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1. INTRODUCTION

The classical Jacobi variables for elliptic orbital motion are traditionally
derived for the standard Kepler problem in the negative—energy case. The
derivation process is based on the idea of formulating the Hamiltonian of the
problem in polar spherical variables and solving it by integrating the corre-
sponding Hamilton—Jacobi partial differential equation, the integration proce-
dure resorting to the separation-of-variables technique. The starting point,
approach and purpose adopted in this Note are somewhat different from the
traditional ones.

The main concern of this research is the construction of an analytical,
closed-form solution to the dynamical problem of positive-energy two-body
motion governed by the quasi-Keplerian type of Hamiltonian function H pro-
posed by Deprit [3], p. 138, as the simplest radial intermediary of the first or-
der for the Main Problem in Satellite Theory. This Hamiltonian is completely
separable in the Hill-Whittaker chart and takes into account the major first—
order secular perturbing effects due to the flattening of an oblate spheroid
taken as the central body.

To mention a general feature, radial intermediaries constitute simplified
models of one-degree—of-freedom (and therefore, integrable) Hamiltonian ap-
proximations to the problem of motion of natural and/or artificial orbiters
about oblate spheroidal primaries and lead to more general reference orbits
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than the purely Keplerian one; they share important, far-reaching analytical
properties that render the mathematical operations simpler than those re-
quired when using other intermediaries. Significance and utility of intermedi-
aries arises from a twofold interest, both as a working tool for the investigation
of certain problems of motion in developing perturbation studies (in satellite
and/or planetary theories) from simplified models, and the theoretical impli-
cations of their construction, which provides a deeper insight into the nature
of some fundamental problems of Celestial Mechanics.

The sought solution will be developed in terms of elementary circular and
hyperbolic functions under a simple form fitting into the usual geometrical and
dynamical pattern of the Keplerian picture of the hyperbolic two—body motion,
provided that appropriate modifications of the hyperbolic orbital elements are
incorporated into their defining relations. As for the time, it will be determined
with the help of a generalized Kepler-like equation.

As regards this particular sort of orbits, one should not forget that in prin-
ciple, at least from a theoretical and conceptual point of view, the analytical
treatment of hyperbolic—type orbital motion enjoys in the phase space the
same importance as that of the bounded one. In addition to this, it is remem-
bered that in practical applications the nature of the orbit can be occasionally
changed by perturbing forces acting during a finite interval of time.

Outstanding precedents in this kind of study can be traced in the litera-
ture, also in the field of the Theory of Artificial Earth Satellites. For instance,
Hori [7], in his analysis of the hyperbolic motion of an artificial satellite under
. the potential defining the Main Problem in that Theory, introduced a suitable
variant of the canonical set of Delaunay variables by adapting the construc-
tion that, via the Whittaker method, Brouwer and Clemence [1], Chapter XI,
84 and §9, had developed in the context of elliptic motion. In their turn,
Cid, Lahulla and Calvo [2] investigated the same hyperbolic J, problem by
formulating it in Hill-Whittaker polar nodal variables.

With the aim of obtaining the said solution and producing a set of action—
and angle—variables behaving as canonical elements of the Jacobi type for the
considered problem, the 6-dimensional phase space will be looked on as the
stage on which a suitable reducing symplectic transformation will operate.
So the canonical system of differential equations of motion derived from H
will be solved by constructing a complete solution S to the corresponding
Hamilton-Jacobi first—order partial differential equation. To this end, in order
to apply the separation—of-variables technique, advantage will be taken of a
set of nontrivial constants of motion that are readily recognized at first sight
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by mere inspection of the Hamiltonian and suggest the choice of an adequate
set of separation constants.

As a result of the treatment of the problem by Hamilton-Jacobi tech-
niques, a rectification (see, e.g., Lanczos [8], Chapter VIII, §2, and Scheck [9],
§2.37.1) of the Hamiltonian flow of the autonomous system at issue will be
obtained after the canonical transformation by means of which the solution is
investigated.

To fully achieve the development and contemplate the representation of
the solution in Keplerian language, the required intermediate reckoning work
can be carried out by adapting certain classical calculations and derivations
of canonical elements for the unperturbed, purely Keplerian motion along a
hyperbola to the present study, in which a perturbing potential proportional
to r =2 will be allowed for in the analysis. The way of proceeding is based
on the idea of modifying a procedure (classically applied to a pure Kepler
problem to derive the elliptic Delaunay elements, as done, e. g., in Deprit
[3], pp. 115-118, and for quasi-Keplerian systems in the same article, pp.
124-126) to the considered Hamiltonian H.

As a consequence, the proposed solution will absorb the perturbation ef-
fects due to the contribution of the J, terms of such a potential. From the
present approach one achieves a kind of Keplerian reduction on the basic De-
prit intermediary, and so the conclusion emerges that this research confirms
once again the intrinsic Keplerian nature of the Deprit Hamiltonian.

2. THE BASIC HAMILTONIAN AND THE TRANSFORMATION

As a starting point, the canonical set of polar nodal variables (r,0,v;p,, pg,
p,), constructed by Whittaker and Hill, is used to coordinatize the 6—dimensio-
nal phase space. The meaning of these variables is the following: 7 denotes
the radial distance from the primary’s centre of mass to the small moving
point; v represents the argument of longitude of the ascending node in the
equatorial plane; 6 is the argument of latitude of the orbiter, reckoned from
the ascending node. Their conjugate canonical momenta are interpreted as
follows: p, is the radial velocity of the moving mass, p, designates the polar
component of the angular momentum, and ps denotes the modulus of the total
angular momentum. Finally, ¢ refers to the physical time, which will act as
the independent variable.

Using these variables, the Hamiltonian of the Main Problem in Artificial
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Satellite Theory reads

M = HO(Tv_7—;pryp9$_) + €M1(T70a—;pr7p9,pu)

17, 1 } p p R 2 2

= - o _ £ Ele (3¢ -1 2
2[10T+T2 7‘-+-€4r3{(c ) + 3s° cos26 },
where the abbreviations ¢ = cosI = p,/ps and s =sin stand for the usual
functions of the inclination I = I (pg, p,). After elimination of the parallax
(see Deprit [3]), this Hamiltonian becomes the function
p* R2

H = H(Ta_v_;prap01pu;€) = HO + 541“2]93

(3¢5 — 1),

named as the Deprit radial intermediary. Here the Hamiltonian H, pertains
to a conventional Kepler problem, R, refers to the mean equatorial radius of
the central body, and the (small) dimensionless coefficient ¢ = —J, accounts
for the oblateness in the gravity field of the primary. A dash has been used in
place of a variable to emphasize its explicit absence from H.

As will be seen, the validity of the subsequent discussion is not affected
by the specific functional form under which the momenta p, and p, and
the perturbation parameter ¢ occur in the expression of H. Indeed, in the
light of the functional dependence of this Hamiltonian, a glance at H =
H(r,—,—; pr, Do, Pv; €) shows that the angular coordinates 6 and v are
cyclic for the intermediary problsl at hand, and so their canonically conjugate
momenta are invariant quantities throughout the motion:

ps = ©y = const., p, = Ny = const.

By virtue of the conservative nature of the problem (since H is not ex-
plicitly dependent on the time t), the system admits the first integral of the

energy:
H = KQ,

K, denoting the constant value of the total energy of the Hamiltonian. For
definiteness, K, will from now on be supposed positive, according to the as-
sumption on the hyperbolic nature of the orbit.

Now, the integration of the differential equations of motion derived from
‘H amounts to finding a canonical transformation to a set of constant mo-
menta and all but one constant coordinates, the remaining coordinate being
a linear function of the independent variable ¢. This transformation will be
accomplished by means of a suitable scalar generating function S; in order
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to determine S, it will suffice to know a complete solution to the Hamilton—
Jacobi first—order partial differential equation associated with H , namely:

a5 8S as i
H(77_7_’8 89 8 >=I‘0)

and the unknown function S generates a Symplectlc mapping from the phase
space of the polar nodal variables,

S -
(7’»‘9’1/;17“]30,17:/) — (QI(vQ@aQN;I\0a607NO)a

the constant values of the above conserved quantities of the problem (namely:
Ky, O and Ny ) having been chosen as the canonical momenta of the new set
of phase variables.

Since any cyclic coordinate is separable and for this Hamiltonian all but
one of the coordinates are cyclic, its corresponding Hamilton—Jacobi equation
turns out to be completely separable in the coordinates chosen, in such a way .
that its integration can be more easily effected if one seeks a trial solution for
S by separation of variables, say in the form of a sum of separate functions of
the separate coordinates, each function involving just one of the coordinates
and one or some of the selected constants:

S =S(r,0,v; Ky,00,Nyg) = 009 + v Ny + W (r).

Next, upon substituting this trial solution into the equation, the resulting
reduced Hamilton-Jacobi equation is

1 /dW\? 02 m p? R? N2

= — — — = < e = K, .

2 ( dr ) + 22 te 4 r2 32 [3 CH ] 0
Correspondingly,

2
(M) = Q(T;I{03607N0;8)’

where

2# 1 p?R2 [ N2
Q = Q( I\O’(-)O’Nan) - 2[‘0 + - T {@2 2@3 [362— -_— ]_:I}

Thus the generating function (that depends on a combination of variables
that mixes the two sets together) can be written compactly in the form

SES(T,O,V;I((),@(],N())=9@0+I/N0+/\/Q dr,
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the lower limit of integration ry being the only (positive) real root of the r—
equation given by Q(r ; Ky, ©, Ny ; €) = 0, which will formalize a
condition for 7+ =0, i. e., for r to have an extremumn.

The implicit equations of the symplectic change of phase variables derived
from a complete solution S of the Hamilton-Jacobi equation linked to H are
expressed by the following relations:

3
P = VQ , Qr = \/% (esinhF — F),

pe = Oy, Qo = 0 - Awy f,

P, = No, Qn = v — Ay f.

The quantities and functions involved in the above equations admit a sim-
ple interpretation that parallels the usual Keplerian language, the formulae
bearing a close resemblance to those holding for the standard Kepler prob-
lem (specially when the perturbation terms are neglected). With this aim in
view one introduces a set of appropriate subsidiary quantities a = a( Ky),
e = e(lo,00,No; €),p = p(Oo,No 5 €), K = £(O, No ; ¢),
n=n(ky), Mgy (O, Noj e), Ay(Og, Ny ; €) and the auxiliary vari-
ables F = F (r; Kog,©9,Nyg;¢)and f =f(r; Ky,O0,Nygj;e) by
means of the set of relations

H 2 o2 M2R§< Ng ) 2
= = 3——= —1)] = -1
a 5K, K O; + ¢ 162 o2 pal(e ),
2]’ 2 2
e? =1 ‘(ln, p=a(62—1)=’€—, p = n’a®,
2 u
ok 1 n?R? N02> ok 1 [ 3,u2R2N0}
=—_ =- —=(1-6— ANE — = — |[e——=—1,
B 90, &[@0+82@8 < 6@3 } W =5N, k|5 208
ot = coshF, r = a(ecoshF — 1), r=—2r
ae 1+ ecosf

By virtue of the positivity of the total energy, the preceding eccentricity—like
function e (Ko, ©g, Ny ; €) is such that e > 1, which leads to a straightfor-
ward determination of the root of the r-equation Q(r; Ky, ©g, Ng; ) =0,
say: 0 <7 (Ky,00, Ng;e) = a(e —1). So, keeping in mind the mean-
ing of the zero of @, one concludes that it is the perturbed pericentre radial
distance.
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These formulae are similar to those holding for a hypothetic Keplerian
motion characterized by the above hyperbolic elements (a,e,p) with « as the
modified angular momentum magnitude and n as a kind of hyperbolic mean
motion.

Notice that the equation for Q is one of the type of a Kepler equation,
which will later serve as the fundamental relation connecting the position on
the orbit and the time. In addition to this, observe that, by constrast to the
classical Jacobi transformation, this equation involves not only r, Ky and ©,
but also the momentum N.

On the other hand, although p, has the same functional form as in the
conventional Keplerian case, one should not overlook the fact that it actually
depends on Ny through F or f. Thus, for instance, one will get that

2 2 1
pf+—£g=:2Kb+-7# - 5 [& - ep].

In the next section the canonical transformation here obtained will be
applied to the Deprit intermediary. In so doing, it will be seen that the
functional dependence of H is substantially simplified when formulated in the
new Jacobi-like variables.

3. SOLUTION TO THE INTERMEDIARY

To complete the picture, the Deprit Hamiltonian will be reduced by the
transformation defined in the preceding section. In the new chart it becomes
the function

H — H=H(- - —; Ky, —,—) = Ko = =

dQrx _ OH

dt 0L,

Thus the transformation performs a canonical reduction of H to the Hamilto-

nian H corresponding to a hypothetic unperturbed hyperbolic Kepler problem,

and the proposed variables absorb all secular variations included in the poten-
tial of H.

The integration constant ty, is an epoch constant depending merely on
the instant from which ¢ is measured in the time scale. The choice of ¢, as
the instant at which the moving mass performs the pericentre passage is a
customary practice in Orbital Mechanics studies.

=1 = Qg =t + const. =1t — t.
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In the canonical solution to the equations of motion generated by the re-
duced Hamiltonian H in the new system of variables, the only variable that is
not a constant of the motion is Q , which is equal to the time plus a constant.

It should be emphasized that, as usual in Hamilton-Jacobi theory (see, e.
g., Lanczos [8], Chapter VIII, §2; Scheck [9], §2.37.1), the following interpre-
tation can be ascribed to the above results: in the neighbourhood of every
point of phase space that is not an equilibrium position, the transformation
smooths the flow of the autonomous Hamiltonian system derived from H to a
uniform, rectilinear flow, producing a bundle of parallel straight lines inclined
at an angle of 45° to the time axis.

As in the previous Note [4], from the transformation formulae, by solving
for the original polar nodal variables, the sought hyperbolic Keplerian-like
solution to the Deprit intermediary H can be set up in a parametric represen-
tation:

1
Generalized Kepler Equation: Qp = -~ (esinhF — F) =t — tg,
Radial distance: r = a(ecoshF — 1) = L,
1+ ecosf
inh F
Radial velocity: p, = v/ Q = 5— (e CZSSIIII; =) = ,/% esinf,

Argument-of-latitude equation: 6 = Qo + A(s) f,

Magnitude of the angular momentum vector: py = Oy,

Node equation: v = Qny + A, f,

Polar component of the angular momentum vector : p, = Ny .

Consequently, collecting the preceding details, the resulting variables for
the fictitious "hyperbola-like” motion are

Qr = l(es.inhF—F) =t — 1, K, = L = const.,
n 2a

Qo = 0 — Aggy f = const., ©y = pg = const.,
Qn = v — A,y f = const., Ny = ©ycosl = p, = const.,

and, at first sight, (a, e, I, Qo, Qn, to, n) resemble and bring to mind the
standard Keplerian orbital elements of hyperbolic motion.



GENERALIZED JACOBI-TYPE VARIABLES 205

4. FINAL REMARKS

(1) As in the case of the generalized Delaunay elements considered in the
previous papers [4] and [5], the application of these Jacobi-like variables to
the hyperbolic Main Problem in Artificial Satellite Theory performs a removal
of the non—-trigonometric terms of the first order occurring in the J, part of
this Hamiltonian. Comments like those in [4] are also in order now.

(2) The transition from the preceding generalized Jacobi set to the just
mentioned Delaunay-type elements,

~

(QAaQ@aQN I‘O,@07N0) i (l,g7h';LaG’H),

can be readily accomplished via a simple canonical transformation derived
with the help of the generating function

~

S =8(Ky,00,Ng;1,9,h) = Il — ©g — Noh,

\/— 2 Ik,

which is inspired by a proper modification of one considered, e. g., by Garfinkel
[6], pp. 64-65, taking into account certain changes of sign due to the hyperbolic
nature of the motion.
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