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From ergodic theory it is well-known how to associate a Markov operator
with a dynamical system. This operator, which represents the probabilistic
properties of the deterministic system, is called Frobenius-Perron operator.
In the case of a discrete time dynamical system this concept is applied to
construct cell-to-cell mappings which have been used in the numerical analysis
of dynamical systems.

1. INTRODUCTION

In recent years computer experiments in studying nonlinear dynamics have
become more and more prominent. Since computers produce round-off errors,
it is natural to study approximations of a given dynamical systems. This is
done by employing the statistical point of view provided by the ergodic theory
of deterministic systems, cf. [5]. With each dynamical system a Frobenius-
Perron operator, which reflects the probabilistic properties of the determin-
istic system, is associated. This operator in turn induces a Markov process:
Instead of studying individual trajectories of a given deterministic system, one
examines the evolution of probability distributions on the phase space of the
dynamical system.

Partitioning the phase space of the dynamical system into a finite number
of so-called cells, leads to an approximation of the corresponding Frobenius-
Perron operator. This approximation is a stochastic matrix whose entries are
the transition probabilities from one cell to another. The proof of convergence
of such approximations to the original Frobenius-Perron operator is outlined
when refining the partitions.

TThis work is part of the project ‘Dynamische Makrookonomik’ supported by the DFG
under contract Bo 635/8-1.

243



244 J. WENZELBURGER

The stochastic matrices thus obtained may be interpreted as cell-to-cell
mappings, whereas the cells of the corresponding partitions may be thought
of as round-off errors of a computer. Cell-to-cell mappings have been used in
the numerical analysis of dynamical systems, cf. 3, 6].

I am indebted to Prof. Volker B6hm for his encouragement in this work
and to Leo Kaas for several valuable discussions.

2. DYNAMICAL SYSTEMS AND FROBENIUS-PERRON OPERATORS

Let X be a compact subset of IR which for simplicity is assumed to be
rectangular, i.e.

l‘srz;)zn < m(l) < -T'E:;,)az for z = ($(1)7 7$(d)) € X7 i = 1"" ’d'

Let B denote the Borel o-algebra of X generated by the open subsets of X and
Prob(X) the set of all probability measures on X, i.e. the set of all measures
with ¥(X) = 1. In particular, let 4 € Prob(X) denote the usual Lebesgue
measure normalized to 1. Consider a discrete time dynamical system induced
by the continuous transformation S : X — X. Picking an initial point
o € X, the successive states of the system defined by S at times 1,2,... are
given by the trajectory

To, S(z0), S*(x0) = S(S(x0)), ... .

Instead of looking at single trajectories, it turns out to be useful to look at
a distribution of all possible trajectories. This can be done by associating an
operator Ps : Prob(X) — Prob(X) defined by

Psv(B) = v(S~1(B)), BeB (2.1)

with the transformation S. Pg is called Frobenius-Perron operator on
measures corresponding to S, cf. [5].

It can be shown that Ps is an example of a Markov operator. The iterates
of Ps describe the evolution of probability distributions on X. In particular,
iterates of Pg can reproduce a trajectory of the transformation S in the follow-
ing way. Let o € X be fixed and consider the Dirac measure §,, supported
on the single point z,. Since S~*(B) = {z € X | S(z) € B}, then

Ps(S,;o (B) = JZO(S_I(B)) = (55(10)(B) for Be B (2.2)
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and by induction P&6,, = dgk(s,). In order to obtain single trajectories, it is
thus sufficient to start from a Dirac measure. If in addition

1S(y) = S(2)| < Cly—2| fory,zeX

and C < 1, then the classical contraction principle shows that all trajectories
(S*(zo)) converge to the unique fixed point z, = S(z,). It can be proven that
in this case for arbitrary v € Prob(X), the sequence (P&v) converges to d,,
with respect to the weak™ topology® , where d,, is the unique so-called stationary
distribution, i.e. §,, = Psd,,, cf. [5] for details. Notice that this observation

may easily be generalized to period-k cycles. Clearly, {zo,... ,zx—1} is a
period-k cycle of S if and only if % Zf;ol 0, is a stationary distribution of Pg
with Psd,, = 65,,,,4=0,... ,k—1.

If S is a nonsingular transformation, which means that the inverse image
S~1(B) of any set B € B of Lebesgue measure zero has Lebesgue measure zero,
then Ps can also transform densities. Recall that a function f : X — IR is
integrable in the sense of Lebesgue, if [ f(z) p(dz) < oo and denote the set
of all such functions by L' = L*(u). This space endowed with the norm

1l = [ 1@ nlda) < o0

is a Banach space. Let v be an absolutely continuous measure w.r.t. the
Lebesgue measure p, that is v(B) = [, f(z) p(dz), B € B for some f € L',
f >0, then

WSTB) = [ f(a) pldo).

5-1(B)
Since S is nonsingular, by the theorem of Radon-Nikodym, there exists a
unique Psf € L' such that the right hand side of (2.1) may be rewritten as

V(S1(B)) = /B Psf(z) p(de) for B € B. 2.3)
For arbitrary f € L', we define Psf := Ps(f*) — Ps(f~), where

f=f"—f" with f* =sup(f,0), f~ =sup(~/f,0).

It is easy to check that Pgs is linear. Thus, if the transformation S: X — X

is nonsingular, then there exists a unique linear operator Ps : L! — L', given
by

/ Psf(z) p(dz) = / f(z) p(dz) for B € B.
B S—1(B)

!Some authors refer to this topology as the weak topology.
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Ps is called Frobenius-Perron operator corresponding to S. It is a matter
of routine to check that Ps satisfies the properties of a Markov operator, that
is

(4) Psf >0and |Psflp = |f]o for f €L, f>0;

(@) |Psfler < |fle for f e L.

Thus, Ps is a particular example of a Markov operator. Analogous properties
for Ps hold true, cf. [5]. Note that if S™ := S-.7. S and Pgs is the Frobenius-
Perron operator associated with S, then Ps» = Pg is the Frobenius-Perron
operator corresponding to S™. It follows from (2.4,i) that Ps may be restricted
to an operator on densities Pg : D — D, where

(2.4)

D:={felL'| f>0and |f|;: =1}

is the space of all densities. In the case where S is nonsingular, Ps may be
used to characterize irregular behavior of S such as ergodicity, mixing and
exactness, see [5].

3. SIMPLE CELL-TO-CELL MAPPINGS

This section deals with the construction of simple cell-to-cell mappings
from Frobenius-Perron operators on measures. Let {By;} be a partition of |
the phase space X into N pairwise disjoint hypercubes By; € B,i=1,... , N,
where X = UY, By;. In the sequel these hypercubes will be called cells. Let
zni € By denote the middle point? of the cell By;, 1 = 1,... ,N. Then the
Dirac measures ¢,,,,... ,0,y, SPan a measure space

N N
Proby(X) := { 0., ‘ oy=landa; >0,i=1,... ,N}
i=1 i=1

which is called the space of discrete probability measures associated with the
partition {By;}. Each probability measure v on X can now be approximated
by a discrete probability measure by means of the mapping

L, { Prob(X) — Proby(X) (3.1)

v — UN = Zivzl V(BNi)(Szzvi

Observe that by construction vy(By;) = v(By;) for ¢ = 1,... ,N and in
particular vy (X) = v(X) = 1. Therefore, Il is a projection, eIl = Ily.

2Each other point inside of By; could equally well be chosen.
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Let ¢y : Proby(X) < Prob(X) denote the natural inclusion and consider
the linear operator Py defined by

Pn : Proby(X) — Proby(X), Py := IyPsery.

Using the basis d,,,,... ,0.yy of Proby(X), a coordinate representation of Py
can be constructed as follows. Since {By;} is a partition of the phase space
X, for each point z € X there exists a unique i, for which x € By, . The
image of any Dirac measure J,, z € X under the map (3.1) then calculates as

Myd, =6 where £ € By, .

ZNig?

Since Ps6, = 0s(s), the coordinate representation of Py is thus given by

Ay ; 1 if S(zn;) € Bni
PNézNj = ;pdezma where pNj = { 0 if nggjg g Bz:

Observe that for each jj there is exactly one iy such that S(zy;,) € Bns,. This
implies that each column of the matrix (pjvj) has exactly one entry equals to
1 whereas all other entries are 0. Thus, (p};) is the transpose of a stochastic
matrix. Since the transition probabilities pf\,j do not explicitly depend on
time, Py corresponds to a finite Markov chain, cf. [4]. In other words, Py is
nothing else but a simple cell-to-cell mapping.

4. APPROXIMATION OF MARKOV OPERATORS ON DENSITIES

Since the construction of generalized cell-to-cell mappings is somewhat
more involved, we will consider approximations of arbitrary Markov operators
on densities first. Let L™ = L*(u) denote the Banach space of all functions
g : X — IR which are essentially bounded, i.e. |g(z)| < ¢ for p-almost all
z € X. Since the measure p is finite, L C L'. If f € L' and g € L*, then
the product fg is integrable and the Lebesgue integral defines the continuous
bilinear pairing

['xL® — R, (fg)= /X f(@)g(z) p(da). (4.1)

Consider a partition {By;} of the phase space X into N hypercubes (cells)
Byi,i=1,...,N as before. Since the By; are measurable, the characteristic
functions xp,, and the normalized characteristic functions Xpy, = ;5= XBw:
are functions in both L> and L!. In particular, the normalized characteristic
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functions span the N-dimensional linear subspace Ex = [XByys--- » XByw] Of
L. Since the By; are disjoint, the pairing (4.1) yields

_ 1 i=j
(XBNn XBNJ') - { 0 i#j ) (4.2)
stating that xp,,,--- ,XByy € L™ is the dual basis of xBy,,--- , XBxy € L'
It is seen from (4.2) that the mapping
N
N - Ll — gN7 7er = Z(fa XBNi) XBN:’ (4'3)

i=1

is a projection, myomy = mx. Moreover, it is shown in [7] that the projection
(4.3) is continuous and |ny].: = 1. Note that (f, xBy.) = [p,, f(z) p(dz) is
the mean value of the function f over the set By;. In particular, for arbitrary
fe€ L', f >0, one has

“7er“141 = Z(fv XBNi) ) / )_(Bzvi(m) [_l,(d.’l,') = Z(fv XBNi) 1= "f“L‘
i=1 X i=1 (4.4)

Now let 15 : Ey < L' denote the inclusion map. Consider the linear
operator Py defined by

PN : gN — SN, PN = 7I'N°P°ZN, (4.5)

where P is some Markov operator. Since €y is finite-dimensional, Py is a
discrete approximation of P associated with the partition {By;}. Setting
fnv = nnf for f € L', it follows from (4.4) and property (2.4,i) of Markov
operators that

- Pyfn>0and |Pnfnle = |Pfnle = vl Vinv € En, fn >0.(4.6)

Property (2.4,ii) of Markov operators then states that

IPnfnler < |fnler Vi € En.

Therefore, Py : Ey — En is again a Markov operator. Using the basis of &y,
Py has the coordinate representation

N
PN)_(BN,':ZP;VJ' ZBN” j=1,...,N.

=1
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This implies that (4.6) is equivalent to

N

ijj >0 and ijvj =1L (4.7)
i=1

Thus, (ply;) is a stochastic matrix® with transition probabilities py;. The

second equality in (4.7) is known as the Markov property of a stochastic matrix

which states that the system will never “die”. Since the transition probabilities

p}'vj do not explicitly depend on time, here again Py corresponds to a finite

Markov chain, cf. [4].

5. GENERALIZED CELL-TO-CELL MAPPINGS

We are ready to construct generalized cell-to-cell mappings from Frobenius-
Perron operators on densities. Let P = Ps be the Frobenius-Perron op-
erator associated with the nonsingular transformation S : X — X. The
transition probabilities pjvj of the corresponding approximation Py can now
be calculated in terms of measures of the sets By; € By and their inverse
images under S

S (Bn:i) = {z € X | S(z) € Bni}-

PROPOSITION 5.1. The matrix representation (pjy;) of the discrete Fro-
benius-Perron operator Py associated with the nonsingular transformatiom
S : X — X and the partition {By;} is given by

i (S~ (Bni) N By;) .
= — , .1 =1,...,N.
Pnj 1(Bn;) o I
The proof of Proposition 5.1 can be found in [7]. The transition probabilities

provided by Proposition 5.1 allow the following interpretation. Given a system:
governed by the nonsingular transformation S,

S_I(BNi) ﬂBNj = {1‘ eX I S(.’L‘) € By;and z € BN]-}

is the set of all states £ € X which pass from cell By; to cell By; within one

period. Therefore,
i _ p(S"'(Bni)NBnj)
Pn; = u(Bn;)
may be interpreted as the conditional probability that the system is in cell
Bpi, knowing that the system is in cell By; one period before. Here, the

3 Actually, (py;) is the transpose of a stochastic matrix.
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Markov property of (p ;) means that no trajectory will leave the phase space
X.

If S: X — X is measure preserving, u(B) = pu(S™'(B)) for all B € B,
and invertible, then u(B) = p(S(B)) for all € B. In this case the transition
probabilities ply; of Py satisfy

i pw(S~*(Bni) N By;) _ pu(BniN S(Bnj))
NI 1(Bn;) #(S(Bns))

The transition probabilities (5.1) have been used in the works of the authors
Hsu and Kreuzer, see [3, 6] and references therein.

ij=1,...,N. (5.1)

The transition probabilities provided by Proposition 5.1 will, in general,
be difficult to calculate, since one has to find the inverse image of each set of a
given partition under the transformation S. From the point of view of numer-
ical analysis, it is therefore necessary to have good approximations for these
probabilities. The basic idea of the method introduced here is due to Kreuzer
[6]. We will outline next that this method provides good approximations of
the transition probabilities given in Proposition 5.1.

Consider a partition {By;} of the phase space X into N pairwise disjoint
sets By;. Let Byj, j = 1,... ,M, where M > N, be a refinement of this
partition such that for each i =1,... , N,

M;
By, = U By, B, N B, =0 whenever 4, # 4; (5.2)

k=1

and Zf\il M; = M. Choose zp; € By, j =1,...,M and define a measure
i on X by

M
.U’M(B) :'__Z.U(BMJ')J:EM;,‘(B)’ B e B.
Jj=1
According to Section 3, uas defines a discrete probability measure on X. It
follows from (5.2) that

M;
pa(Bni) = > u(Bui) = u(Byi), i=1,...,N
k=1

and pp(X) = p(X) = 1 as before. Using pp as an approximation of the
original measure yu, gives
pae (S~ (Bwi) N Byj)

Pl & , i,j=1,...,N 5.3
Nj ;U'M(BN]) J ( )
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for the transition probabilities. In particular, one may choose M; = K for all
such that u(By;) = &, ¢=1,... ,N and p(Bu;) = 25> J = 1,... , M. Then,
using (2.2), for each 7,5 =1,... ,N,

pun(SH(Bni) N Byj) & (Barty) -1
#M(BNJ') - e I(BLNjkj—Jlek (S (BNi)ﬁBNj)

K K
= Z%JIM"’“ (S_I(BNi)) = Z 71{'65(1Mjk)(BNi)'

k=1 k=1
Notice that term of the right hand side may be evaluated by a computer. For
K =1 one obtains once again a simple cell-to-cell mapping. For K > 1 one
obtains a general cell-to-cell mapping, where the transition probabilities are
the ones first obtain by Kreuzer [6]. In the sense of Proposition 6.1 below, pis
is a good approximation of u. Moreover, if S is continuous and nonsingular,
it is shown in [7] that the right hand side of (5.3) converges to pjy; when M
tends to infinity.

6. ON THE CONVERGENCE OF THE APPROXIMATIONS

In this section we briefly outline the question what happens if the partition
of the phase space is refined. This can be achieved by subdividing each hy-
percube By;, 1 =1,... , N into smaller hypercubes By, 7 = 1,... , M, where
M > N and each By, is the disjoint union of some of the cubes B);. Thus
the family of hypercubes By, j = 1,... , M constitutes a refinement of the
original partition. This process may be repeated for each integer. Each family
of hypercubes By;, i = 1,... , N generates a o-subalgebra By of the original
Borel o-algebra such that By C By for N < M. Moreover, the sequence of
partitions { By;} yenv converges to points in X in the following sense (cf. [2]):
for each B € B there is a sequence of sets By € By such that

uw(BNAB) -0 when N — oo, (6.1)

where ByAB := (By\B) U (B\By) denotes the symmetric difference of two
sets.

It is now natural to ask whether for a given Frobenius-Perron operator
Pg, the sequence of approximations (Py)nyen corresponding to the o-algebras
(BN)New converges to Ps and analogously, whether the sequence (Py)nen
converges to Ps.

In the first case it is straightforward to show that for each f € L' the
sequence of p-integrable functions (7yf)nyew is a martingale. In probability
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theory, fx := wnf is also referred to as the conditional ezpectation of f.
Applying standard results in martingale theory (see e.g. [1]), it is shown in [7]
that the sequence (fy)nyemw converges to f both p-almost everywhere and in
the mean, that is with respect to the L'-norm. This observation leads to the
following result.

THEOREM 6.1. Let {Bn;}new be a sequence of partitions of X which
converges to points in the sense of (6.1) as N tends to infinity. Let P be

a Markov operator and Py its discrete approximation corresponding to By.
Then for each f € L,

|Pf—Pnfnltr =0 when N — oo.

Proof. Let f € L' be arbitrary. Using |P|;: <1 and the definition of Py,
then

|Pf—Pnfnler < |Pf—Pfnler + |Pfv — Prvfnle
< If = fnle+|Pfv — on(Pin)l

—0 —0

when N — oo. The convergence of the first term follows from the martingale
property just stated. The convergence of the second term can be seen as
follows. Let (h,)menw be a sequence of functions in L' which in the L'-norm
converges to h € L'. By the continuity of 7 (see Eq. (4.3)) and the martingale

property,
< w (= )z + bwnh — Bl + 1B — By s
S 2ﬂh - hm“Lll'l'ﬂﬂ'Nh — h“L‘J

—0 —0

Imnbm — hm| e

when N — 0o and m — oo. This proves the convergence in the mean. |

In the second case observe that the set of all discrete probability measures is
dense in Prob(X) with respect to the weak™ topology, cf. [1]. Using the map
Iy : Prob(X) — Proby(X) defined in (3.1), one may state the following.

PROPOSITION 6.1. Let {Bn;}nenw be a sequence of partitions of X which
converges to points in the sense of (6.1) as N tends to infinity. Then for each
measure v € Prob(X),

Iyv — v weak® in Prob(X) when N — oo.
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THEOREM 6.2. Let {Bn;}new be a sequence of partitions of X which
convergés to points in the sense of (6.1) as N tends to infinity. Setting vy :=
IIyv, then for each measure v € Prob(X),

Pyvn — Psv weak™ in Prob(X) when N — oo.

The proofs of Proposition 6.1 and Theorem 6.2 are somewhat more techni-
cal and are omitted here (see [7] for details). However, notice that the notion
of convergence in Theorem 6.2 is a lot weaker than the one in Theorem 6.1.

7. CONCLUSIONS

Starting with a discrete-time dynamical system, we associated two Frobe-
nius-Perron operators with the deterministic. system via ergodic theory. For a
given partition of the phase space, cell-to-cell mappings, i.e. Markov chains,
were constructed and the convergence of these approximations was outlined
when refining the partitions.

The theory of Markov chains may now be used to numerically analyze
the dynamical behavior of the system with the help of a computer, cf. Hsu
[3] and Kreuzer [6]. However, from the authors point of view the transition
probabilities used therein are motivated only intuitively. This paper bridges
that gap to some extent.

It is important to realize that simple cell-to-cell mappings may be used to
approximate continuous transformations S, whereas by Proposition 5.1, gen-
eral cell-to-cell mappings are only applicable if in addition the transformation
is nonsingular. As the discussion above shows, the transition probabilities
of the general cell-to-cell mappings used by Hsu [3] are only applicable if the
transformation S is invertible and measure-preserving with respect to the mea-
sure p. These conditions are rather restrictive, since such an invariant measure
is not known a priori and, in general, will be difficult to calculate.
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