transformation
[7]. In dynamics, the inertial counterpart of the energy-momentum tensor
is the pseudomomentum. By appealing to the balance of pseudomomentum,
interesting results can be singled out for a strain transformation [8].

2. PHASE TRANSITIONS IN THERMOELASTIC SOLIDS

According to the general procedures of thermodynamics, one refers to a
natural state and assumes that there exists a free energy density W (C,)
per unit volume of such a referential state V5. C = FTF, F = Grad x; the
mapping x : Vg — V represents the deformation; ¥ denotes the temperature.

Consider a one-dimensional problem to start with and notice that a lack
of convexity of the isothermal curves in the free energy diagram may occur
just as in the Van der Waals model for fluids. By analogy, such an occurrence
denotes a possible first order phase transition. A currently adopted model
is the one known as the Landau-Ginzburg model [9]. According to it the
free energy density is expanded in power of the interested physical quantities
around the referential state. In the present case we write

W(e,".?) = Wo(’l9) + a; (’19 - ‘l9c)£2 + 0@(’19 — 19c)£4 + 0,366 + - (21)

where £ is the one—dimensional linearized strain. 9, represents a critical tem-
perature which is peculiar of the solid material.
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3. CONVEXIFICATION WITH THE METHOD OF THE TANGENT

The notion of linear convexification is shown in evidence in the graph of
Fig. 1a through the depicted tangent to the isothermal curve.

Such a procedure is based on the fact that the mechanical and the thermo-
dynamical equilibrium must hold true during the process. Through Fig. 1b
we notice that the method of the tangent is equivalent to the Gibbs—-Maxwell
method of equal areas [6,7,9,10]. With reference to Fig. 1b, we also notice
that both rules provide a tool for finding the unknowns ¢, ¢, and ¢,. The lat-
ter quantities, in turn, individualize the phase—transition region and the two
thermoelastic branches of the constitutive curve as well.

In solids however one may observe hysteretic behaviour. There are still
two branches of the isothermal curve which account for the thermoelastic be-
haviour of the solid. Nonetheless, there is not a unique connection line between
the two thermoelastic branches. Those lines correspond to non-reversible path
while the points on the lines correspond to unstable states. For instance, the
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segment AC of Fig. 1c suggests a dynamical shock-like transtion.

4. THE ISOTHERMAL STRAIN-TRANSFORMATION

As each phase of the solid corresponds to a different crystalline struc-
ture Bain [1] conceived the idea that the second crystalline structure could
be regarded as the first one which had been suitably strained. Such a strain—
transformation or self-strain would provide an “intrinsic” elastic energy which
is required by the phase transitions. In this respect, the self-strain energy
would play the role of the latent heat in the classical phase transitions. Bain
also suggested the proper correspondences in order that the two crystalline
structures could well fit togheter without mismatches of the crystalline sites,
namely the coherency condition. As a matter of fact, Bain was mainly con-
cerned with martensitic transformations which are peculiar of steel [2]. In
such transformations the two crystalline structures of interest are both cu-
bic, and thus, they can both be described macroscopically as isotropic solids.
From the microscopic viewpoint the unit lattice of one crystalline structure
is body centered cubic (b.c.c.) whereas that of the other is face centered
cubic (f.c.c.). The first one (a—phase) corresponds to cubic martensite and is
stress free at low temperature (below room temperature for steel). The second
one (y—phase) corresponds to austenite and is stress—free at high temperature
(above 800° C). Should austenite be quenched at the room temperature, it
would partially transform in martensite, although the critical temperature of
transformation had not been reached. A subsequent isothermal tensile or com-
pressive loading would drive the complete transformation in martensite of the
remaining part of austenite.

5. THE BAIN DEFORMATION

With reference to the figures 2a and 2b the Bain deformation reads

t=v2eX; y=oY —2); z=0o(Y + Z). (5.1)
Accordingly,
V2a—-1 0 0
€ = 0 a—-1 0 (5.2)
0 0 aoa-—1

is candidate to represent the infinitesimal self-strain. However, despite the
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Fig. 2a

X=x Fig. 2c

fact that the strain is possibly infinitesimal, the local rotation Rg due to the
deformation (5.1) is finite. In fact one easily finds that

1 0 0

Ro = FoUy' Ug=Co=| 0 ¢ —2 (5:3)
2
0 F F

namely that a finite rotation of 7/4 accompanies the deformation. In addi-
tion, the finite rotation Ry remains inaltered irrespectively of the microscopic
parameter «. « represents the ratio of the edges of the cubic cells. The case
of @ = 1, which is represented in Fig. 2a, 2b and 2c is enlightening.
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6. A FIRST APPROACH TO THE MACROSCOPIC DESCRIPTION

The self-strain has to be regarded as an “a priori” quantity which is pro-
vided by experimental results. In linear elasticity and under suitable assump-
tions, one can associate the self-strain to the residual stress and conversely.
Thus, two different free energy densities correspond to the two phases, respec-
tively. In the quadratic approximation we expand the free energy around the
possibly stable states €g1 and €g2 as follows

Woi(9) + 5(e1 — €01) - A1(€1 — €01)
Wo2(9) + 2(e2 — €0z2) - A2(€2 — €o2) .

We will oversimplify the model in order to highlight the main features we
are interested in. In this respect we assume that the first state is a natural
one: Wy =0; €91 = 0. We also assume that Ay = A as we wish to disregard
second order phase-transitions. Under such assumptions the self-strain energy
is e = Leg - Aeg. Once more we will refer to the one—dimensional case in
which we recover the so—called two-parabolae model. One easily realizes that
the stability of the state corresponding to €p (the second phase) may be lost
depending upon the ratio WLM.

Experimental indications on the stability of the second phase are found
by a comparison with the values of the latent heat of transformation. Based
on these data one realizes that the second phase is stable in many circum-
stances. Hence, the model of the strain—transformation is reasonably accept-
able. Nonetheless, some remarks need to be made. First we notice that two
linearizations occur in the two—parabolae model. The first one is geometrical:
one global configuration is attributed to the two stable states. The second
one is concerned with the constitutive form of the free energy which is as-
sumed to be quadratic in the strain. The two—parabolae model eludes the
very important geometrical aspects of the three-dimensional solid bodies: the
geometrical compatibility conditions. The discussion of this point will lead to
the notion of geometrical coherence.

(6.1)

7. THE FINITE ISOTHERMAL STRAIN-TRANSFORMATION

As the reference configuration Vg of the solid body might not be a natural
one, one may wish to associate a natural configuration V, with it. This can
be done through the invertible map P : TV, — TVj as follows

P 16X = 6¢, X e Vi. (7.1)
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P~ may not be integrable. Hence, V, may not represent a global configuration
but rather a collection of local configurations [5]. With reference to the model
of strain-transformation, we assume that one of the two phases of the solid
(say the first) represents a natural configuration. By contrast, the second
phase is associated wiht a natural configuration V, through P. As the global
energy has to be invariant with respect to changes of configurations one writes

W, = Wy(F,X,9) = J, W, (FP,9). (7.2)
Notice that
88‘}[1;'2 =Tgr is the 1st Piola—Kirchhoff stress tensor,
—%PT =b is the Eshelby stress tensor.

Tr governs the deformation and the motion. b governs the strain-transfor-
mation.
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CONCLUSIONS

Based on the expounded viewpoint one is encouraged to introduce a dy-

namical description of the process by appealing to the balance of pseudo-
momentum [6,8]. Within this framework the notion of full coherency stems
naturally and interesting results can be pointed out. Some of them are known
and pertain to the realm of thermodynamics [10].
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